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Abstract: Scientifically and accurately predicting the state of health (SOH) and remaining useful life
(RUL) of batteries is the key technology of automotive battery management systems. The selection of
the health indicator (HI) that characterizes battery aging affects the accuracy of the prediction model
construction, which in turn affects the accuracy of SOH and RUL estimation. Therefore, this paper
analyzes the current status of HI selection for lithium-ion batteries by systematically reviewing the
existing literature on the selection of HIs. According to the relationship between HI and battery aging,
battery HI can be divided into two categories: direct HI and indirect HI. The capacity and internal
resistance of the battery can directly represent the aging degree of the battery and are the direct HIs of
the battery. Indirect HIs refer to characteristic parameters extracted from battery charge and discharge
data that can characterize the degree of battery aging. This paper analyzes and summarizes the
advantages and disadvantages of various HIs and indirect HIs commonly used in current research,
providing useful support and reference for future researchers in selecting HIs to characterize battery
aging. Finally, in view of the capacity regeneration phenomenon in the aging process of the battery,
the selection direction of future HI is proposed.

Keywords: lithium-ion battery; battery aging; health indicator; direct HI; indirect HI

1. Introduction

With the rapid development of the automobile industry, the problems of energy
consumption, environmental pollution and global warming are becoming more and more
serious. It is crucial to develop and use energy-saving and environmentally friendly means
of transportation. Vigorously developing new energy electric vehicles will contribute to
building a clean, economical and efficient environmentally friendly society [1,2]. Power
batteries are used as the power source of electric vehicles. Their performance directly affects
the power, economy, safety and reliability of electric vehicles during driving [3]. With the
continuous use of the battery, the battery will inevitably age or even fail. This will cause
safety and reliability problems of the battery, and even cause the battery to spontaneously
ignite and explode [4,5].

Both the SOH and RUL of the battery are important parameters to characterize the
aging degree of the battery. The battery SOH is usually defined by the capacity ratio, that is,
the ratio of the current actual battery capacity Qnew to the initial battery-rated capacity Q0,
as shown in Formula (1). The battery RUL is the number of cycles of charge and discharge
that the battery has undergone from the current capacity decay to the failure threshold [6].
The failure threshold of the battery is generally taken as 80% of the initial capacity [7].
According to the IEEE1188-1996 standard, when the battery capacity decays to the failure
threshold, the battery capacity will decline rapidly according to the exponential decay
trend. The battery performance at this time is no longer suitable for use as a power battery,
and the battery should be replaced [8]. Therefore, the scientific and accurate prediction of
battery SOH and RUL has become the key technology of automobile battery management
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systems. In the research on battery SOH estimation and RUL prediction, the estimation
method using the data-driven method and model method fusion has higher estimation
accuracy [9,10]. Therefore, it is crucial to select the HI that can characterize the degree of
battery aging. The quality of HI selection directly affects the accuracy of battery SOH and
RUL prediction models, and further affects the prediction results.

SOH =
Qnew

Q0
× 100% (1)

At present, domestic and foreign researchers have achieved some important results
in the selection of health indicators, as shown in Table 1. The correlation in Table 1 is
the gray correlation value between the selected indirect health index and battery capacity
decline. Compared with the relevant literature, this paper comprehensively and systematically
analyzes the latest research results of the selection of HIs, summarizes the advantages and dis-
advantages of using different HIs to estimate the SOH and RUL of batteries, and summarizes
the indirect HIs that are often selected in the current research. The purpose is to provide a
reference for the selection of HIs for researchers who carry out this work in the future.

Table 1. Selection of HIs in the literature.

References HI HI Equations and Description Correlation

[11]

Constant current charging time X1

X1(k) = {t(k)|min(t(k)), s.t.A(k) ≤ 1.5 A},
k = 1, 2, . . . , n

Among them, t(k) represents the time when the
constant current charging mode ends; A(k)

represents the measured current value; k is the
current number of cycles; n is the sample size.

0.8763

Average rate of change in voltage during
constant current charging X2

X2(k) =
V(k)−v(k)

t(k) , k = 1, 2, . . . , n
Among them, v(k) and V(k) represent the initial
voltage value of theconstant current charging
process and the voltage value at the end of the

constant current charging process, respectively; t(k)
is the charging time of the constant current

charging process; k is the current number of cycles;
n is the sample size.

0.6223

Constant voltage charging time X3

X3(k) = {T(k)− t(k)|min(t(k)), s.t.V(k) ≥ 4.2 V},
k = 1, 2, . . . , n

Among them, t(k) represents the moment when the
measured voltage rises to 4.2 V, that is, the moment

when the constant current charging ends; T(k)
represents the moment when the charging process
ends; V(k) represents the measured voltage value;
k is the current cycle number; n is the sample size.

0.7104

Average rate of change in current during
constant voltage charging X4

X4(k) =
I(k)−i(k)

t(k) , k = 1, 2, . . . , n
Among them, i(k) and I(k) represent the current
value at the beginning and end of the constant

voltage charging mode, respectively; t(k)
represents the time of constant voltage charging, k
is the current number of cycles; n is the sample size.

0.9399

The time for the surface temperature to rise to
the highest during charging X5

X5(k) = {t(k)|max(T(k))}, k = 1, 2, . . . , n
Among them, t(k) represents the time when the

surface temperature rises to the highest during the
charging process, T(k) represents the measured

surface temperature value, k is the current number
of cycles, and n is the sample size.

0.9116
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Table 1. Cont.

References HI HI Equations and Description Correlation

[12] the time of equal discharge voltage tk

tk = Tvmin − tvmax, k = 1, 2, . . . , n
Among them, tk represents the equal discharge

voltage time of the kth cycle, Tvmin represents the
time to reach the lower voltage value, and tvmax

represents the time to reach the upper
voltage value.

0.8309

[13] Current rate of change during constant current
charging ICCCR_CV

Ik_CCCR_CV = Bk, k = 1, 2, . . . , n
Among them, Bk is the charging current change
rate of the kth cycle, and n is the sample size. k is

the current number of cycles, and n is the
sample size.

0.9776

[14,15] The peak intensity of IC curve (IC_peak) IC_peak is the normalized intensity of the IC peak high
correlation

[16] The peak area of IC curve (IC_area)

IC_area =
Uup∫

Ulow

wdV =
m
∑

k=1
wk, k = 1, 2, . . . n

where w is the value of dQ/dV; wk is the discrete
values of w corresponding to different voltage

interval, k is the current number of cycles, and n is
the sample size.

high
correlation

[17] Average charge voltage rise (ACVR)

ACVRk =

100
∑

j=1
|VT−Vj|

100 , k = 1, 2, . . . , n
Among them, Vj is the voltage within the charging
time from 1000 to 1500 s, VT is the cut-off voltage,

k is the current cycle number, and n is the
sample size.

