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Abstract: In rolls manufactured from first bent and then welded sheets of steel, the asymmetric
distribution of mass due to the weld seam as well as imperfections of the geometry due to the
bending may cause the roll cross-section roundness profiles to deform due to centrifugal forces when
the roll is accelerated to rotate at its operating speed. This effect is known as the dynamic geometry of
the roll. In previous research, it has been shown that it is possible to measure the dynamic geometry
in operating speed and compensate for the deformation by grinding a suitable opposite geometry
on the roll. This direct approach may work when only little material is removed. Such conditions
apply especially for polymer coated rolls, where the dynamic geometry is mostly dependent on the
geometry of the much stronger and denser steel body under the roll cover. This paper goes further
to investigate the possibilities for compensating the dynamic geometry in cases where the amount
of removed material is significant enough to have an effect on the dynamic geometry itself due to
altered mass and stiffness. The paper presents a toolchain consisting of a parametric roll CAD model,
finite element simulation of the dynamic geometry and a geometry optimization procedure based
on minimizing a target function describing roundness errors in cross-sections of the roll. Results of
simulation experiments for a case example indicate that the presented optimization procedure can
be used to eliminate roundness errors related to dynamic geometry of the roll. Finally, the paper
discusses the application of such a toolchain in the manufacturing of rolls.

Keywords: dynamic geometry; numerical optimization

1. Introduction

Rolls are an essential part of many industrial processes, such as paper and cardboard
making, printing, or the rolling of metals. In these processes, accurate roll geometry and
dynamic behaviour is essential since the manufacturing processes utilize the roll body to
transfer and form thin materials with strict requirements for thickness variation.

To manufacture rolls for such operating conditions, several industrial solutions exist.
For example, to ensure the roundness (and further, cylindricity) of rolls in operation
measurement with multi-probe roundness, measurement methods [1–6] and compensation
machining (turning or grinding) [1,4,5,7] can be used to reduce roll geometry errors. In
addition to roundness and cylindricity of the rolls, it is also important to consider the
dynamic balancing to minimize run-out of the rolls in operation. For balancing of rolls,
offset-centre turning has been known to be used since the 1970s [8] and later also with
systems utilizing ultrasonic measurement [9].

The body of a roll may be manufactured from first bent and then welded steel sheets [5],
after which the outside surface can be turned and ground to finish the roll surface. The
resulting asymmetric and varying wall thickness and distribution of mass may cause the
roundness profiles of the roll cross-section to deform due to centrifugal forces when the
roll is accelerated to rotate at its operating speed. This effect, investigated in detail by
Juhanko [5], is referred to as the dynamic geometry of the roll. In this previous study,
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the removed material was assumed to be so minor that it will not have an effect on the
measured roundness error and that the deflection can simply be inverted and then ground
on the roll surface [5].

This article goes further to investigate the possibilities for compensating the dynamic
geometry in such cases, where the amount of removed material is significant enough to
have an effect on the dynamic geometry itself due to altered mass and stiffness. A toolchain
consisting of a parametric roll CAD model, finite element simulation of the dynamic
geometry and a geometry optimization procedure (Figure 1) based on minimizing a target
function is presented. The target function (shown in Figure 2) is defined as the mean the
RMS (root-mean-square) roundness error defined in the ISO 12181-1 standard [10] in cross-
sections of the roll. To reduce the complexity of the problem, the undeformed geometry of
the roll is controlled with a set number of control points that define the boundaries of the
roll model.

