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Abstract: Spur shaping cutters, the most versatile gear cutting tools, are used to produce gears that
are limited in general cutting cases, such as internal gears and stacked gears. The side clearance angle,
which is formed by the profile shifting on the tooth surface, and the rake angle, which increases the
cutting efficiency and reduces the wearing of the cutting edge, are designed to create better cutting
conditions. However, these cutting angles cause errors in the profile of the cutter edge. In this study,
mathematical models of the Isoform® shaping cutter generation method and a model of the cutter
edge formed by the conical cutter face were derived to verify the profile error of the cutter edge. A
mathematical model to determine the profile error through the corresponding cutter enveloping gear
is also proposed. Finally, mathematical models were also derived to correct and reduce the profile
error at the major cutter face and the results at the other cutter faces. The numerical results, namely,
the profile error curves, show that the corrected cutter has better profile accuracy for the normal
usable cutter life.

Keywords: gear shaping; spur shaping cutter; cutter enveloping gear; profile correction

1. Introduction

Gear shaping is a process that has been widely used for decay and is well developed,
especially in fields where it is difficult to achieve results by hobbing, such as manufacturing
internal gears and stack gears. A spur gear shaping cutter is a disk-type gear cutting tool
that resembles a spur gear in appearance. As shown in Figure 1, the gear shaping cycle
comprises the cutting stroke, the returning motion and the indexing motion. The cutting
stroke of the spur gear shaping cutter is a linear motion along the cutter’s axis, and its
cutting edge forms a cutter enveloping gear [1] during the cutting stroke. To provide
appropriate cutting angles for proper cutting conditions, such as the side clearance angle
and rake angle, profile shifting along the face width is necessary. Profile shifting also makes
the cutter reusable after resharpening. Therefore, the shaping cutter’s parameter needs to
be modified on the basis of geometric analysis [1]. Although the modified pressure angle of
the cutter enveloping gear is geometrically correct, the curvature of the profile at the pitch
circle is slightly incorrect due to the side clearance and rake angles.

A shaping cutter is a versatile way to manufacture gears, such as external gears,
internal gears and noncircular gears. Its most common application is in manufactur-
ing spur gears. In the past decades, related studies on shaping cutters include those of
Mobie et al. [2,3], who developed models for determining cutter offsets to produce non-
standard gears based on equal tooth strength and the method for designing spur gears with
shaping cutters; Yoshi et al. [4], who used a spur shaping cutter for finishing gears with
arbitrary profiles; Kim and Kim [5], who developed software to design shaping cutters; and
Tsai et al. [6], who developed models of spur gears generated by shaping cutters. In studies
of elliptical gears manufactured by shaping cutters, Bair [7] developed models for tooth
profile generation in elliptical gear manufacturing with shaping cutters and computerized
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the proposed model, Figliolini and Angeles [8] synthesized elliptical gear generation using
a shaping cutter, and Chang and Tsai [9] proposed computerized models for noncircular
gears, including the tooth profile and undercut analysis. In the studies of tooth strength
and undercutting conditions, Kawalec and Wiktor [10] proposed a model for analyzing the
tooth root strength of spur and helical gears manufactured by shaping cutters, Svahn [11]
developed the criterion of the undercut condition for shaping gears and improved the
undercutting by modifying the basic rack, and Katz et al. [12,13] developed a virtual model
for gear shaping that included kinematics, cutter–workpiece engagement, force, elastic
deformations and virtual gear metrology.

Machines 2022, 10, x FOR PEER REVIEW 2 of 16 
 

 

the proposed model, Figliolini and Angeles [8] synthesized elliptical gear generation us-
ing a shaping cutter, and Chang and Tsai [9] proposed computerized models for noncir-
cular gears, including the tooth profile and undercut analysis. In the studies of tooth 
strength and undercutting conditions, Kawalec and Wiktor [10] proposed a model for an-
alyzing the tooth root strength of spur and helical gears manufactured by shaping cutters, 
Svahn [11] developed the criterion of the undercut condition for shaping gears and im-
proved the undercutting by modifying the basic rack, and Katz et al. [12,13] developed a 
virtual model for gear shaping that included kinematics, cutter–workpiece engagement, 
force, elastic deformations and virtual gear metrology.  

Spur shaper cutterWork gear

Cutting stroke

Indexing

Returning

 
Figure 1. Motions of the gear shaping cycle. 