0.9940

2. Lithium-Ion Battery Health Indicator

The battery HI is generally obtained by processing the battery charge and discharge
data through technologies such as signal processing and artificial intelligence. In the
selection of lithium-ion battery HI, it is usually divided into two categories: direct HI
and indirect HI [18], as shown in Figure 1. The most obvious characteristic of battery
aging is the reduction in battery usable capacity and the increase in internal resistance.
Therefore, the battery capacity and internal resistance are the direct HI that characterize
the aging degree of the battery. Indirect battery HI refers to the extraction of indirect
characteristic parameters that have strong correlation with battery aging from battery
charge and discharge data, in addition to capacity and internal resistance.
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2.1. Direct Health Indicator
2.1.1. Battery Capacity

It can be seen from Formula (1) that the attenuation of the actual capacity of the battery
will cause the overall SOH to show a declining trend, and the battery will age. Therefore,
the battery capacity can be used as a direct HI for evaluating the degree of battery aging.
The actual capacity of the battery is the maximum power that the battery can release when
fully discharged under the specified discharge conditions. Its value can be calculated by
integrating the current over time. Due to the limitation of test conditions, many researchers
have studied battery RUL based on battery test data published by the Center for Advanced
Lifecycle Engineering at the University of Maryland (CALCE, College Park, MD, USA)
and National Aeronautics and Space Administration (NASA, San Francisco, CA, USA) [19].
Figure 2 shows the capacity data of B5, B6, B7, and B18 batteries disclosed by NASA. The
capacity decay curve formed by arranging the battery capacity data according to the number
of cycles conforms to the time series and has obvious nonlinear characteristics. The support
vector regression (SVR) method can better solve nonlinear problems [20,21]. Therefore,
some literatures use the battery capacity in the NASA and CALCE battery data sets as the
HI for evaluating battery aging, and use SVR to predict the battery RUL. However, SVR
has the problems of difficult parameter selection and low prediction accuracy. Therefore,
intelligent algorithms such as gray wolf optimization and ant lion optimization are often
used to optimize the SVR kernel parameters, thereby improving the accuracy of battery life
prediction [22,23].
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Figure 2. Battery Capacity Decay Curve.

Li-ion battery systems typically exhibit nonlinear and non-Gaussian behavior. Com-
pared to the Kalman filter (KF) algorithm [24], which is applied to Gaussian noise and linear
model problems, the particle filter (PF) algorithm can handle arbitrary nonlinear models.
Therefore, the particle filter algorithm has a higher prediction accuracy and stability for
battery life [25,26]. Therefore, some researchers established a battery aging model based on
the capacity decay curve obtained from the public data set, and combined the PF algorithm
to predict the battery life. For example, reference [27] takes the battery capacity as the health
indicator, and achieves the RUL prediction of lithium-ion batteries based on the double
exponential model and the PF algorithm. Reference [28] establishes a new capacity degra-
dation model based on the battery capacity degradation curve, and uses the PF algorithm
to improve the accuracy of the remaining life prediction of lithium-ion batteries. However,
the PF algorithm suffers from particle degradation and particle barrenness. The resampling
strategy can solve this problem to a certain extent, but it leads to the loss of particle diver-
sity [29,30]. Another strategy is to choose a reasonable proposal density distribution. The
unscented particle filter (UPF) algorithm uses the unscented Kalman filter (UKF) algorithm
as the proposed density distribution, which improves the particle degradation problem
and improves the prediction accuracy [31]. For example, the reference [32] introduces the
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UKF algorithm and the linear optimization combined resampling algorithm into the basic
PF algorithm. Therefore, a fusion UPF algorithm is proposed to predict battery life, and
the effectiveness of the method is experimentally verified. To further improve the accuracy
of RUL prediction, the UPF algorithm is used to dynamically estimate drift parameters
and system states. Reference [33] uses the UPF algorithm to dynamically estimate the drift
parameters and system state to further improve the RUL prediction accuracy. Reference [34]
used the double exponential empirical model fitting method to obtain the initial values of
the model parameters based on the capacity decay curve. Finally, the random disturbance
unscented particle filter algorithm is used to update the model parameters to predict the
remaining life of lithium-ion batteries and give the probability distribution of the prediction
results. The aging degree of lithium-ion batteries can be accurately expressed by capacity.
However, the battery capacity is usually obtained by calculating the complete charging and
discharging process by the ampere–hour integration method, which is time-consuming and
has accumulated errors in the ampere–hour integration method. Additionally, in practical
applications, lithium-ion batteries are generally not in a fully charged and discharged
working state. Therefore, the battery capacity is difficult to obtain online.

2.1.2. Battery Internal Resistance

In addition, with the continuous cycling of the battery, the internal resistance of the
battery will gradually increase with the increase of the number of charge and discharge
cycles. The increase in the internal resistance of lithium-ion batteries can cause failure
problems such as a decrease in discharge voltage and power, a decrease in energy density,
and an increase in battery temperature [35]. Therefore, the internal resistance of lithium-ion
batteries can also be used as a direct HI to characterize the aging degree of the battery.
In the field of electric vehicle power batteries, it is generally considered that the failure
threshold of the battery is when the internal resistance of the battery increases twice [36].
The internal resistance of the battery is usually obtained by electrochemical impedance
spectroscopy (EIS) analysis using the equivalent circuit model, as shown in Figure 3 [37,38].
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As shown in Figure 3, the intersection of the EIS curve and the horizontal axis is
described by the ohmic resistance (R0). The high-frequency arc is related to the impedance
of the battery EIS film, described by the film resistance (Rf) and the interfacial layer capaci-
tance (QSEI) caused by the dispersion effect. The intermediate frequency arc represents the
reaction impedance of the solid–liquid electrode interface, which is described by the charge
transfer resistance (Rct) of the interface reaction and the electric double layer capacitance
(Qd) caused by the dispersion effect [37]. The larger the arc of the intermediate frequency,
the greater of the load transfer resistance during the aging process of the battery. The
straight line approximated by the low-frequency band is related to the diffusion process
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of lithium ions in the electrode solid phase material, which is described by the Warburg
element of the diffusion impedance of lithium ions in the solid phase particles [39]. There-
fore, using the equivalent circuit model to analyze the EIS at different aging stages can
obtain the evolution law of the impedance components corresponding to different processes
with the aging of the battery. In turn, the current battery SOH and RUL predictions are
achieved. In the early RUL prediction of lithium-ion batteries, only using the R0as HI has a
large error [40]. Reference [41] takes battery capacity, R0 and Rct as HI. Additionally, the
extended Kalman filter and particle filter algorithms are used to predict the battery RUL,
respectively. Among them, Rct characterizes the difficulty of the electrode interface reaction
during battery aging. Therefore, using Rct as battery HI provides a new idea for battery
SOH and RUL prediction. The resistance of the battery Rct increases significantly with the
aging of the battery, which exhibits a first-order polynomial variation law. Therefore, the
battery-aging empirical model can be selected according to the principle of the smallest
fitting error of its decay change law. Additionally, use the particle filter algorithm to pre-
dict the battery RUL, so as to achieve the efficient management and maintenance of the
battery [38]. However, the resistance value and growth rate of Rct are also affected by the
temperature and the state of charge (SOC) of the battery [42]. Therefore, reference [43]
studies the Rct at different temperatures and SOC as the battery HI to estimate the battery
SOH. The research results show that the uncertainty of the Rct obtained by fitting the EIS
at high SOC and high temperature is high, which makes the SOH estimation have a large
error. The Rct obtained by fitting the EIS at 50% SOC and 298 K has the highest estimation
accuracy for the battery SOH. It can be seen from the above content that the change in the
internal resistance of the battery can characterize the aging state of the battery. However,
in the actual application process, it is a very complicated and time-consuming thing to
measure the internal resistance of the battery by EIS. Additionally, this process requires
professional testers and a harsh test environment. Therefore, it is difficult to carry out
engineering application.