Start
Initial

geometry

Simulator
FreeCAD

Abaqus FEM

Target
function
Mesh

libraries

Stop
iteration

Optimizer
Powell’s
method

Stop
Optimized
geometry

no
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Figure 1. Optimization procedure and software components. From the initial geometry parameters
(i.e., a set number of control points), the simulator generates a CAD model, meshes and deforms it.
The target function evaluator utilizes mesh libraries to estimate the target function value from the
deformed mesh provided by the simulator. In each iteration of the optimization, the optimizer selects
new geometry parameters for the simulator.

x

y

z

Figure 2. Schematic picture of the target function. The target function is defined as the mean RMS
roundness error of equally spaced outer cross-sections of the roll.
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Specifically, this article aims to answer the following question: can the dynamic ge-
ometry change be compensated for with an iterative optimization approach based on a
target function describing the mean roundness error in the roll cross-sections? To demon-
strate a successful elimination of the roundness error caused by the dynamic geometry
phenomenon, this article presents results of applying the optimization procedure on a case
example with a cylindrical workpiece with wall thickness variations.

Increasing computation power has enabled computing many previously unsolvable
problems with standard equipment. The approach used in this paper is a computational
design optimization based on an iterative scheme, where a numerical optimization algo-
rithm is used to refine locations of control points to reach a minimum of a target function
calculated based on simulated deformations. Many different approaches of performing
such optimization have been studied previously [11]. More advanced methods that do
not require re-meshing at every iteration have also been developed [12], but these were
not considered in this study. This research is restricted to a numerical simulation study
with the main aim to investigate the feasibility of structuring and successfully solving the
optimization problem.

2. Methods

This section presents the optimization problem and the toolchain consisting of several
software components. After the optimization problem and toolchain have been presented,
a case example is shown where the toolchain is applied to obtain a compensative geometry
for a roll with variable shell thickness.

2.1. Optimization Procedure

The optimization procedure is shown in Figure 1. The procedure consists of three
distinct software components, the simulator, target function evaluator and the optimizer
itself. Detailed descriptions of each of the components follow in this section.

2.2. Simulator

Simulation is used to obtain the dynamic geometry of the roll for a given input.
The simulator operates by programmatically operating a computer aided design (CAD)
and a finite element method (FEM) software, in this case FreeCAD and ABAQUS FEM,
respectively. The Python interfaces of FreeCAD and ABAQUS are utilized to operate the
simulator, which receives new control point values from the optimizer as input and outputs
a deformed mesh for the evaluation of the target function, which is used to obtain updated
control point values.

A parametric scripted roll model in the FreeCAD software is used (Figure 3a). The
outer shell of the roll model is defined as a loft between several B-splines describing
the geometry of the cross-sections with a set number of control points placed on planes
perpendicular to the length axis (z direction in Figure 2) of the roll. A polar coordinate
system is used for the control points, the point locations described by radii from the axis of
the roll. Based on the given control points, the CAD software generates a new model with
the specified input and generates a model file in STEP format, which is passed to ABAQUS
for meshing and simulation of the dynamic geometry. ABAQUS is scripted to mesh the
given roll model, apply the loads and boundary conditions and output the nodes and their
displacements to files.
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(a) (b)

Figure 3. Used parametric model of roll geometry with control points shown in purple (a) and
boundary conditions applied in the simulation with fixed displacements of nodes at the end cross-
sections (b).

2.3. Target Function

A target function to describe the deviation from the desired geometry is presented. The
target function is defined as the mean RMS roundness error (relative to the least-squares
centre as defined in the ISO 12181-1 standard [10]) of a number of equally spaced roll
cross-sections. A schematic picture of the target function is shown in Figure 2.

To obtain the roundness profiles, the deformed mesh obtained from the simulation is
first intersected with a set number of planes. Of the obtained intersection curves, the outer
one is selected and the least squares circle centre point is calculated. From their respective
centre points, the profiles are resampled to consist of 1024 points per revolution. The
profiles are then filtered according to ISO 12181-2 [13] with a cutoff frequency of the desired
UPR (undulations per revolution). The output of the target function is the mean of the RMS
roundness values of the profiles in the selected number of evenly spaced cross-sections of
the roll.

According to the ISO 12181-1 standard, roundness can be evaluated in several different
ways, for example relative to different centre-points. Of these methods, the RMS roundness
relative to the least-squares centre was viewed to be the most stable for this particular
optimization problem due to its assumed continuous nature.