In addition, Huang and Fong studied helical shaping cutters [14–16] based on the 
Isoform® [17] grinding method, which is focused on the profile correction of helical shap-
ing cutters. In the case of helical shaping cutters, their profile error differs from that of the 
spur shaping cutters because of their cutter edge types, namely, the plat and the conical 
cutter faces, respectively. In this study, we modified the mathematical model of the origi-
nal rack profile to a three-order curve to correct the profile error of a spur shaping cutter. 
The profile error was reduced by adjusting the second- and third-order coefficients. The 
results are illustrated as profile error curves that correspond to different resharpened cut-
ter edges.  

2. Mathematical Model of the Spur Shaping Cutter 
As shown in Figure 2, the Isoform® [17] shaping cutter grinding method is highly 

accurate and efficient; it also provides a longer cutter life. In the shaping cutter generation 
process, the grinding wheel reciprocates along the shaping cutter tooth width, and the 
cutter rocks from side to side against the reciprocating wheel.  

Figure 1. Motions of the gear shaping cycle.

In addition, Huang and Fong studied helical shaping cutters [14–16] based on the
Isoform® [17] grinding method, which is focused on the profile correction of helical shaping
cutters. In the case of helical shaping cutters, their profile error differs from that of the spur
shaping cutters because of their cutter edge types, namely, the plat and the conical cutter
faces, respectively. In this study, we modified the mathematical model of the original rack
profile to a three-order curve to correct the profile error of a spur shaping cutter. The profile
error was reduced by adjusting the second- and third-order coefficients. The results are
illustrated as profile error curves that correspond to different resharpened cutter edges.

2. Mathematical Model of the Spur Shaping Cutter

As shown in Figure 2, the Isoform® [17] shaping cutter grinding method is highly
accurate and efficient; it also provides a longer cutter life. In the shaping cutter generation
process, the grinding wheel reciprocates along the shaping cutter tooth width, and the
cutter rocks from side to side against the reciprocating wheel.

The reciprocating wheel can be considered as an equivalent rack cutter [14–16]. The
coordinated systems between the shaping cutter and the grinding wheel are shown in
Figure 3. Here, the equivalent rack cutter is inclined to the axis of the shaping cutter, which
is used to shift the profile of the cutter tooth surface. Figure 3 also shows the relative
motion between the equivalent rack and the shaping cutter of an Isoform® shaping cutter.
The coordinate system S f (X f , Yf , Z f ) is that of the fixed coordinates, and the coordinate
system Ss(Xs, Ys, Zs) is rigidly attached to the shaping cutter and rocks from one side to
another along the X f axis; ϕs and ϕsRps are the rotating and shifting values during the
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generating motion along the Zs and X f axes, respectively. Here, Rps is the pitch radius of
the shaping cutter. The coordinate system Se(Xe, Ye, Ze) shifts Rps along Yf . Finally, the
coordinate system Sr(Xr, Yr, Zr) is rigidly attached to the equivalent rack formed by the
reciprocating wheel. It also inclines η along Xe to shift the profile of the shaping cutter on
the tooth surface.
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The profile of the equivalent rack formed by the reciprocating grinding wheel is
shown in Figure 4. The coordinate system Sr(Xr, Yr, Zr) is attached at the center of the
equivalent rack space; u and v denote the surface variables in the profile and face-width
directions on the rack’s surface, respectively; and sw and αnr depict the tooth space and
the normal pressure angle of the equivalent rack, respectively. The position vectors of the
rack’s surface are shown in Equation (1) and the unit normal vector of the rack’s surface can
be derived by Equation (2), where r(3)r is the first three elements of rr. Here, we show only
a mathematical model of the right flank, since the left flank is similar. With the coordinate
systems Sr, Se, S f and Ss shown in Figure 3, the position vectors and unit normal vectors of
the equivalent rack can be transformed into the coordinate system of the shaping cutter
shown in Equations (3) and (4), respectively. In Equation (3), Msr is the transformation
matrix from the equivalent rack coordinate Sr to the spur shaping cutter coordinate Ss. In
Equation (4), Lsr, the transformation matrix for the normal vectors is the upper-left 3 × 3
sub-matrix of Msr.

rr(u, v) =
[ sw

2
− u sin αnr u cos αnr v 1

]T
(1)

nr =

∂r(3)r
∂u

× ∂r(3)r
∂v∣∣∣∣∣∂r(3)r

∂u
× ∂r(3)r

∂v

∣∣∣∣∣
(2)

rs(u, v, ϕs) = Msr(ϕs)rr(u, v)