Both battery capacity and internal resistance are important indicators to characterize
battery SOH and RUL. However, using the capacity or internal resistance as the direct HI
of the battery needs a many laboratory or offline tests. It not only requires sophisticated
instruments and equipment, but also excludes external environmental interference factors,
so online acquisition and real-time prediction cannot be achieved. Therefore, how to extract
indirect HI from monitorable state parameters has become a hot issue for researchers.

2.2. Indirect Health Indicator

The indirect HI of a battery refers to a characteristic parameter extracted from the
battery charge and discharge data that can characterize the degree of battery aging, except
for capacity and internal resistance, which has a strong correlation with the battery aging
characteristics. Constructing a simple and easy-to-measure indirect HI can solve the
problem that direct HI is difficult to obtain online. It can also characterize battery aging
well and be used for battery SOH and RUL prediction [44,45]. The flow of battery SOH and
RUL prediction based on indirect HI is shown in Figure 4 [17,46].
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Figure 4. Flowchart for Predicting Battery SOH and RUL Based on Indirect HI.

As can be seen from Figure 4, the prediction process is mainly divided into two stages:
feature engineering and model construction. Feature engineering mainly analyzes the
original data and analyzes the external data during the charging and discharging stage
of the battery. The characteristic parameters that can characterize the aging degree of the
battery are extracted from it. After correlation analysis is performed on the extracted feature



Machines 2022, 10, 512 7 of 15

parameters, the feature parameters with high correlation are used as the indirect HI of the
battery. Model construction is to build a battery aging model based on the extracted indirect
HI. As the battery ages, external data such as battery voltage, current, and temperature
change, as shown in Figure 5. Therefore, researchers usually extract the battery indirect
HI from the voltage, current and temperature data that are easily monitored online to
characterize the battery aging state.
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2.2.1. Indirect HI Based on Discharge Process

During the discharge process of a battery, it takes a period of time for its voltage to
drop from a relatively high voltage to a lower voltage [47]. This time will decrease as the
number of battery charge–discharge cycles increases. Therefore, taking the discharge time
of equal voltage drop as the indirect HI of the battery can be used to estimate the aging state
of the battery [48]. With the increase in the number of charge–discharge cycles of the battery,
the rate of decrease in the discharge voltage gradually becomes faster. Therefore, using
the voltage difference change in the same time interval as the battery indirect HI can also
characterize the aging state of the battery [49]. In the battery cycle charge and discharge test,
when the discharge current is the same, the duration of the discharge process directly affects
the battery discharge capacity. Therefore, taking the duration of the discharge process
as the indirect HI can characterize the aging state of the battery [50]. Other studies have
found a strong linear correlation between battery capacity decay and the rate of change
in battery temperature. Therefore, the temperature change rate as the indirect HI can also
well characterize the aging degree of the battery, and the prediction accuracy of the SOH
and RUL of the battery is high [51]. In the external data based on the battery discharge
stage, researchers also often extract the discharge voltage sample entropy, average voltage
and average current as the battery indirect HI. Reference [44] extracted the mean value of
voltage fluctuation over a period of time from the battery discharge curve as an indirect HI
for battery RUL prediction.

Because the battery initial data are complex and non-linear, it is necessary to preprocess
the data and the extracted feature parameters. In view of the influence of measurement
noise in the battery data acquisition process, reference [52] uses wavelet transform to
preprocess the data to remove the noise in the data acquisition process. At the same time,
there is a local capacity regeneration phenomenon in the battery aging data. The data can
be smoothed using empirical mode decomposition techniques. Reference [53] uses the
battery capacity and the discharge voltage difference at equal time intervals as the battery
indirect HI, and uses the phase space reconstruction method to reconstruct the time series
of the extracted HI. Additionally, the ensemble empirical mode decomposition method is
used to preprocess the reconstructed time series data of the two HIs to avoid the influence
of data noise. Finally, combined with genetic algorithm and support vector machine, the
battery RUL is predicted. In addition to the above methods for smoothing the initial data,
methods such as moving average and Gaussian filtering are often used [54,55].
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2.2.2. Indirect HI Based on Charging Process

The above-mentioned indirect HI extracted based on the battery discharge stage
and changed with the increase in the number of cycles of charging and discharging can
characterize the aging state of the battery. Additionally, indirect HI can achieve online
monitoring and easy direct measurement. However, the indirect HI extracted based on
the battery discharge stage is often only suitable for fixed constant current discharge
conditions. However, in practical applications, it is difficult for lithium-ion batteries to
maintain a constant current state for continuous discharge. Compared with the complex
and changeable discharge process, the charging process of the battery is often in the constant
current-constant voltage mode, and the working conditions are relatively stable and less
affected by external factors. Additionally, in practical applications, the battery is often used
after it is fully charged, so the indirect HI extracted based on the battery charging stage
will be more in line with practical applications.

As the battery is continuously charged and discharged, the polarization degree of the
battery deepens, and the duration of constant current charging decreases. The constant
current charging duration of the battery directly affects the amount of power charged into
the battery, and can also characterize the degree of polarization of the battery. Therefore,
the constant current charging duration can be used as an indirect HI to characterize the
aging degree of the battery [56]. As the number of battery cycles increases, the battery
terminal voltage also has a significant difference. Therefore, reference [57] regards the
terminal voltage difference during the charging process of different cycles as the indirect HI,
and achieves the battery RUL prediction based on the combination of a feedforward neural
network and importance sampling. Some studies have also shown that the charging voltage
curve of the battery has a good consistency with the battery capacity decline. Therefore,
the charging voltage curve can be used to characterize the aging degree of the current
battery. However, in the actual use of the battery, it is often difficult to obtain a complete
charging voltage curve. Therefore, some researchers use the traversal optimization method
to find the optimal voltage segment, and extract the equal voltage rise time of the optimal
voltage segment as the indirect HI. Based on this, a battery aging model is established [58].
Some researchers also use the particle swarm optimization algorithm to obtain the optimal
voltage or current variation range during the battery charging phase. It avoids that the
voltage and current of the battery are in a fully charged and discharged state, which is more
in line with the actual working range of the battery [59–61].