The target function f can be formulated for roll geometry defined with n control points
and roundness evaluated in N cross-sections as follows:

f (p1, . . . pn) =
1
N

RONqN (1)

where RONqN is the root-mean-square roundness error in the Nth cross-section, calculated
according to ISO 12181-1 [10]. The optimization problem is to find suitable control point
radii pn that minimize the target function.

2.4. Optimizer

Based on the target function values it receives, the optimizer searches for suitable
combination of input parameters to minimize the target function.

Some optimization methods rely on assumptions about the independence of the input
variables or other behaviour of the target function. For a complex target function, this
kind of information is not readily available. In general, an optimization method should be
selected depending on the nature of the target function. In the case presented, the target
function is complex, probably has many local minima and is costly to evaluate.

Powell’s conjugate direction method was used as the optimization algorithm [14].
The method is based on searching for new value in conjugate directions in the parameter
space. It has been shown to find the minimum for functions with quadratic behaviour [14].
Powell’s method does not require knowledge of the derivatives of the variables, which
would be extremely difficult to obtain in this kind of target function based on simulated
geometry errors.
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2.5. Case Example

A roll with round outer shell cross-sections and uniform diameter (in stationary
conditions), but a varying inside geometry is used as a case example. The used roll model
is shown in Figure 3. The outer surface was defined with 9 control points in 5 cross-sections
resulting in a total of 45 control points. The locations of the control points are altered by
moving them along a corresponding radius from the center axis of the roll.

The simulated roll has a length of 4 m and in the initial state, the control points are
all placed at a radius of 1.3 m from the roll axis. In this initial undeformed state, the outer
cross-sections of the roll have no roundness error (Figures 5a and 8a). The internal structure
of the roll exhibits some randomly selected varying thickness variations, which can be seen
in detail in Figure 5c.

The material properties and key parameters used in the simulation are shown in
Table 1. As a boundary condition for the simulation, the displacements of nodes in the end
cross-sections of the roll were fixed (shown in Figure 3b).

Table 1. Material properties and parameters used in the simulation.

Parameter Value

Density 7800 kg
m3

Young’s modulus 215 GPa
Poisson’s ratio 0.3
Rotating speed 1200 rad/s
Initial control point radius 1.3 m
Upper boundary for control point radius 1.3 m
Lower boundary for control point radius 1.05 m

Twenty planes spaced evenly between the ends were used for the evaluation of the
target function (Figure 2). To simulate grinding and thus removal of material, the initial
control point values (radii of 1.3 m) were given as upper constraints for the optimization
algorithm, only allowing the control points to move nearer to the longitudinal axis of the
roll. Radii of 1.05 m were used as lower constraints to prevent the optimizer from trying
values that would cause the shell to become too thin.

The case example was not chosen to resemble a realistic paper machine roll made from
steel sheets, but created as an example of a geometry that would demonstrate the capability
of the toolchain in solving the dynamic geometry problem, firstly, exhibiting significant
dynamic geometry change and secondly, exhibiting shell thickness variations in the order
of the material to be removed by the optimization.

3. Results

This section presents the results of optimization for the case example described in
Section 2.5. To summarize the results, the optimization procedure was successfully used to
reduce the thickness of the workpiece in selected areas to obtain a geometry in which the
cross-sections are not round in the initial stationary conditions, but the roundness errors
are eliminated when the roll is accelerated to a selected rotating speed.

The progress of the optimization is shown in Figure 4. As can be seen, initially the
target function decreases fast and then reaches a region where the improvement of the
target function becomes slower. The decrease of the target function value is not steady:
single steps in the input parameter space in any direction may lead to a significantly
worsened value of the target function, which is evidence of the instability of the target
function. In other simulation runs, repeating patterns were observed in the target function
output values during optimization.
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Figure 4. Progress of the optimization. For each iteration, Powell’s conjugate direction method was
used to obtain new control point values for estimating the target function.