= Ms f (ϕs)M f eMerrr(u, v)
(3)

ns(ϕs) = Lsr(ϕs) · nr (4)
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where:

Ms f (ϕs) =


cos ϕs sin ϕs 0 −ϕsRps
− sin ϕs cos ϕs 0 0

0 0 1 0
0 0 0 1



M f e =


1 0 0 0
0 1 0 Rps
0 0 1 0
0 0 0 1



Mer =


1 0 0 0
0 cos η sin η 0
0 − sin η cos η 0
0 0 0 1


Moreover, to derive the tooth surface of the spur shaping cutter, we need the equation

of meshing [18–20] shown in Equation (5), where r(3)s depicts the first three elements of
rs. Solving Equations (3) and (5) simultaneously can produce the tooth surface of the
shaping cutter.

fs(u, v, ϕs) = ns ·
∂r(3)s
∂ϕs

= 0 (5)Machines 2022, 10, x FOR PEER REVIEW 4 of 16 
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3. Mathematical Model of the Cutter Edges

Unlike the helical shaping cutter, the spur shaping cutter has a conical cutter face with
the rake angle γ, as shown in Figure 5. Figure 5 also shows the coordinate system for a
different resharpened cutter face, Sk(Xk, Yk, Zk), and ξ depicts the distance between the
resharpened cutter faces and the original one. A mathematical model of the resharpened
cutter face can be derived using Equation (6). Here, Mks is the transformation matrix
between the shaping cutter and the resharpened cutter faces. To solve the cutter edge of a
spur shaping cutter, the constraint shown in Equation (7) is necessary because it makes the
cutter face conical. The cutter edges corresponding to different resharpened positions can
be derived by substituting various values of ξ and solving Equations (5)–(7) simultaneously.

rk(u, v, ϕs) = Mksrs(u, v, ϕs) (6)

where:

Mks =


1 0 0 0
0 1 0 0
0 0 1 −ξ
0 0 0 1


zk(u, v, ϕs) = (

√
x2

k + y2
k − Rps) tan γ (7)
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4. Profile Error Analysis and Correction

In shaping strokes, the cutter edge sweeps the gear surface of the cutter enveloping
gear [1,14–16] in space, as shown in Figure 6. The profile of the cutter enveloping gear
directly governs the workpiece. Therefore, instead of the cutter edge, the profile of the cutter
enveloping gear will be used to determine the profile error of the cutter. The flank of the
cutter enveloping gear can be considered as the cutter edge projected on the transverse plane
of the spur shaping cutter. Thus, xk and yk, which are the respective X- and Y-components of
the cutter edge, can be used to determine the profile error. Moreover, in Figure 5, ξ depicts
the position corresponding to various resharpened cutter faces. Therefore, by changing ξ
and then deriving the corresponding xk and yk using the proposed model, the profile of the
cutter enveloping gear corresponding to different resharpened cutter faces is derived.
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The spur shaping cutter has a conical cutter face, and the pressure angle of the equiva-
lent rack can be modified by the corresponding geometrical relationships shown below. In
Figure 7, δ shows the desired side clearance angle of the cutter. The side clearance angle
δ relates to the rack cutter pressure angle αnr and the required rack tilting angle η shown
in Equation (8). In addition, the desired cutter pressure angle αns related to the required
rack tilting angle η and the required rack pressure angle αnr are shown in Equation (9). The
required parameters αnr and η can be derived by solving Equations (8) and (9) simultane-
ously, which results in Equations (10) and (11), respectively. Note that the determination of
the geometrical relationship of the cutter angle was derived in earlier studies [1,14].