In addition to extracting indirect HI from data external to the battery, one can also start
with mathematical geometry. Reference [62] selects the duration of the constant voltage
charging mode, the duration of the constant current charging mode and the slope at the
turning point of the constant current charging mode as indirect HI. The grey correlation
degree method was used to analyze the correlation degree between the selected HI and the
battery aging state. Reference [63] uses the arc length, normal and curvature of the battery
during the constant current charging phase to characterize the state of health of the battery.
Additionally, the battery aging model based on mathematical geometry HI is established to
predict the battery SOH through the neural network algorithm.

Theoretically, the change in the voltage of the battery during operation can reflect its
internal electrochemical properties. However, the information observed in the normal charge–
discharge curve is very limited, and the electrochemical changes in the positive and negative
electrodes of the battery cannot be accurately analyzed. Therefore, some researchers conduct
analysis based on the incremental capacity (IC) curve, and extract health indicators that can
reflect battery aging from the IC curve to predict battery life [64,65]. The battery capacity
increment is obtained by calculating the change in capacity due to a unit voltage change
(dQ/dV) in a voltage–capacity (V-Q) curve for constant current charging. That is, the
capacity increment curve is derived from the V-Q curve, but in practice the numerical
difference (∆Q/∆V) is usually used instead of dQ/dV [66]. In the case of constant current
charge and discharge, the IC curve is related to the derivative (dV/dt) of the voltage–time
curve, as shown in Equation (2). Therefore, the capacity increment curve can convert the
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voltage plateau that is difficult to observe and analyze with slow voltage changes during
the charging process of the battery into a peak value on the capacity increment curve that
is easy to observe and analyze [67,68]. The battery IC curve is shown in Figure 6. It can
be seen from (a) and (b) of Figure 6 that the multiple health indicators can be extracted
from the IC peaks (peak A, peak B), including peak height, peak position, peak area, peak
width, and the left and right slope of the peak. Through the change in these parameters, the
aging mechanism of the battery can be analyzed to predict the remaining service life of the
battery. In order to improve the accuracy of battery SOH estimation, reference [69] extracts
HIs from different peak intervals of the battery IC curve, and selects the peak interval
with high correlation with battery SOH for battery SOH estimation. The influence of the
peak interval on the SOH estimation is verified with the data of the 5th, 6th, 7th and 18th
batteries provided by NASA, and the selected peak interval can meet the high-precision
requirements of the battery SOH estimation. Reference [70] uses the battery static charging
curve to extract the peak position and peak valley position of the IC curve as HIs to predict
the battery life. The research results show that extracting the HIs on the IC curve can not
only meet the estimation accuracy, but also reduce the computational complexity. The
reference [47] extracts multiple HIs based on the IC curve, and simplifies the His from two
aspects of data quality and practical application, and establishes a battery aging model
to predict battery life. The reference [71] selects the fixed voltage interval on the left and
right sides of the peak value of the IC curve to obtain the discharge area capacity under the
fixed voltage interval, thereby establishing a linear function of the area capacity and SOH.
The NASA battery data set is used for verification, and the results show that the estimation
error of SOH is less than 2.5%. The reference [72] extracts the peak of the IC curve and the
area under the peak as health indicators, and proposes a new method for RUL prediction of
lithium-ion batteries that fuses incremental capacity analysis and Gaussian regression process.

IC =
dQ
dV
≈ ∆Q

∆V
=

I × t
∆V

=
I

∆V/∆t
(2)

Table 2. Battery Indirect HI selection.

discharge process

total voltage at the beginning of discharge, total voltage at the end of
discharge, time interval of equal voltage drop, voltage difference at the
same time interval, sample entropy of discharge voltage, rate of
temperature change during discharge, battery capacity increment, depth of
discharge, maximum discharge current, average voltage, average current,
maximum feedback current, capacity increment curve in discharge stage.

charging process

terminal voltage change, time of constant current charging process, time of
constant voltage charging process, total time of charging stage, maximum
slope of charging voltage curve, maximum slope of charging current curve,
slope at the turning point of constant current charging mode, temperature
change in charging stage, equal voltage rise charging time, equal time
interval charging voltage rise, equal time interval charging current drop,
average voltage decay, battery capacity increment, arc length, normal and
curvature changes in the constant current charging phase.
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Figure 6. Battery capacity increment curve: (a) IC curve of a single cycle; (b) IC curve of multiple
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In the formula, IC represents the capacity increment value of the battery; Q represents
the battery capacity during charging; V represents the terminal voltage of the battery; I
represents the charging current of the battery; t represents the charging time of the battery.

2.2.3. Fusion of HIs

Compared with the battery aging model based on a single indicator, the multi-indicator
fusion battery aging model has higher prediction accuracy. Additionally, as the number of
battery HI increases, the prediction accuracy gradually improves, in order to make up for
the lack of a single indicator to establish a battery aging model. Reference [73] extracted
the charging current difference and voltage difference at different time intervals as indirect
HI from the relatively stable charging process, and established a linear regression model
of battery aging. The battery life decline is affected by a variety of factors. Temperature
is also a key factor affecting battery cycle life. Therefore, the reference [74] extracts the
constant current charging time, the time change in the constant pressure difference and
the temperature change during the constant current charging stage as the indirect HI. The
multi-indicator fusion of the extracted HIs was carried out using the grey relational analysis
method and the entropy weight method. Finally, based on the indirect HI obtained by the
fusion of multiple indicators, a battery aging model is established to predict the battery RUL.

When predicting battery SOH and RUL based on multi-indicator fusion, the trend in
HI changes is different for different batteries. Therefore, it is difficult to directly judge the
degree of correlation between it and battery aging. In order to select a HI that is highly
correlated with battery aging, researchers often use methods such as Pearson, Spearman
correlation coefficient and grey correlation analysis to calculate the degree of correlation
between the extracted indirect HI and battery capacity decline [75,76].

The grey relational degree analysis quantitatively analyzes the similarity and difference
between the reference sequence and the surrogate sequence from the similarity degree of
the geometric curves of the two variable sequences [77]. The Pearson correlation coefficient
measures the degree of association between two variable series from the perspective of
the linear correlation of the two variable series. The Pearson correlation coefficient can
well describe whether there is a linear relationship between two variable series, but it is
greatly affected by outliers [78]. Compared with the Pearson correlation coefficient, the
Spearman correlation coefficient has a better ability to deal with abnormal data. The scope
of application of the two is also different. When the selected variable is a continuous
function and obeys a normal distribution, using the Pearson correlation coefficient has a
better effect. If any of the above conditions are not met, the Spearman correlation coefficient
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is more efficient [54,79]. In addition, some researchers employ Box–Cox variation to
improve the correlation between feature quantities and estimators [80,81]. By performing
Box–Cox changes on the historical data of lithium-ion batteries, the nonlinear capacity
decay trajectory can be linearized, which can greatly improve the prediction accuracy of
the linear model and effectively reduce the difficulty of battery RUL prediction.

