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Abstract: One challenge of bearing fault diagnosis is that the vibration signals are often a nonlinear
mixture of unknown source signals. In addition, the practical installation position also limits the
number of observed signals. Hence, bearing fault diagnosis is a nonlinear underdetermined blind
source separation (UBSS) problem. In this paper, a novel nonlinear UBSS solution based on source
number estimation and improved sparse component analysis (SCA) is proposed. Firstly, the ensemble
empirical mode decomposition (EEMD), correlation coefficient (CC), and adaptive threshold singular
value decomposition (ATSVD) joint approach is proposed to estimate the source number. Then, the
observed signals are transformed into the time−frequency domain by short−time Fourier transform
(STFT) to meet the sparsity requirement of SCA. The frequency energy is adopted to increase the
accuracy of fuzzy C−means (FCM) clustering, so as to ensure the accuracy estimation of the mixing
matrix. The L1−norm minimization is utilized to recover the source signals. Simulation results prove
that the proposed UBSS solution can exactly estimate the source number and effectively separate the
simulated signals in both linear and nonlinear mixed cases. Finally, bearing fault testbed experiments
are conducted to verify the validity of the proposed approach in bearing fault diagnosis.

Keywords: bearing; fault diagnosis; underdetermined blind source separation; fuzzy C−means
clustering; sparse component analysis

1. Introduction

Gearboxes have been widely used in many fields, such as aerospace, machine tool, au-
tomobiles, etc. As the core components of the gearboxes, gears and bearings are considered
to be very prone to failure because of long−term operation under extreme conditions. A
statistical report by Neale Consulting Engineers Ltd. showed that most gearbox failures
(49%) are caused by the bearings, and the gears are considered as the second leading cause
of failures (41%), followed by other components accounting for 10% of the failures [1]. The
failure sequence frequently starts with a bearing, rather than a gear. The degradation and
failure of bearings will cause a decline in performance and an increase in vibration, leading
to overall damage to the rotating machinery system, economic losses, or even human
casualties. Therefore, bearing fault diagnosis is of paramount importance to guarantee
stable, reliable, safe operation of the machines and reduce avoidable economic losses. Bear-
ing fault diagnosis techniques, including vibration signal analysis, acoustic analysis, and
temperature monitoring, have been studied for many years [2]. Among these, vibration
signal analysis has been widely developed because vibration signals contain abundant
dynamic information about rotating machinery. Donelson and Dicus [3] adopted envelope
analysis in the bearing fault diagnosis of freight cars. Pan and Tsao [4] utilized ensemble
empirical mode decomposition (EEMD) and envelope analysis to detect the multiple faults
of ball bearing. Cai [5] employed empirical mode decomposition (EMD) and high−order
statistics to extract the fault features of rolling bearing in a Gaussian noisy environment.
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Wang et al. [6] proposed an improved EMD method, called EMD manifold, to enhance
the fault detection of rotating machines. However, owing to the complexity of operating
conditions, the traditional diagnostic techniques may not be able to make an accurate
diagnosis, so more advanced diagnostic approaches should be developed.

As a research hotspot in signal processing over the past thirty years, blind source sepa-
ration (BSS) has been widely used in many fields, including speech processing, vibration
analysis, biomedical engineering, etc. [7]. It is an effective approach to obtain the source
signal estimation from the observed signals (mixed signals) in the case where both the
source signals and the mixing manner are unknown [8]. Since Gelle et al. [9] first introduced
the BSS algorithm into rotating machinery fault diagnosis, more and more researchers have
applied BSS theory to provide reliable fault diagnosis methods. Bouguerriou et al. [10]
presented a BSS solution based on second order statistical properties and used it to detect
the bearing faults. Li et al. [11] combined independent component analysis (ICA) with
fuzzy k−nearest neighbor to diagnose the multi−faults of gears. Miao et al. [12] utilized
median filter and the improved joint approximate diagonalization of eigenmatrices algo-
rithm to identify the faults of rotating machinery. However, most studies mainly focus on
the BSS problems in which the number of observed signals exceeds the number of source
signals, namely the overdetermined BSS (OBSS) problem. In practice, the lack of prior
knowledge about the sources makes it hard to pre−set the number of sensors that need to
be installed. Meanwhile, objective factors such as the installation space of sensors will limit
the collection of observed signals. Hence, the number of observed signals less than that
of the source signals is in line with engineering practice, and it is imperative to seek the
solution of underdetermined blind source separation (UBSS) for fault diagnosis in bearings.