sin η =
tan δ

tan αnr
(8)

tan αns = tan αnr cos η (9)

tan αnr =
√

tan2 αns + tan2 δ (10)

tan η =
tan δ

tan αns
(11)
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The profile error of the spur shaping cutter is different from that of the helical shaping
cutter because of the difference in the cutter face types. For the helical cutter, even after
geometrical modification, the pressure angle is slightly different from what is desired.
However, for the spur shaping cutter, the pressure angle of the cutter is correct after
geometrical modification. It contains only the curvature and the higher-order curve errors
caused by the side clearance angle and rake angle. To reduce the profile of the shaping
cutter, the cutter flank of the equivalent rack is replaced by a curve and is related to the
coordinate system Sr(Xr, Yr, Zr) shown in Figure 8. In Equation (12), rc depicts the tooth
surface of the rack cutter for correcting the cutter profile error, with u(∗) and v as the surface
variables. The X- and Y-components of the tooth profile are likewise related in Equation (12).
Here, a2 and a3 are the second- and third-order coefficients of the curve. Therefore, a2 can be
used to control the curvature of the curve at the pitch circle, while a3 can be used to adjust
the third-order curve form. Moreover, r(∗)r is the mathematical model of the rack cutter used
to correct the shaping cutter, which is obtained by Equation (13). In Equation (13), Mrc is the
transformation matrix between the coordinate systems Sc(Xc, Yc, Zc) and Sr(Xr, Yr, Zr). We
substitute rr with r(∗)r and re-derive all the corresponding mathematical models, then correct
the curvature error by solving a2 and adjusting a3 to reduce the profile error even more.

rc(u(∗), v) =
[

u(∗) a2

(
u(∗)

)2
+ a3

(
u(∗)

)3
v 1

]T
(12)

r(∗)r (u(∗), v) = Mrcrc(u(∗), v)

=


sin αnr − cos αnr 0 − sw

2
cos αnr sin αnr 0 0

0 0 1 0
0 0 0 1

rc(u(∗), v)
(13)
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Figure 8. Profile of the rack for correcting the shaping cutter.

To determine the profile error, the following models should be determined. Figure 9
shows the geometrical model for calculating the error between the actual profile and the
theoretical involute. In Figure 9, SA(XA, YA, ZA) is the coordinate system of an actual
profile and the YA axis passes through the intersection of the actual profile and the pitch
circle. Here, PA(xA, yA) is a certain point on the actual profile and T is the tangent point
from PA to the base circle. To calculate the profile error corresponding to the theoretical
involute, the latter passes through the intersection of the pitch circle and the YA axis, which
causes the profile error at the pitch circle to be zero. P is the corresponding point on
the theoretical involute, which starts at S on the base circle. The profile error ∆ can be
determined by PAT − PT. Here, PAT can be derived by Equation (14), where Rb is the
radius of the base circle and PT can be derived by Equation (15), where ω is the rolling
angle of the involute at P. Moreover, ω can be derived by Equation (16), where inv(α)
depicts the value of the involute function obtained by the pressure angle α; ωA can be
derived by Equation (17), which is the characteristic of the involute.

PAT =
√

x2
A + y2

A − R2
b (14)

PT = ωRb (15)

ω = θA + ωA = inv(α) + tan−1
(

xA
yA

)
+ ωA (16)

ωA = tan−1
(

PAT
Rb

)
(17)
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5. Examples and Discussion

In this section, a numerical example is used to verify the proposed mathematical
models for correcting the profile error of the shaping cutter edge. The profile error of each
cutter edge varies due to the profile shifting effect caused by the side clearance angle. Here,
we used the cutter face at ξ = 0 as the major cutter face to correct the profile, in which the
profile error of its cutter enveloping gear was reduced to approach zero as much as possible.

The profile error of the cutter edge increases with the number of modules. Normally,
internal gears are mostly below Module 3; however, for external gears, Module 4 (or larger)
is commonly used. Therefore, as a compromise, we chose DP 7, which is equal to Module
3.6286 mm, as the module of the numerical example. Table 1 shows the design parameters
of the numerical example. In Table 1, the cutter parameters are the basic parameter (similar
to the spur gear data) and its desired cutting angles; the equivalent rack parameters can
be derived using Equations (10) and (11), and the tooth space was chosen as the standard
tooth thickness (without profile shifting). The profile error of the uncorrected case is shown
in Figure 10. In Figure 10, the error curve is tangential to the Y-axis at the radial positions
of the pitch circle, which shows that the pressure angle of the cutter enveloping gear is
correct. The maximum profile error of this case is 4.8 µm.
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Table 1. Parameters of the spur shaping cutter and the equivalent rack.

Cutter Parameters

No. of teeth Ns 34
Module Mns 3.6286 mm

Flank clearance angle δ 3.5◦

Rake angle γ 8.5◦

Pitch radius Rps 61.6857 mm
Pressure angle αns 20◦

Equivalent Rack Parameters

Inclining angle η 9.3095◦

Pressure angle αnr 20.7111◦

Tooth space sw 5.6998 mm
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Figure 10. Cutter edge profile error of the original case of the cutter face, with ξ = 0.