There must be overlapping information between HIs that are highly correlated with
battery aging. At this time, principal component analysis (PCA) is often used to reduce
dimensionality and remove redundancy for multiple HIs. PCA can reconstitute the original
higher number of variables into several fewer interrelated comprehensive variables while
maintaining the original information as much as possible [82,83]. Reference [84] used the
grey correlation degree to perform correlation analysis on the extracted 10 potential HIs,
and used PCA to fuse the data. The processed data are used as the input to the aging
model for RUL prediction of the battery. The research results show that the method has
high prediction accuracy. Compared with the PCA method, the mutually independent HI
extracted based on the kernel principal components analysis (KPCA) method can more
significantly reflect the battery performance degradation. It can reduce the influence
of noise while reducing parameter redundancy. Reference [85] uses KPCA to extract
characteristic parameters and fuse multiple indicators for the measurable discharge current
and voltage of the battery. Then, they use the Spearman correlation coefficient to select the
characteristic parameter with high correlation with battery aging as HI. Finally, the battery
life is predicted based on the adaptive neural network fuzzy inference system. Studies have
shown that the HI extracted by this method is highly correlated with battery aging. Fusion
of multiple indirect HIs without overlapping information can greatly improve the accuracy
of battery life prediction. It can be seen that the indirect HI extracted from the external data
of the battery can well characterize the aging degree of the battery. At the same time, it also
avoids the defect that direct HI cannot be obtained online and predicted in time [86,87],
considering that the external data obtained in the battery discharge stage is greatly affected
by external factors. Therefore, the indirect HI extracted based on the battery-charging stage
is more suitable for practical applications. Moreover, the battery aging model established
by multi-indicator fusion of multiple indirect HIs extracted during the charging phase is
more accurate than the aging model established based on a single indicator.

3. Summary

In this paper, a review is carried out on the relevant work and research results of the
selection of health indicators of lithium-ion batteries. The advantages and disadvantages
of direct HI and indirect HI to characterize the aging degree of batteries are summarized.
The conclusions and prospects are as follows:

(1) When using the battery direct HI to estimate the battery SOH and predict the RUL,
the step of extracting the indirect HI through feature engineering can be omitted, and the
battery SOH and RUL have high estimation accuracy. However, online monitoring and
real-time acquisition of battery capacity cannot be achieved, and it is very complicated
and time-consuming to use electrochemical impedance spectroscopy to measure battery
internal resistance. Therefore, SOH and RUL estimation based on direct health indicators
are difficult to apply in practical engineering.

(2) Constructing simple and easy-to-measure indirect HIs from battery external data
can solve the problem that a direct HI is difficult to obtain online, and can also well
characterize battery aging characteristics. The external data of the battery during the
discharge phase are not objective enough due to the different individual usage habits and
usage environments. In the charging phase of the battery, the car is in a stopped state; the
battery does not provide energy to the outside world and is less affected by external factors.
Therefore, the indirect HI based on battery charging stage data extraction is more accurate
and stable for battery SOH and RUL prediction.
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(3) After the correlation analysis and multi-indicators fusion of multiple indirect HIs
of the battery, the established battery aging model has higher prediction accuracy than the
battery aging model established based on a single HI.

The advantages and disadvantages of various health indicators are summarized in
Table 3.

Table 3. Comparison of advantages and disadvantages of various HIs.

HI Classification Advantage Disadvantage

Direct HI

Battery Capacity

Directly characterize battery
aging with high accuracy for
battery SOH estimation and
RUL prediction

It is impossible to realize
online monitoring and
real-time acquisition; it is
calculated by the –integral
method, which is
time-consuming and has
accumulated errors

Battery Internal Resistance Strong correlation with
battery aging

Measuring battery internal
resistance with EISEIS is
complex and time-consuming

Indirect HI

HIs Extracted Based on The
Discharge Process

The aging state of the battery
can be monitored online

Affected by external factors,
the collected data are not
objective enough

HIs Extracted Based on The
Charging Process

Less affected by external
factors, the collected data are
relatively accurate

Unable to monitor battery aging
status while the car is in motion

Fusion of multiple HIs

Considering multiple factors
that affect the aging of battery
performance, fully including
the aging information of
the battery

The amount of calculation
increases and there is
redundant information
between multiple health
indicators, which requires
preprocessing

4. Future Development

The side reactions between the electrolyte and the electrodes during the charge and
discharge of ion batteries can lead to the deterioration of the battery chemistry. When
the battery is in a static state, the electrochemical performance is recovered to a certain
extent, and the battery has a local capacity regeneration phenomenon. The HI in the
actual operating state of the lithium-ion battery not only contains the information on the
overall decay trend in the battery. It also includes local regeneration components and
noise fluctuation components caused by battery standing. It exhibits nonlinear and non-
stationary characteristics. Therefore, in the future, suitable preprocessing methods should
be studied to deal with the inaccurate prediction of battery RUL due to the instability of
HI, and health indicators that can reflect the phenomenon of battery capacity regeneration
should be selected.
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1. Tucki, K.; Orynycz, O.; Świć, A.; Mitoraj-Wojtanek, M. The Development of Electromobility in Poland and EU States as a Tool for

Management of CO2 Emissions. Energies 2019, 12, 2942. [CrossRef]
2. Gomes, E. Sustainable Population Growth in Low-Density Areas in a New Technological Era: Prospective Thinking on How to

Support Planning Policies Using Complex Spatial Models. Land 2020, 9, 221. [CrossRef]
3. Zang, P.; Dong, W.; Ma, B. Overview of research on echelon utilization of electric vehicle power batteries. In Proceedings of the

3rd Smart Grid Conference-Smart Power Consumption, Beijing, China, 27–30 October 2019; pp. 484–486.
4. Jiang, J.; Gao, Y.; Zhang, C. On-line diagnosis method of electric vehicle lithium-ion power battery health status. Chin. J. Mech.

Eng. 2019, 55, 60–72.
5. Yao, J.; Li, Z.; Wang, M. Automobile active tilt control based on active suspension. Adv. Mech. Eng. 2018, 10, 168781401880145.

[CrossRef]
6. Jiao, Z.; Fan, X.; Zhang, X. State Tracking and Remaining Service Life Prediction Method of Li-ion Battery Based on Improved

Particle Filter Algorithm. Chin. J. Electrotech. Technol. 2020, 35, 3979–3993.
7. Lin, C.P.; Cabrera, J.; Yang, F.; Ling, M.H.; Tsui, K.L.; Bae, S.J. Battery state of health modeling and remaining useful life prediction

through time series model. Appl. Energy 2020, 275, 115338. [CrossRef]
8. Wu, L.; Fu, X.; Guan, Y. Review of the Remaining Useful Life Prognostics of Vehicle Lithium-Ion Batteries Using Data-Driven

Methodologies. Appl. Sci. 2016, 6, 166. [CrossRef]
9. Noura, N.; Boulon, L.; Jemeï, S. A Review of Battery State of Health Estimation Methods: Hybrid Electric Vehicle Challenges.