Currently, some research work has been conducted to resolve the UBSS problem,
which is mainly classified into two solutions [13]. The first one is to decompose the finite
number of raw observed signals into multiple components through signal decomposition
methods. Generally speaking, the number of multi−channel components is much larger
than that of the source signals. Thus, the UBSS problem can be effectively converted
into an overdetermined one, and then the ICA is employed to obtain the estimation
of source signals. Another one takes advantage of the sparsity property of signals in
the sparse domain, typically known as sparse component analysis (SCA), to resolve the
UBSS in two stages: estimate the mixing matrix first and then recover the sources. In
the first solution, the most commonly used decomposition methods are EMD, local mean
decomposition (LMD), and variational mode decomposition (VMD), which have excellent
performance when dealing with nonlinear signals [14]. The multi−channel components
obtained by these decomposition methods are regarded as the virtual sensor outputs, hence
the accuracy of the signal decomposition is crucial for source signal recovery. However,
these decomposition methods still have some drawbacks. EMD suffers from mode mixing
and end effect problems [15]. In the LMD algorithm, the calculation process of local mean
function and local envelope function is accomplished based on the moving average method,
which may lead to low decomposition efficiency and accuracy in processing non−stationary
signals [16]. The performance of the VMD method relies largely on the appropriate choice
of balance parameter and the number of decomposed modes [17]. These shortcomings
may affect the accuracy of decomposition, resulting in inaccurate generation of virtual
observed signals, and thus affect the recovery of source signals. In addition, although ICA
is an operative method to solve the OBSS problem, it is necessary to strictly satisfy the
assumption of the statistical independence of source signals. It is also assumed that the
number of Gaussian components must be no more than one. Nevertheless, in engineering
practice, the vibration signals do not always fulfill all assumptions, which limits the
application scope of the ICA. Unlike ICA, SCA−based approaches do not require source
independence or irrelevance, and sparsity of signals is the only requirement that needs to
be met. Therefore, SCA is a more suitable method for dealing with the UBSS problem and
can achieve better source separation performance, especially in rotating machinery fault
diagnosis. Nevertheless, SCA−based approaches are difficult to implement with unknown
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source numbers. Furthermore, in the clustering stage, a large number of scatter points will
increase the amount of computation and reduce the clustering accuracy, resulting in the
failure to obtain accurate estimation of the mixing matrix.

In terms of UBSS, it is urgent to solve the problem of determining how many source
signals need to be recovered and how to accurately separate the observed signals. In this
paper, a novel UBSS solution combining source number estimation and improved SCA is
investigated for bearing fault diagnosis. Firstly, the EEMD and CC methods are adopted
to obtain a group of significant IMFs. An eigenvalue method called adaptive threshold
singular value decomposition (ATSVD) is adopted to obtain the number estimation of
source signals. Secondly, short−time Fourier transform (STFT) is utilized to convert
the observed signals into time−frequency domains. According to the obtained number
estimation of source signals, the frequency energy is employed to reduce the amount of
computation and improve the accuracy of fuzzy C−means (FCM) clustering, so as to
ensure the accuracy estimation of the mixing matrix. Thirdly, the L1−norm minimization
method is utilized to estimate the source signals. The numerical results demonstrate that
the proposed method is able to effectively separate the simulated vibration signals, both
in linear and nonlinear mixed cases, and can well identify the fault frequency in the inner
race and outer race fault experiments.

The rest of this paper is organized as follows: Section 2 presents the source number
estimation method based on the EEMD, CC, and ATSVD joint approach. Section 3 presents
the mixing matrix estimation method based on the frequency energy and FCM clustering
algorithm in detail and describes the source recovery by using L1−norm minimization.
Section 4 evaluates the effectiveness and applicability of the proposed approach through
simulation analysis. In Section 5, an inner race fault testbed experiment is conducted to
validate the performance of the proposed approach in bearing fault diagnosis. Finally, the
conclusions are drawn in Section 6.

2. Source Number Estimation Based on EEMD, CC, and ATSVD Joint Approach

Assuming that x(t) = [x1(t), x2(t), . . . , xm(t)] are m−dimensional observed signals,
which are generated by unknown source signals s(t) = [s1(t), s2(t), . . . , sn(t)], the linear
instantaneous mixed model of UBSS can be described as follows:

x(t) = As(t) (1)

where A is an uncharted m × n linear mixing matrix, m < n, and t represents the
observation moment. The purpose of UBSS is to obtain the estimation of sources
ŝ(t) = [ŝ1(t), ŝ2(t), . . . , ŝn(t)]

T without any prior information of A and s(t). In general,
the first step of SCA is to estimate the mixing matrix. If inaccurate mixing matrix estimation
is generated, it will inevitably affect the separation result. Therefore, the mixing matrix
estimation is the key to source signal recovery. The column number of A represents the
number of source signals, and hence the accuracy of source number estimation is crucial
for mixing matrix estimation. In this section, a novel source number estimation approach
based on EEMD, CC, and ATSVD is presented to convert the underdetermined source
number estimation into an overdetermined one. Firstly, EEMD is utilized to decompose the
original observed signals into m sets of IMFs. Secondly, to remove the redundant IMFs and
reduce the computational complexity, the CC method is utilized to screen for the significant
components. Finally, an eigenvalue−based method named ATSVD is proposed to obtain
the estimation of source number. The details are presented as follows.