Figures 5 and 6 present the initial and final geometries of the roll (with 2-factor magnifi-
cation) and their shell thickness variations. Additionally, the von Mises stresses in the initial
and optimized situations are shown in Figure 7. By comparing Figures 5c and 6c, it can be
observed how the optimization procedure changes the shell thickness to compensate for the
dynamic geometry. The most significant changes in the shell thickness are observed in areas
near the middle cross-sections (around 2000 mm and 300 to 360 degrees) of the roll, which
are also the areas furthest away from the roll ends, which are fixed as boundary conditions.

The optimized geometry features some diameter variation along the length axis of the
roll, which can be observed from Figure 6. The result is expected, since the target function
only considers the average root-mean-square roundness errors in the cross-sections. Other
parameters related to cylindricity, such as the diameter variation or straightness errors of
the centre axis, are not considered in the target function.

Figure 8 presents roundness profiles of 10 cross-sections evenly spaced along the length
of the roll for both the unoptimized and optimized geometry, both stationary and rotating.
It can be observed that the optimization procedure almost completely eliminates the
remaining roundness error when the workpiece is rotating. Figure 8a,c show the roundness
profiles of the unoptimized and optimized roll geometry in stationary conditions. It can
be observed that, in terms of cross-section roundness profiles, the resulting optimized
geometry is not directly the initial deformed geometry inverted.

(a) (b)

(c)

Figure 5. (a) Undeformed initial geometry (stationary). (b) Deformed initial geometry (rotating).
(c) Wall thickness variation of initial geometry.
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(a) (b)

(c)

Figure 6. (a) Undeformed optimized geometry (stationary). (b) Deformed optimized geom-
etry (rotating) with minimized cross-section roundness errors. (c) Wall thickness variation of
optimized geometry.

(a) (b)

Figure 7. Visualization of von Mises stresses in the rotating initial geometry (a) and rotating optimized
geometry (b).
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Figure 8. Roundness profiles from 10 evenly spaced cross-sections along the length axis of the roll for
(a) undeformed initial geometry (stationary) (b) deformed initial geometry (rotating) (c) undeformed
optimized geometry (stationary) and (d) deformed optimized geometry (stationary).
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The simulator re-meshed the model for each iteration of the finite element simulation.
In the case example shown here, the roll was meshed to consist roughly of between
10,000 and 20,000 tetrahedra (examples of the resulting mesh are visible in Figures 5 and 6).
For computing time, one iteration of the optimization took roughly 35 s when run on a
standard desktop workstation PC with 16 GB of RAM and an Intel Xeon E3-1230 processor.

During the testing and development of the software, the simulator was run with
different parameters, material parameters and rotating speeds. With some parameter com-
binations, simulation and calculation of the target function failed due to self-intersection
nodes in the mesh. This condition could probably have been fixed with a denser mesh or
different boundary conditions for the optimizer. Similar results as the run presented in the
results of this article were obtained during the testing runs.

4. Discussion

In the shown case example, the toolchain was successfully used to obtain an optimized
geometry to eliminate the roundness errors due to the dynamic geometry change caused
by the rotational body forces and the uneven shell thickness of the roll.

As can be interpreted from the rather unpredictable behaviour of the target function in
Figure 4 during the optimization, the target function seems to be highly non-linear in nature,
which is certainly understandable, especially when larger deformations are encountered.
Furthermore, the optimization did not completely eliminate the roundness error. This may
be due to limitations due to the level of detail in the simulation, or further, it may not even
be possible to compensate, since any change in any point of the geometry potentially has
an effect on the whole deformed geometry of the roll.

Returning to the original research question: can the roll be used in cases where the
removed material itself has an effect on the deformations? It is not evident that the removed
material at one location in the roll will cause the roll surface to be less deflected at that area
of the roll. A comparison of the roundness profiles of the optimized and inverse geometries
shows that the optimized geometry is not simply the initial deformed geometry inverted.
However, there may be many different solutions to the optimization problem.