World Electr. Veh. J. 2020, 11, 66. [CrossRef]
10. Xiong, R.; Li, L.; Tian, J. Towards a smarter battery management system: A critical review on battery state of health monitoring

methods. J. Power Sources 2018, 405, 18–29. [CrossRef]
11. Song, D. Lithium Battery State of Health Assessment Based on Surface Temperature Characteristics. Master’s Thesis, Xidian

University, Xi’an, China, 2021.
12. Li, W.; Jiao, Z.; Du, L.; Fan, W.; Zhu, Y. An indirect RUL prognosis for lithium-ion battery under vibration stress using Elman

neural network. Int. J. Hydrogen Energy 2019, 44, 12270–12276. [CrossRef]
13. Wang, R. Prediction of the Remaining Life of Lithium Batteries Based on New Health Indicators. Master’s Thesis, Xidian

University, Xi’an, China, 2020.
14. Tian, J.; Xiong, R.; Yu, Q. Fractional order model based incremental capacityanalysis for degradation state recognition of

lithium-ion batteries. IEEE Trans. Ind. Electron. 2019, 66, 1576–1584. [CrossRef]
15. Zhang, Y.C.; Briat, O.; Delétage, J.Y.; Martin, C.; Chadourne, N.; Vinassa, J.M. Efficient state of health estimation of Li-ion battery

under several ageing types for aeronautic applications. Microelectron. Reliab. 2018, 88, 1231–1235. [CrossRef]
16. Tang, J.; Liu, Q.; Liu, S.; Xie, X.; Zhou, J.; Li, Z. A health monitoring method based on multiple indicators to eliminateinfluences of

estimation dispersion for lithium-ion batteries. IEEE Access 2019, 7, 122302–122314. [CrossRef]
17. Zhang, W.; Wang, W. Capacity estimation of lithium-ion batteries based on new health indicators. Electron. Meas. Technol. 2020,

43, 10–15. [CrossRef]
18. Khumprom, P.; Yodo, N. A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning

Algorithm. Energies 2019, 12, 660. [CrossRef]
19. Nieto, P.G.; García-Gonzalo, E.; Lasheras, F.S.; de Cos Juez, F.J. Hybrid PSO-SVM-based method for forecasting of the remaining

useful life for aircraft engines and evaluation of its reliability. Reliab. Eng. Syst. Saf. 2015, 138, 219–231. [CrossRef]
20. Gao, L.; Xu, F.; Li, H. Recognition method of sheet surface defects based on deep learning features and nonlinear support vector

machine. Chin. J. For. Eng. 2019, 4, 99–106.
21. Sun, S. A new stress field intensity model and its application in component high cycle fatigue research. PLoS ONE

2020, 15, e0235323. [CrossRef]
22. Yang, Z.; Wang, Y.; Kong, C. Prediction of the remaining service life of lithium batteries based on GWO-SVR. J/OL J. Power Supply.

2021. Available online: http://kns.cnki.net/kcms/detail/12.1420.TM.20210520.1300.002.html.
23. Wang, Y.; Ni, Y.; Zheng, Y. Prediction of the remaining service life of lithium-ion batteries based on ALO-SVR. Chin. J. Electr. Eng.

2021, 41, 1445–1457.
24. Duong, P.; Raghavan, N. Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery.

Microelectron. Reliab. 2018, 81, 232–243. [CrossRef]
25. Guha, A.; Patra, A. State of Health Estimation of Lithium-Ion Batteries Using Capacity Fade and Internal Resistance Growth

Models. IEEE Trans. Transp. Electrif. 2018, 4, 135–146. [CrossRef]
26. Pan, C.; Huang, A.; He, Z. Prediction of remaining useful life for lithium-ion battery based on particle filter with residual

resampling. Energy Sci. Eng. 2021, 9, 1115–1133. [CrossRef]
27. Zhang, L.; Mu, Z.; Sun, C. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle

Filter. IEEE Access 2018, 6, 17729–17740. [CrossRef]
28. Li, Y.; Lin, S.; Yuan, X. Research on RUL Prediction of Lithium Batteries Based on New Capacity Degradation Model. Comput.

Simul. 2020, 37, 120–124. [CrossRef]

http://doi.org/10.3390/en12152942
http://doi.org/10.3390/land9070221
http://doi.org/10.1177/1687814018801456
http://doi.org/10.1016/j.apenergy.2020.115338
http://doi.org/10.3390/app6060166
http://doi.org/10.3390/wevj11040066
http://doi.org/10.1016/j.jpowsour.2018.10.019
http://doi.org/10.1016/j.ijhydene.2019.03.101
http://doi.org/10.1109/TIE.2018.2798606
http://doi.org/10.1016/j.microrel.2018.07.038
http://doi.org/10.1109/ACCESS.2019.2936213
http://doi.org/10.19651/j.cnki.emt.1903370
http://doi.org/10.3390/en12040660
http://doi.org/10.1016/j.ress.2015.02.001
http://doi.org/10.1371/journal.pone.0235323
http://kns.cnki.net/kcms/detail/12.1420.TM.20210520.1300.002.html
http://doi.org/10.1016/j.microrel.2017.12.028
http://doi.org/10.1109/TTE.2017.2776558
http://doi.org/10.1002/ese3.877
http://doi.org/10.1109/ACCESS.2018.2816684
http://doi.org/10.1016/j.matcom.2020.03.009


Machines 2022, 10, 512 14 of 15

29. Jouin, M.; Gouriveau, R.; Hissel, D. Particle filter-based prognostics: Review, discussion and perspectives. Mech. Syst. Signal
Process. 2016, 72, 2–31. [CrossRef]

30. Ma, Y.; Chen, Y.; Zhang, F. Power battery life prediction method based on extended H_∞ particle filter algorithm. Chin. J. Mech.
Eng. 2019, 55, 36–43.

31. Zhang, H.; Miao, Q.; Zhang, X. An improved unscented particle filter approach for lithium-ion battery remaining useful life
prediction. Microelectron. Reliab. 2018, 81, 288–298. [CrossRef]

32. Wei, H.; An, J.; Cheng, J. Realization of RUL prediction of lithium-ion battery based on improved particle filter algorithm. Automot.
Eng. 2019, 41, 1377–1383.

33. Wang, R.; Feng, H. Lithium-ion batteries remaining useful life prediction using Wiener process and unscented particle filter.
J. Power Electron. 2020, 20, 270–278. [CrossRef]

34. Cheng, W.; Cai, Y.; Su, Y. Remaining life prediction of lithium-ion battery based on improved particle filter. China Test 2021, 47,
148–153.

35. Tai, Y.; Li, P.; Zheng, Y. Entropy Generation and Thermoelastic Damping in the In-plane Vibration of Microring Resonators.
Entropy 2019, 21, 631. [CrossRef] [PubMed]

36. Gu, Q. Research on Li-ion Battery State of Health Estimation Based on Multi-feature Variable Extraction. Master’s Thesis,
Kunming University of Science and Technology, Kunming, China, 2021.