2.1. Signal Decomposition Based on EEMD Algorithm

EMD is a powerful technique that can decompose a non−stationary and nonlinear
signal into multiple IMFs. In general, each IMF is a mono−component function that
satisfies the following conditions: (1) the number of extreme points (local minima and
maxima) and that of zero crossing points must differ by one at most in the entire data set.
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(2) At any point, the mean of the upper and lower envelope must be zero [18]. Given one
of the observed signals, e(t), the EMD can decompose it as follows:

e(t) =
k

∑
j=1

cj(t) + r(t) (2)

where cj(t) is the obtained IMFs, k denotes the number of IMFs, and r(t) is the residue that
denotes the central trend of e(t).

Although traditional EMD is a powerful technique for processing non−stationary and
nonlinear signals, it still has the mode mixing problem. To overcome the mode mixing
issue, an improved EMD named EEMD was proposed by Wu and Huang [19]. The basic
idea is to add several instances of white noise to the raw signal, so that the components
of different scales can be automatically projected to the proper scale related to the white
noise [14]. Given the observed signal, e(t), the procedures of EEMD are listed as follows:

Step 1: Add white noise, n1(t), to the observed signal, e(t), and the mixed signal is:

e1(t) = y(t) + n1(t) (3)

Step 2: Use EMD to decompose the mixed signal, e1(t), into a group of IMFs as follows:

e1(t) =
k

∑
j=1

c1j(t) + r1(t) (4)

Step 3: Add different white noise, ni(t) to e(t), again and repeat Step 1 and Step 2 for Ne
times. Each time a new group of IMFs is acquired:

ei(t) =
k

∑
j=1

cij(t) + ri(t) (5)

where cij(t) is the jth IMF of the ith EMD trial.
Step 4: Average the corresponding IMFs to eliminate the effect of the white noise, and the

final result can be obtained:

e(t) =
k

∑
j=1

cj(t) + r(t) (6)

In this study, considering the computational cost and referring to parameter settings
in some of the literature, the standard deviation of white noise is set as 0.2 times the raw
signal, and the number of iterations, Ne, is set as 200 [20]. Thus, the raw signal can be
effectively decomposed into a group of representative IMFs whose frequency bands are
automatically arranged from high to low.

2.2. Significant Component Selection Based on the CC Method

The EEMD can effectively decompose a signal into a group of IMFs adaptively, with
each IMF having the same length as the raw signal. However, the noise introduced during
the decomposition process may cause the IMFs to contain redundant components [21]. To
eliminate the influence of noise and reduce the subsequent computation, a simple selecting
criterion called the correlation coefficient (CC) is employed to screen for the significant
IMFs. The CC value can be calculated by the following formula:

Coee(t),cj(t) =
∑N

i=1(e(t)− e)
(
cj(t)− cj

)√
∑N

j=1(e(t)− e)2
√

∑N
j=1
(
cj(t)− cj

)2
(7)
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where e(t) is the raw signal and e denote the mean value of e(t), cj(t) is the jth IMF and
cj denote the mean value of cj(t), and N donates the number of the data points of e(t).
After calculation, the IMFs with significantly low CC values are screened out, and the
preserved IMFs are the significant components that contain more defect information and
the trend of the raw signal. Thus, each preserved IMF can be viewed as the output of a
virtual sensor and treated as a new observed signal. Then, the preserved IMFs and the
raw observed signals x(t) are set as the new observed signals, which are rewritten as
y(t) = [y1(t), y2(t), . . . , yM(t)]T , where M is the sum of dimensions of the raw observed
signals and the preserved IMFs. In this way, the UBSS problem can be effectively converted
into an overdetermined one, and thus the source number estimation methods used in the
overdetermined case can be applied.