The first step for correction is to correct the curvature at the pitch circle, which can
be obtained by a2 = −0.000481822388. The result is shown in Figure 11. In Figure 11,
the profile error near the pitch circle is relatively small, and the profile error is within the
sub-micron scale. The maximum profile error is 0.2 µm in this case.
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Finally, to reduce the profile error further, we chose a3 = −0.0000074. The result is
shown in Figure 12. In this case, the maximum profile error is about 0.01 µm, which is
usually less than the minimum resolution of a typical gear measuring machine. Figure 13
shows the effects of the proposed model of reducing the profile error step by step on the
major cutter edge.
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Figure 13. Comparison of the correction model of the cutter face step by step, with ξ = 0.

The result of the corrected case of the major cutter face approaches zero. To verify the
effects of the proposed correcting model on other resharpened cutter faces with positive
profile shifting, the results of the corrected and noncorrected cases with the cutter faces
ξ = 5 and ξ = 2.5 are shown in Figures 14 and 15, respectively. As the results show, after
correction, the cutter edges of the shaping cutter perform more accurately in terms of the
pressure angle error and form error for positive profile shifting cases.
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Figure 16. Comparison of the cutter edge profile error for 2.5ξ = − . 

Figure 15. Comparison of the cutter edge profile error for ξ = 2.5.

Figures 16 and 17 show the results of the cutter faces ξ = −2.5 and ξ = −5, respectively.
In cases of negative profile shifting, after correcting the cutter edge, the shaping cutter still
has better form accuracy. For the case of ξ = −5, the pressure angle error of the uncorrected
case performs better than that of the corrected case. However, ξ = −5 is close to the end of
the cutter’s life.
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Figure 17. Comparison of the cutter edge profile error for ξ = −5.

As the results show in Figures 11–15, for the corrected cutter edges, the tilt of the
profile error from one side to another corresponds to positive and negative profile shifting.
The profile accuracy of the resharpened cutter edges is listed in Tables 2 and 3, where it
is easy to identify the accuracy variations corresponding to the resharpened cutter edges
with respect to the original and corrected cases.

Table 2. Cutter edge profile error of the original case corresponding to the cutter faces.

Cutter Face Pressure Angle Error (FHα) Form Error (ffα)

ξ = 5 −8.1 µm 6.2 µm
ξ = 2.5 −5.6 µm 5.5 µm
ξ = 0 −4.0 µm 5.3 µm

ξ = −2.5 −2.1 µm 4.7 µm
ξ = −5 1.8 µm 4.4 µm
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Table 3. Cutter edge profile error of the corrected case corresponding to the cutter faces.

Cutter Face Pressure Angle Error (FHα) Form Error (ffα)

ξ = 5 −4.9 µm 0.7 µm
ξ = 2.5 −2.5 µm 0.5 µm
ξ = 0 0 µm 0 µm

ξ = −2.5 2.5 µm 0.4 µm
ξ = −5 5.1 µm 0.6 µm

6. Conclusions

On the basis of the numerical results, we arrived at the following conclusions:

(1) The proposed model of the spur shaping cutter derives the spur cutter edges of
various resharpened cutter faces. The profile error shows that for an uncorrected spur
shaping cutter, the pressure angle is correct because the error curve is tangential to
the Y-axis of the figure at the pitch circle. However, the curvature at the pitch circle is
incorrect.

(2) The proposed model for correcting the spur shaping cutter edges reduces the profile
error to approach zero by our second- (curvature) and third-order corrections at the
major cutter face. At cutter faces near the major cutter face, the cutter edge profile
errors are relatively small with respect to those farther away from the major cutter face.
Therefore, for higher accuracy requirements, the major cutter face can be designed
slightly behind the first cutter face. In the numerical example, choosing ξ = 2.5 as the
first cutter face and ξ = −2.5 as the end of the cutter’s life can be used to manufacture
highly accurate workpieces.

(3) The cutter edge profile error forms a convex shape with different sections correspond-
ing to different resharpened spur shaping cutter faces in the uncorrected case, as
shown in Figures 11–15. However, for the corrected spur shaping cutter, the form
errors of each cutter face are reduced to sub-micron-level accuracy, as shown in Table 3.
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