37. Choi, W.; Shin, H.-C.; Kim, J.M. Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion
Batteries. J. Electrochem. Sci. Technol. 2020, 11, 786–812. [CrossRef]

38. Yao, L.; Xu, S.; Tang, A.; Zhou, F.; Hou, J.; Xiao, Y.; Fu, Z. Prediction of remaining life of lithium-ion battery based on charge
transfer resistance. Chin. J. Mech. Eng. 2021, 57, 105–117.

39. Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Ceder, G. Estimation of charge transfer resistance of lithium-ion batteries at
different temperatures and states of charge. Automot. Eng. 2020, 42, 445–453.

40. Mingant, R.; Bernard, J.; Sauvant-Moynot, V. Novel state-of-health diagnostic method for Li-ion battery in service. Appl. Energy
2016, 183, 390–398. [CrossRef]

41. Saha, B.; Goebel, K.; Christophersen, J. Comparison of prognostic algorithms for estimating remaining useful life of batteries.
Trans. Inst. Meas. Control 2009, 31, 293–308. [CrossRef]

42. Ma, Z.; Chen, Y.; Wu, J. Ecological optimization for a combined diesel-organic Rankine cycle. AIP Adv. 2019, 9, 015320. [CrossRef]
43. Wang, X.; Wei, X.; Dai, H. Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering

different temperature and state of charge. J. Energy Storage 2019, 21, 618–631. [CrossRef]
44. Zhou, Y.; Huang, M.; Chen, Y.; Tao, Y. A novel health indicator for on—line lithium—ion batteries remaining useful life prediction.

J. Power Sources 2016, 321, 1–10. [CrossRef]
45. He, Z.; Wei, T.; Pan, C.; Zhou, H.; Li, Y. An indirect prediction method of lithium-ion battery remaining life based on particle filter

and polynomial regression. J. Chongqing Univ. Technol. 2020, 34, 27–33.
46. Wang, R.; Feng, H. Remaining useful life prediction of lithium-ion battery using a novel health indicator. Qual. Reliab. Eng. Int.

2021, 37, 1232–1243. [CrossRef]
47. Xiao, G.; Zhang, H.; Sun, N. Cooperative link scheduling for RSU-assisted dissemination of basic safety messages. Wirel. Netw.

2021, 27, 1335–1351. [CrossRef]
48. Zhao, Q.; Cai, Y.; Wang, X. Prediction of the remaining service life of lithium-ion batteries in their entire life cycle. J/OL J. Power

Supply 2021, 2095, 1–14.
49. Liu, D.; Zhou, J.; Liao, H. A Health Indicator Extraction and Optimization Framework for Lithium-Ion Battery Degradation

Modeling and Prognostics. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 915–928.
50. Wang, F.-K.; Mamo, T. A hybrid model based on support vector regression and differential evolution for remaining useful lifetime

prediction of lithium-ion batteries. J. Power Sources 2018, 401, 49–54. [CrossRef]
51. Su, C.; Chen, H.; Wen, Z. Prediction of remaining useful life for lithium-ion battery with multiple health indicators. Eksploatacja I

Niezawodnosc-Maint. Realib. 2021, 23, 176–183. [CrossRef]
52. Liang, D.; Gao, J.; Xi, J. RUL prediction of power battery based on multi-feature fusion. China Test 2021, 47, 149–156.
53. Chen, L.; Zhang, Y.; Zheng, Y. Remaining useful life prediction of lithium-ion battery with optimal input sequence selection and

error compensation. Neurocomputing 2020, 414, 245–254. [CrossRef]
54. Cheng, Z.; Lu, Z. Research on Load Disturbance Based Variable Speed PID Control and a Novel Denoising Method Based Effect

Evaluation of HST for Agricultural Machinery. Agriculture 2021, 11, 960. [CrossRef]
55. Tian, J.; Wang, Q.; Ding, J. Integrated Control With DYC and DSS for 4WID Electric Vehicles. IEEE Access 2019, 7, 124077–124086.

[CrossRef]
56. Sun, Y.; Hao, X.; Pecht, M.; Zhou, Y. Remaining useful life prediction for lithium-ion batteries based on an integrated health

indicator. Microelectron. Reliab. 2018, 88, 1189–1194. [CrossRef]
57. Wu, J.; Zhang, C.; Chen, Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling

and neural networks. Appl. Energy 2016, 173, 134–140. [CrossRef]
58. Zhang, J.; Wang, P.; Chen, Z. Joint estimation of SOC-SOH-RUL for lithium-ion batteries based on charging voltage segment and

fusion method. Power Grid Technol. 2022, 46, 1063–1072.

http://doi.org/10.1016/j.ymssp.2015.11.008
http://doi.org/10.1016/j.microrel.2017.12.036
http://doi.org/10.1007/s43236-019-00016-3
http://doi.org/10.3390/e21070631
http://www.ncbi.nlm.nih.gov/pubmed/33267347
http://doi.org/10.33961/jecst.2019.00528
http://doi.org/10.1016/j.apenergy.2016.08.118
http://doi.org/10.1177/0142331208092030
http://doi.org/10.1063/1.5062615
http://doi.org/10.1016/j.est.2018.11.020
http://doi.org/10.1016/j.jpowsour.2016.04.119
http://doi.org/10.1002/qre.2792
http://doi.org/10.1007/s11276-020-02525-7
http://doi.org/10.1016/j.jpowsour.2018.08.073
http://doi.org/10.17531/ein.2021.1.18
http://doi.org/10.1016/j.neucom.2020.07.081
http://doi.org/10.3390/agriculture11100960
http://doi.org/10.1109/ACCESS.2019.2937904
http://doi.org/10.1016/j.microrel.2018.07.047
http://doi.org/10.1016/j.apenergy.2016.04.057


Machines 2022, 10, 512 15 of 15

59. Chen, W.; Cai, Y.; Su, Y. Research on Indirect Prediction Method of Remaining Life of Li-ion Battery. Power Technol. 2021, 45,
719–722.

60. Xu, X.; Lin, P. Parameter identification of sound absorption model of porous materials based on modified particle swarm
optimization algorithm. PLoS ONE 2021, 16, e0250950. [CrossRef]

61. Li, Y.; Ma, Z.; Zheng, M. Performance Analysis and Optimization of a High-Temperature PEMFC Vehicle Based on Particle
Swarm Optimization Algorithm. Membranes 2021, 11, 691. [CrossRef]

62. Yang, D.; Zhang, X.; Pan, R. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using
charging curve. J. Power Sources 2018, 384, 387–395. [CrossRef]

63. Wu, J.; Wang, Y.; Zhang, X. A novel state of health estimation method of Li-ion battery using group method of data handling.
J. Power Sources 2016, 327, 457–464. [CrossRef]

64. Agudelo, B.O.; Zamboni, W.; Monmasson, E. Application domain extension of incremental capacity-based battery SoH indicators.
Energy 2021, 234, 121224. [CrossRef]

65. Guo, P.; Zhang, C.; Gao, X. State-of-health estimation method for ternary lithium-ion battery based on capacity increment curve.
Glob. Energy Internet 2018, 1, 180–187.