2.3. Source Number Estimation Based on the ATSVD Method

In order to obtain accurate source recovery, the source number needs to be de-
termined before the mixing matrix estimation. In previous research, some common
information−based methods, such as Akaike information criterion and Bayesian infor-
mation criterion, have been typically utilized to estimate the number of sources [14].
Nevertheless, these methods are only effective for estimating the source number in the
white noise environment, but are invalid in the color noise environment. To ensure the
accurate estimation of the mixing matrix, an eigenvalue method called ATSVD is proposed
to estimate the number of source signals in this study. Firstly, the eigenvalues of the sample
covariance matrix are obtained by singular value decomposition (SVD), then the source
number is determined by the distribution of eigenvalues. In linear algebra, SVD is a com-
monly used matrix factorization technique that can decompose a matrix, X ∈ RM×M, into
three matrices as follows:

X = USVT (8)

where U and V represent M×M unitary matrices and S denotes an M×M diagonal matrix.
The diagonal elements λi of S are the eigenvalues of X and can be written in the descending
order, e.g., λ1 ≥ λ2 ≥ . . . ≥ λn ≥ . . . ≥ λM. In general, the eigenvalues of source signal
subspace λ1 ∼ λn are much larger than the eigenvalues of noise subspace λn+1 ∼ λM.
At present, the two subspaces are usually distinguished by setting a threshold. However,
the selection of threshold directly affects the accuracy of source number estimation. In
this work, the estimation of source number is realized by calculating the contribution rate
of eigenvalues. Given the new observed signals y(t) = [y1(t), y2(t), . . . , yM(t)]T , the key
steps of the ATSVD algorithm can be summarized as follows:

Step 1: Calculate the covariance matrix of y(t) as follows:

Ryy = E
[
y(t)y(t)H

]
(9)

where H represents the complex conjugate transpose.
Step 2: Decompose the covariance matrix, Ryy, by SVD to obtain the eigenvalues λ1 ∼ λM,

then remove eigenvalues less than 0.001, and the retained eigenvalues are used to
constitute a new eigenvector of length l.

Step 3: Sum all the eigenvalues and then calculate the ratio of each eigenvalue, i.e., contri-
bution rate:

di =
λi

∑l
i=1 λi

, i = 1, 2, . . . , l (10)

Step 4: Calculate the difference between the two adjacent contribution rates:

∆di = di − di+1, i = 1, 2, . . . , l − 1 (11)

Herein, the maximum value (∆di) is set as the threshold to distinguish the source
signal subspace and noise subspace, and i is the estimated number of sources. In summary,
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the procedure of source number estimation is described as Figure 1. Based on the estimated
number, n̂, the number of clustering centers can be determined in advance.

Figure 1. The procedure of source number estimation.

3. Source Signal Recovery Based on Improved SCA

SCA is an effective approach to resolving the UBSS problem and has been widely
applied in vibration analysis, image processing, modal identification, etc. Signal sparsity
refers to the fact that most points in the signal are zero or near zero, but a few points
are obviously greater than zero. However, most vibration signals cannot meet the sparse
requirement in the time domain. In order to improve the sparsity of the observed signals,
STFT is first carried out to convert the signals from the time domain to the time−frequency
domain. In engineering, the frequency of each source signal is usually different to avoid
resonance. Therefore, there is generally only one source at a specific time−frequency point.
It must be emphasized that although the gearbox is a nonlinear system, such nonlinearity
will not affect the defect frequency, hence SCA is able to reserve the fault information in
the time−frequency domain. In this section, an improved SCA is employed to separate
the mixed signals. Firstly, FCM clustering is adopted to estimate the mixing matrix, and
frequency energy is employed to improve the clustering accuracy. Secondly, the L1−norm
minimization method is utilized to estimate the source signals. The details are presented
as follows.

3.1. Mixing Matrix Estimation Based on FCM and Frequency Energy

Mixing matrix estimation is the most critical part of the SCA because the estimated
mixing matrix determines the accuracy of signal separation. In the literature, the main
methods of mixing matrix estimation are the potential function method and the clustering
method. The potential function method expands the angle of the clustering line to the
polar coordinate axis and determines the angle between the clustering line and the coor-
dinate axis by calculating the peak value points, so as to obtain the column vectors of the
mixing matrix. However, it can only be used for two−channel mixed signals, which has
certain limitations. In contrast, the clustering method determines the mixing matrix by
estimating the center of the clustering line, which is not limited by the number of channels.
Currently, the most−used clustering algorithms are K−means and FCM. The former is a
hard partition−based clustering method, while the latter is a soft partition derived from the
fuzzy set theory [22]. In this work, FCM clustering is selected to realize the mixing matrix
estimation because the strict attributes are usually not available for vibration signals.
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Denote X = {x1, x2, · · · , xn} as a set of limited observation sample. The FCM is a
clustering algorithm that can produce membership degree uij = ui