The authors view that defining the target function as the mean of the RMS roundness
errors will cause the target function to exhibit a clearer gradient when compared to other
the roundness or cylindricity metrics. No attempts were made to further characterize the
target function, which was observed to behave rather unpredictably. The selected opti-
mization algorithm works optimally for functions which exhibit quadratic behaviour [14].
Furthermore, the selection of the initial guess may have a significant effect on the needed
number of iterations; the initial guess need not correspond to the measured geometry.

One must be aware of some potential drawbacks of the presented approach. Firstly,
the selected target function is one with probably many local minima and the used initial
parameter values may have a effect on the result of the optimization. Considering only
roundness, the target function does not aim for a constant diameter or straightness along
the length of the roll. Using a function with specified cylindricity metrics such as the
root-mean-square cylindricity deviation specified in ISO 12180-1 [15] could lead to a more
cylindrical result with less thickness variation and straightness deviation of the centre line.
However, the authors speculate that this kind of target function may be more difficult
to optimize.

The simplification for the control of the geometry was implemented with control
points of B-splines, which is an approach where the resulting geometry can suffer from
overfitting-type errors [16]. The constraints for the optimization algorithm do not ensure
that material will only be removed from the roll. In practice, this does not seem to be the
case, and the grinding simulation reduced the wall as can be seen from Figures 5c and 6c.
There is a trade-off between the number of control points and the required number of
iterations to reach a satisfactory optimization result. These are values that need to be
selected case-by case, depend on factors such as workpiece geometry and the desired
amount of control. The filtering applied to the roundness profiles has a similar effect: it
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may be important (and often only possible, due to limitations in manufacturing methods)
to correct the low-order harmonic errors in large workpieces.

Although challenges will certainly arise, the authors view that the presented opti-
mization procedure could be implemented in roll production, in practice. Data is already
available for the roundness errors, straightness errors and approximate diameters from
from ulti-probe roundness measurement systems [6,7] and ultrasonic systems can be
used to determine the shell thickness variations [9,17]. This measurement data can be
used to determine the initial locations of the control points for the simulation. Fitting
of actual measurement data into the initial values for the simulator should not pose a
significant problem.

However, there are several sources of uncertainty when applying such methods in
practice. In many cases, the deformations can be quite small, and challenges may rise related
to measurement and manufacturing accuracies. Furthermore, the results of the optimization
may suffer due to inaccuracies that are not considered in the measurement and simulation,
such as residual stresses in weld seams, the varying strength or other inhomogeneities of
the material. Such unknown variables will cause the simulated deformations to differ from
the real deformations.

The effects of these types of uncertainties could be reduced not only by altering the
optimization scheme, but also by altering the manufacturing and measurement procedures.
For example, non-uniformities in stresses caused by welding seams could be reduced
by heat treatments or completely avoiding welding by using a different manufacturing
procedure. Similarly, other material inhomogeneities could be overcome by using different
materials or improved measurement procedures which would enable taking them into
account in the optimization.

5. Conclusions

This article presented method and a toolchain for optimizing roll dynamic geometry.
In paper machine rolls, the dynamic geometry is a relevant phenomenon when centrifugal
forces in the system are significant, i.e., for rolls operating at higher speeds, especially
with larger diameter and thinner (but varying) wall thicknesses. The authors view that
the presented iterative optimization procedure could be successfully utilized to elimi-
nate the dynamic geometry. Furthermore, it may suitable for cases where the material
removed from the roll itself has an effect on the dynamic geometry. With minor modifica-
tions, the toolchain is suitable for many other geometry optimization problems. Further
considerations related to material inhomogeneities their measurement as well as accu-
rate measurement of geometries would be required when applying such an optimization
procedure in practice.
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