66. Fly, A.; Chen, R. Rate dependency of incremental capacity analysis (dQ/dV) as a diagnostic tool for lithium—ion batteries.
J. Energy Storage 2020, 29, 101329. [CrossRef]

67. Pan, W.; Luo, X.; Zhu, M. A health indicator extraction and optimization for capacity estimation of Li-ion battery using incremental
capacity curves. J. Energy Storage 2021, 42, 469–502. [CrossRef]

68. Li, H. Capacity Estimation and Consistency Screening of Decommissioned Batteries Based on IC Curves. Master’s Thesis, Dalian
University of Technology, Dalian, China, 2021.

69. Yang, S.; Luo, B.; Wang, J. Estimation of Lithium-ion Battery State of Health Based on Characteristic Parameters of Capacity
Increment Curve Peak Interval. Chin. J. Electrotech. Technol. 2021, 36, 2277–2287.

70. Li, Y.; Abdel-Monem, M.; Gopalakrishnan, R. A quick on-line state of health estimation method for Li-ion battery with incremental
capacity curves processed by Gaussian filter. J. Power Sources 2018, 373, 40–53. [CrossRef]

71. Tang, X.; Zou, C.; Yao, K. A fast estimation algorithm for lithium-ion battery state of health. J. Power Sources 2018, 396, 453–458.
[CrossRef]

72. Pang, X.; Liu, X.; Jia, J. A lithium-ion battery remaining useful life prediction method based on the incremental capacity analysis
and Gaussian process regression. Microelectron. Reliab. 2021, 127, 114405. [CrossRef]

73. Feng, H.; Zhang, X. Estimation of State of Health and Remaining Life Prediction of Lithium Batteries Based on New Health
Factors. J. Nanjing Univ. 2021, 57, 660–670.

74. Zhu, R. Research on the Remaining Life of Lithium Batteries with Multi-Indicator Fusion under the Charging Curve. Master’s
Thesis, Beijing Jiaotong University, Beijing, China, 2020.

75. Gao, Y.; Jiang, J.; Zhang, C.; Zhang, W.; Jiang, Y. Aging mechanisms under different state-of-charge ranges and the multi-indicators
system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode. J. Power Sources 2018, 400, 641–651. [CrossRef]

76. Feng, H.; Song, D. A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life
prediction. J. Energy Storage 2021, 34, 102118. [CrossRef]

77. Afshari, S.S.; Cui, S.; Xu, X. Remaining Useful Life Early Prediction of Batteries Based on the Differential Voltage and Differential
Capacity Curves. IEEE Trans. Instrum. Meas. 2022, 71, 3117631. [CrossRef]

78. Cheng, Z.; Zhou, H.; Lu, Z. A Novel 10-Parameter Motor Efficiency Model Based on I-SA and Its Comparative Application of
Energy Utilization Efficiency in Different Driving Modes for Electric Tractor. Agriculture 2022, 12, 362. [CrossRef]

79. Li, X.; Deng, T.; Wang, M. Improvement of Linear Location Algorithm of Wood Acoustic Emission Source Based on Wavelet and
Correlation Analysis. Chin. J. For. Eng. 2020, 5, 138–143. [CrossRef]

80. Zhang, Y.; Xiong, R.; He, H. Lithium-Ion Battery Remaining Useful Life Prediction With Box-Cox Transformation and Monte
Carlo Simulation. IEEE Trans. Ind. Electron. 2019, 66, 1585–1597. [CrossRef]

81. Shu, X.; Liu, Y.; Shen, J. Prediction of Li-ion Battery Capacity Based on Improved Least Squares Support Vector Machine and
Box-Cox Transform. Chin. J. Mech. Eng. 2021, 57, 118–128.

82. Bingchen, H.; Xueming, Y.; Jinsong, W.; Xu, Z.; Zongjie, H.; Qiang, L. Remaining service life prediction of lithium-ion battery
based on PCA-GPR. J. Sol. Energy 2022, 43, 484–491. [CrossRef]

83. Pang, X.Q.; Wang, Z.Q.; Zeng, J.C.; Jia, J.F.; Shi, Y.H.; Wen, J. Prediction of Remaining Service Life of Li-ion Batteries Based on
PCA-NARX. J. Beijing Inst. Technol. 2019, 39, 406–412. [CrossRef]

84. Shi, Y.; Shi, M.; Ding, E. Remaining life prediction of lithium-ion battery based on multiple degradation characteristics. Power
Technol. 2020, 44, 836–840.

85. Wang, Z.; Pang, X.; Huang, R. RUL prediction of lithium-ion battery based on KPCA-ANFIS. J. Electron. Meas. Instrum. 2018, 32,
26–32.

86. Liu, J.; Chen, Z. Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Health Indicator and Gaussian Process
Regression Model. IEEE Access 2019, 7, 39474–39484. [CrossRef]

87. Venugopal, P.; Shankar, S.S.; Jebakumar, C.P. Analysis of Optimal Machine Learning Approach for Battery Life Estimation of
Li-Ion Cell. IEEE Access 2021, 9, 159616–159626. [CrossRef]

http://doi.org/10.1371/journal.pone.0250950
http://doi.org/10.3390/membranes11090691
http://doi.org/10.1016/j.jpowsour.2018.03.015
http://doi.org/10.1016/j.jpowsour.2016.07.065
http://doi.org/10.1016/j.energy.2021.121224
http://doi.org/10.1016/j.est.2020.101329
http://doi.org/10.1016/j.est.2021.103072
http://doi.org/10.1016/j.jpowsour.2017.10.092
http://doi.org/10.1016/j.jpowsour.2018.06.036
http://doi.org/10.1016/j.microrel.2021.114405
http://doi.org/10.1016/j.jpowsour.2018.07.018
http://doi.org/10.1016/j.est.2020.102118
http://doi.org/10.1109/TIM.2021.3117631
http://doi.org/10.3390/agriculture12030362
http://doi.org/10.15302/J-SSCAE-2020.02.017
http://doi.org/10.1109/TIE.2018.2808918
http://doi.org/10.19912/j.0254-0096.tynxb.2022-0422
http://doi.org/10.15918/j.tbit1001-0645.2019.04.012
http://doi.org/10.1109/ACCESS.2019.2905740
http://doi.org/10.1109/ACCESS.2021.3130994

	Introduction 
	Lithium-Ion Battery Health Indicator 
	Direct Health Indicator 
	Battery Capacity 
	Battery Internal Resistance 

	Indirect Health Indicator 
	Indirect HI Based on Discharge Process 
	Indirect HI Based on Charging Process 
	Fusion of HIs 


	Summary 
	Future Development 
	References