(
xj
)
∈ [0, 1] for each

data point. The objective function of FCM is given as follows:

J =
c

∑
i=1

n

∑
j=1

ua
ij‖xj − vi‖2 (12)

where c is the cluster number, n is the number of data points in X, and a denotes a fuzzy
partition matrix exponent for controlling the degree of fuzzy overlap, with a > 1. Fuzzy
overlap refers to how fuzzy the boundaries between clusters are, that is the number of data
points that have significant membership in more than one cluster; xj is the jth data point,
vi is the center of the ith cluster, and uij is the membership degree of xj in the ith cluster,
which satisfies ∑n

i=1 uij = 1, j = 1, 2, . . . , n.
Then, the Lagrange multiplier method is adopted to minimize the objective func-

tion. The degree of membership and the centers of clusters can be updated by the
following formulas:

uij =
1

∑c
k=1

( ‖xj−vi‖
‖xj−vk‖

)( 2
a−1 )

(13)

and

vi =
∑n

j=1 ua
ijxj

∑n
j ua

ij
(14)

The procedures of FCM clustering can be listed as follows:

Step 1: Fix the number of clusters, c, the value of the fuzzy partition matrix exponent, a,
and the iteration deadline error, ε;

Step 2: Initialize the degree of membership matrix, U =
[
uij
]
;

Step 3: Calculate the clustering center matrix, V = [vi], based on Equation (14);
Step 4: Update the degree of membership matrix, U′, based on Equation (13);
Step 5: Compare U and U′; if ‖U− U′‖ < ε, terminate the iteration; otherwise update

U = U′ and return to Step 3.

FCM is an excellent clustering algorithm with a mature theory and wide applications.
Nevertheless, the actual collected signals are mixed by multiple source signals, resulting in
more clustering directions in the scatter graph. When the number of data points is too large
in the process of clustering, it will not only increase the computational burden but also
affect the clustering accuracy, resulting in the inability to obtain an accurate mixing matrix.
To address this issue, a simple method, namely frequency energy, is adopted to improve
the accuracy of mixing matrix estimation [23,24]. In engineering practice, the energy of
vibration signals is generally concentrated at some frequency points, and the clustering
direction at the local maximum frequency points can be used as the clustering direction
of the source signals. Thus, the estimated mixing matrix can be obtained only by finding
the clustering direction at these peak frequency points, which can significantly reduce the
amount of computation and increase the accuracy of clustering. In this work, the energy
distribution of each observed signal is first calculated, and then the energy distribution of
all the observed signals is added at the same frequency point; that is:

E( f ) =
m

∑
i=1

∫ ∞

−∞

{
R[xi(t, f )]2 + I[xi(t, f )]2

}
dt (15)

where E( f ) denotes the energy sum of all the observed signals at each frequency point
and m is the number of observed signals; R[xi(t, f )] and I[xi(t, f )] represent the real and
imaginary parts of the ith sensor signal after STFT, respectively.

In summary, the schematic diagram of the mixing matrix estimation is presented in
Figure 2 and the steps can be listed as follows:
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Step 1: Adopt STFT to transform the observed signals into the time−frequency domain,
and the matrix expression can be denoted as xi(t, f ), where i = 1, 2, . . . , m, and
m is the number of observed signals;

Step 2: Calculate the sum of the energy, E( f ), and then utilize the peak detection method
to select n̂ peaks of frequency energy sum ( f1, f2, . . . , fn̂), where n̂ is the estimated
source number;

Step 3: Select the data points of a certain frequency (e.g., from f1 to fn̂) to form a new
matrix, V;

Step 4: Normalize V, then utilize FCM to divide it into two categories, and the cluster
central matrix can be represented as C2×m. The first row of C2×m is selected as a
column vector of the estimated mixing matrix;

Step 5: Alter the frequency and repeat Step 3 and Step 4 n̂ times; the estimated mixing

matrix
ˆ
A of m× n̂ can be obtained.

3.2. Source Signal Recovery Based on L1−Norm Minimization

According to the estimated mixing matrix,
ˆ
A, the estimated source signals can be

obtained by ŝ(t) =
ˆ
A
−1

x(t) in the overdetermined or determined case. However, in the
underdetermined case, there are still multiple valid solutions despite the determination
of the mixing matrix. Previous studies have confirmed that the solution derived from
the minimum of L1−norm is the optimal solution of the underdetermined system of
equations [25]. Thus, the source recovery problem can be converted into an optimization

problem. The estimated mixing matrix,
ˆ
A, can be generated into Cm

n̂ m×m submatrices by
reducing dimensions, and these submatrices correspond to Cm

n̂ sets of valid solutions. The
optimal solution fulfilling the following equation can be obtained among all valid solutions:

ŝ(t, f ) = min
n̂
∑

i=1
|si(t, f )|

s.t.
ˆ
As(t, f ) = x(t, f )

(16)

where ŝ(t, f ) is the optimal source estimation in the time−frequency domain. The main
steps of the L1−norm minimization method can be summarized as follows:
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Step 1: Generate Cm
n̂ m×m submatrices from the estimated mixing matrix

ˆ
A and set as

Bk, k = 1, 2, . . . , Cm
n̂ ;

Step 2: Denote X as a point in the time−frequency domain, calculate all possible solutions
Ŝk = B−1

k X, k = 1, 2, . . . , Cm
n̂ ;

Step 3: Calculate the L1−norm of each solution, and the minimum L1−norm is taken as

the optimal estimation of the source signal, which is given by
^
S = min

Cm
n̂

∑
i=1

∣∣(Ŝk
)

i

∣∣;
Step 4: Repeat Step 2 and Step 3 and the optimal source estimation in the time−frequency

domain can be obtained;
Step 5: Perform inverse STFT to obtain the estimated source signals in the time domain.

In summary, the flowchart of the proposed UBSS solution is illustrated in Figure 3.

Figure 3. The flowchart of the proposed UBSS approach.

4. Simulation and Results

This section presents the simulation to verify the separation performance of the pro-
posed UBSS approach, in both linear and nonlinear cases.

4.1. Simulation Settings

In simulations, according to the vibration analysis in [26], the vibration signals gener-
ated by the faulty bearing can be expressed as follows:

sbearing(t) = sin
(

2π fbearingt
)
× (1 + α× sin(2π frt)) (17)

where fbearing is the fault frequency of the bearings. The vibration signals caused by gear
meshing can be generated by the following model:

sgear(t) =
K

∑
k=1

Ak(t)cos(2πk fmesht + φk(t)) (18)
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where Ak(t) denotes the instantaneous amplitude modulation, fmesh is the meshing fre-
quency, and φk(t) represents the instantaneous phase modulation. The pulse signals
produced by the mechanical vibration shock can be modelled as:

I(t) = e−λts(t) (19)

where λ is a constant.
In this study, five raw source signals that can well represent the vibration of the

gearbox under the actual working conditions are generated, respectively: s1(t) and s2(t)
are modulated signals generated based on Equation (17), s3(t) and s4(t) are periodic signals
generated based on Equation (18), and s5(t) is an impulse signal generated based on
Equation (19). The generated signals are given as follows:

s1(t) = (cos(2π f0t) + 1)× sin(2π f1t)
s2(t) = (cos(2π f0t) + 1)× sin(2π f2t)

s3(t) = sin(2π f3t)
s4(t) = sin(2π f4t)

s5(t) = sin(2π f5t)× e−λt1 , t1 = mod(t, 0.25)

(20)

where f0 = 10 Hz, f1 = 50 Hz, f2 = 150 Hz, f3 = 100 Hz, f4 = 200 Hz, f5 = 400 Hz,
and λ = 50. The sampling time and frequency are set as 1 s and 1024 Hz, respectively.
The waveform of the simulated signals in the time and frequency domains is presented
in Figure 4.

Figure 4. Time−domain waveforms and frequency spectra of the simulated signals.

4.2. UBSS for Linear Mixed Signals

In this section, to validate the effectiveness of the proposed approach in the linear
mixed case, the simulated signals are mixed by a random matrix, A3×5, and the waveform of
the mixed signals in the time domain is shown in Figure 5. In the source number estimation
procedure, EEMD, CC, and ATSVD are used for processing the simulated signals. Based on
the EEMD, each mixed signal can be decomposed into a group of representative IMFs. The
CC values between the IMFs and the original signal, x(t), are calculated, and the result is
shown in Table 1. Taking the signal x2(t) as an example, the EEMD decomposes it into nine
IMFs, C1–C9, and one residue. It can be seen that the CC values of C1–C3 are much higher
than those of C4–C9. Theoretically, a higher CC value means that the IMF contains more
information about the raw signal. Hence, C1–C3 are selected to represent the raw signal
features, and the rest of the IMFs are treated as noises and screened out. After calculating
all CC values, it is observed that for x1(t) and x3(t), the original signals are also closely
related to only the first four IMFs. Therefore, these eleven IMFs are chosen to reconstruct
the new observed signals combined with the original signals.
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Figure 5. Time–domain waveforms of the linear mixed signals.

Table 1. CC values between each IMF and the raw signals.

IMF C1 C2 C3 C4 C5 C6 C7 C8 C9

x1(t) 0.8153 0.4263 0.3541 0.1161 0.0131 0.0071 0.0056 0.0030 0.0000
x2(t) 0.8820 0.4549 0.1878 0.0349 0.0233 0.0167 0.0147 0.0070 0.0005
x3(t) 0.8395 0.4485 0.3751 0.1383 0.0130 0.0074 0.0090 0.0039 0.0004

After obtaining the newly observed signals, the UBSS problem can be effectively
transformed into an overdetermined one. Then, the ATSVD method is utilized to estimate
the source number, and the result is shown in Figure 6. It can be seen that the eigenvalue
becomes relatively close to zero after i = 6. Therefore, the estimated source number is five.

Figure 6. Source number estimation result in linear mixed case.

Based on the obtained source number, the improved SCA method is utilized to recover
the source signals. Figure 7 shows the waveform of the five recovered signals in the time
and frequency domain. It is obviously that the waveform and the main characteristic
frequency of each recovered signal are consistent with those of the corresponding source
signal, indicating that the proposed approach performs well in recovering the source signals.
Furthermore, the CC method is employed to evaluate the separation performance. The CC
values between the recovered signals and the corresponding source signals are presented
in Table 2. It can be seen that each CC value is close to 1, which confirms the effectiveness
of the proposed approach in separating the linear mixed signals.
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Figure 7. Time–domain waveforms and frequency spectra of the recovered signals.

Table 2. CC values between the recovered signals and the corresponding source signals.

Index CC Values

1 0.9902
2 0.9956
3 0.9947
4 0.9958
5 0.9995

4.3. UBSS for Nonlinear Mixed Signals

In this section, the separation performance of the proposed approach in the nonlinear
mixed case is validated. In practice, the vibration signals in the gearbox are often mixed in
a nonlinear manner. Nevertheless, such nonlinearity will not affect the fault characteristic
frequencies, and hence the proposed method can be adopted in the nonlinear mixed case
directly. In simulation, the post−nonlinear mixed model is adopted as follows:

x(t) = f (As(t)) (21)

where f represents a nonlinear function and A denotes a random matrix of 3× 5. In this
work, the hyperbolic tangent function is employed to distort the mixed signals, which is
given as follows:

f = tanh() (22)

Three mixed signals, x1 − x3, are shown in Figure 8. After calculating the CC values
between the IMFs and the original signal, x(t), the first three IMFs, C1–C3, of x1 and the
first four IMFs, C1–C4, of x2(t) and x3(t) are preserved to construct the new observed
signals combined with the original signals. Figure 9 gives the result of source number
estimation. It can be observed that the eigenvalue becomes relatively close to zero after
i = 6, and hence the estimated source number is five. The simulation results prove that the
proposed source number estimation approach can perform fairly well, in both linear and
nonlinear cases.

Based on the estimated source number, five estimated source signals are obtained,
and the time−domain waveforms and frequency spectra are presented in Figure 10. It
can be seen that the waveform of each recovered signal is basically the same as the corre-
sponding source signal, except for the amplitude change. Moreover, the feature frequency
of each recovered signal is consistent with that of the corresponding source signal. The
results prove that the proposed approach is able to well separate the nonlinear mixed
signals. Furthermore, Table 3 presents the CC values between the recovered signals and the
corresponding source signals for the proposed approach by using the existing nonlinear
UBSS solution in [27] as the comparison benchmark. It can be seen that although the
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CC values have a certain decrease compared with the linear mixing case, the average CC
value of the proposed solution is much higher than that of the benchmark solution, which
demonstrates that the proposed approach performs much better than the existing UBSS
solution in tackling nonlinear mixed signals.

Figure 8. Time–domain waveform of the nonlinear mixed signals.

Figure 9. Source number estimation result in nonlinear mixed case.

Figure 10. Time–domain waveforms and frequency spectra of the recovered signals.
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Table 3. CC values between the recovered signals and the corresponding source signals obtained by
different methods.

Index Proposed Solution Solution in [27]

1 0.9264 0.8137
2 0.9521 0.5388
3 0.9699 0.9329
4 0.9958 0.7813
5 0.8934 0.7236

Average 0.9475 0.7581

5. Experiment and Results

This section carries out the bearing fault testbed experiments to verify the separation
performance of the proposed approach for actual measured signals. The rolling bearing
fault testbed consists of a rolling bearing, two acceleration sensors, and an alternating
current (AC) variable frequency motor. Figure 11a shows the tested rolling bearing; the
type is HRB 7208AC. In order to simulate the bearing fault in actual working conditions,
two types of single point fault, which are inner race fault and outer race fault, are artificially
introduced to the tested bearing by means of electrical discharge machining. Figure 11b,c
present the faulty inner ring and outer ring, respectively. It can be seen that there is an
artificial gap of 2 mm in both the inner and outer rings. The bearing is preloaded axially.
The sensors are installed on the bearing housing; the type is CA–YD–182. The motion in
the test is generated by an AC variable frequency motor, which is shown in Figure 11d; the
type is SIEMENS 1LE0001–0DB32. The rotating speed is set to 4000 rpm and the vibration
signals are acquired by the dynamic signal analyzer. The sampling frequency is 4000 Hz,
and 1 s is intercepted as a time fragment.

Figure 11. (a) The tested rolling bearing. (b) the inner ring. (c) the outer ring. (d) the alternating
current variable frequency motor.

Table 4 presents the specifications and parameters of the tested bearing. When the
bearing is running, the fault feature frequency of the rolling bearing is the recurrence
frequency of the vibration pulse generated via the contact between the defect and the
raceways or rollers. The fault characteristic frequencies of a rolling bearing can be obtained
by the following theoretical formula:

fbp f i =
N
2

(
1 +

Dbcosφ

Dp

)
fr (23)

fbp f o =
N
2

(
1− Dbcosφ

Dp

)
fr (24)
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where fbp f i represents the frequency of the inner race fault point passing each rolling
element and fbp f o represents the frequency of the outer race fault point passing each rolling
element. The calculation results are 302.6 Hz and 217.4 Hz, respectively.

Table 4. Parameters of the gearbox.

Parameters Value

Bearing specs HRB 7208AC
Ball diameter Db 11.1 mm

Pitch circle diameter Dp 61.4 mm
Roller number N 13
Contact angle φ 25

◦

Shaft rotation frequency fr 40 Hz

5.1. Inner Race Fault

In this case, two vibration signals are collected and presented in Figure 12. The source
number is first estimated and then four estimated source signals are obtained based on
the improved SCA method. Figure 13 shows the time−domain waveforms and frequency
spectra of these four estimated vibration signals. As is shown in the frequency spectra, the
harmonic frequencies of the inner race fault can be easily identified in the frequency spectrum
of e2; for example, f1 = 302 Hz ≈ fbp f i, f2 = 603 Hz ≈ 2 fbp f i, f3 = 904 Hz ≈ 3 fbp f i,
f4 = 1205 Hz ≈ 4 fbp f i, f5 = 1507 = 5 fbp f i.

Figure 12. Waveform of the two collected vibration signals in the time domain.

Figure 13. Time−domain waveforms and frequency spectra of the four recovered signals.

5.2. Outer Race Fault

In this case, two collected vibration signals are used to validate the effectiveness of the
proposed approach. Figure 14 shows the time domain waveforms of these signals. Based
on the proposed solution, four source signals are recovered, as shown in Figure 15, then
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the recovered signals are further transformed into the frequency domain. It can be seen
that the peak frequency of e2 well match the expected frequency of the outer race fault.
The results of the inner and outer race fault amply prove the effectiveness of the proposed
bearing fault diagnosis approach.

Figure 14. Waveform of the two collected vibration signals in the time domain.

Figure 15. Time−domain waveforms and frequency spectra of the four recovered signals.

6. Conclusions

Because the sensor number is restricted by the practical installation position, and the
observed signals are often a nonlinear mixture of unknown signals due to the complexity of
operating conditions, it is of paramount importance to explore the solution of the nonlinear
UBSS problem. In this study, an effective nonlinear UBSS solution based on an EEMD–CC–
ATSVD joint approach and improved SCA is presented to diagnose the bearing fault. EEMD
is employed to decompose the original observed signals into m sets of IMFs and the CC
technique is adopted to screen for the significant IMFs. The retained IMFs and the observed
signals are reconstructed into new observed signals, and ATSVD is applied to estimate the
source number. The original observed signals are then changed into a time−frequency
domain via STFT. Based on the estimated source number, n̂, the frequency data points
corresponding to the n̂ peaks of frequency energy sum are picked and clustered into two
categories by FCM. The first row of the cluster center matrix is adopted to form the mixing
matrix. The L1−norm minimization method is employed to recover the source signals
in the time−frequency domain, and then inverse STFT is utilized to obtain the estimated
source signals in the time domain. The simulation results prove that the proposed EEMD–
CC–ATSVD joint approach can exactly estimate the source number, and the improved
SCA can well recover the source signals, in both linear and nonlinear mixed cases. Finally,
inner race and outer race fault bench tests are conducted to validate the effectiveness of the
proposed method in bearing fault diagnosis.
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