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Abstract: This work focused on changes in surface roughness under different cutting conditions
for improving the cutting quality of beech wood during milling. A response surface methodology
and an adaptive network-based fuzzy inference system were adopted to model and establish the
relationship between milling conditions and surface roughness. Moreover, the significant impact of
each factor and two-factor interactions on surface roughness were explored by analysis of variance.
The specific objective of this work was to find milling parameters for minimum surface roughness,
and the optimal milling condition was determined to be a rake angle of 15◦, a spindle speed of
3357 r/min and a depth of cut of 0.62 mm. These parameters are suggested to be used in actual
machining of beech wood with respect of smoothness surface.

Keywords: wood machining; RSM; milling condition; surface quality; optimization

1. Introduction

Beech wood is widely used for wooden products due to its stable internal structure,
high density and good compressive strength performance [1]. Methods always needed to
be employed in wood products processing are machining such as turning, sawing [2] and
milling [3], and therefore investigations on the cutting performance of material have been
favored by researchers around the world [4].

Smoothness of surface is the state of the external layer after machining, and it is also
an important evaluation for machining quality [5] At present, surface roughness is mainly
used as a crucial evaluation index. The surface roughness of beech wood was studied by
Kvietkova et al. [6] during plane milling; their work showed that cutting speed, clearance
angle and feeding speed have a significant impact on the surface quality. The effect of
tool wear on surface roughness was explored by Kminiak et al. [7] based on beech sawing
experiments; they found that tool wear increased as the sawing distance increased, but tool
wear has a limited impact on surface smoothness. In the related research of beech milling,
an advanced measuring method for surface roughness was developed by Fotin et al. [8];
they showed that milling parameters and anatomical structure have great influence on the
surface roughness. Furthermore, changes in surface roughness were investigated by Sütçü
and Abdullah [9], and their study indicated that feeding speed and cutting direction are
two parameters affecting surface smoothness during beech wood machining. In general,
surface roughness is affected predominantly by material properties, cutting speed, tool
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angle and cutting direction [10,11], and that surface roughness is an important part for final
product quality and guaranteed product commercial value [12].

Milling is the most commonly used processing method for wood machining for
outstanding machining efficiency [13]. However, due to the lack of research on the milling
performance of beech and the non-uniformity of beech wood, there are still quality problems
such as abnormal surface damage during industrial beech machining, and how to reduce
surface roughness is the key to improve product quality [14,15].

In this work, a series of milling experiments were carried out, and special attention
was given to changes in surface roughness under different cutting conditions when the
beech wood was milled by straight tooth cutters. This work is expected to provide scientific
theoretical guidance for high-quality machining of beech wood.

2. Materials and Methods

As shown in Figure 1, up-milling was performed at a machining center (MGK01,
Nanxing Machinery Co., Ltd., Dongguan, China) by diamond cutters with a constant
diameter of 140 mm and teeth number of 6 (Table 1, ADC-2717, Leuco precision tooling
Co., Ltd., Taicang, China). Beech wood (Zelkova schneideriana) was used as the workpiece,
and its material properties are listed in Table 2.
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Figure 1. Milling experiment (ae: cutting width, ap: depth of cut, Vf: feed speed, n: spindle speed).

Table 1. Geometry and physical parameters of the cutting tools.

No. Rake Angle Clearance Angle Coefficient of Thermal Expansion Thermal Conductivity Hardness

1 5◦ 8◦

1.18 × 10−6 560 W·m−1K−1 8000 HV2 10◦ 8◦

3 15◦ 8◦

Table 2. Material properties of beech wood.

Density Modulus of Elasticity Moisture Content Bending Strength

0.7 g/cm3 9681.3 MPa 11.2% 92.5 MPa

In this work, surface roughness Ra was in focus, changes in surface roughness under
different cutting conditions were explored by a response surface methodology (RSM) using
Design-Expert software (Version 12, Stat-Ease Inc., Minneapolis, MN, USA) and an adaptive
network-based fuzzy inference system using (Version R2018A, MathWorks Inc., Natick,
MA, USA). Surface roughness was acquired by a surface roughness meter (S-NEX001SD-12,
Tokyo Seimitsu Co., Ltd., Tokyo, Japan) under different cutting conditions. The profile
of the machined surface was detected by a diamond probe with a radius of 2 µm, and
the measuring direction was parallel to feeding direction with a speed of 1 mm/s, and
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the measuring distance was 10 mm. Surface roughness Ra was processed by ACCTee
software (Accretech, Tokyo Seimitsu Co., Ltd., Tokyo, Japan) with Gaussian filtering. The
experimental design was given in Table 3—each combination of cutting condition was
repeated five times, and the average value of Ra was obtained based on the five samples.

Table 3. Experimental design and results.

No. Rake Angle
(◦)

Spindle Speed
(r/min)

Depth of
Cut (mm)

Ra
(Actual) (µm)

Ra (RSM)
(µm)

Pred.
Error

(RSM)

Ra (ANFIS)
(µm)

Pred. Error
(ANFIS)

1 5 2500 0.5 4.058 4.293 5.47% 4.047 −0.28%
2 5 5000 0.5 3.797 3.552 −6.98% 3.802 0.14%
3 5 7500 0.5 3.206 3.084 −3.96% 3.225 0.58%
4 5 2500 1.0 4.604 4.813 4.34% 4.611 0.15%
5 5 5000 1.0 4.341 3.954 −9.79% 4.339 −0.05%
6 5 7500 1.0 3.377 3.367 −0.30% 3.394 0.51%
7 5 2500 1.5 4.927 5.391 8.61% 4.924 −0.05%
8 5 5000 1.5 4.368 4.414 1.04% 4.357 −0.26%
9 5 7500 1.5 4.456 3.709 −0.14% 4.429 −0.61%

10 10 2500 0.5 3.711 3.747 0.96% 3.706 −0.16%
11 10 5000 0.5 3.231 3.468 6.83% 3.880 20.09%
12 10 7500 0.5 3.206 3.461 7.37% 3.241 1.08%
13 10 2500 1.0 3.854 4.162 7.40% 3.854 0.01%
14 10 5000 1.0 3.765 3.765 0.00% 3.779 0.36%
15 10 7500 1.0 3.447 3.639 5.28% 3.809 10.51%
16 10 2500 1.5 4.891 4.636 −5.50% 4.887 −0.08%
17 10 5000 1.5 3.951 4.121 4.13% 4.593 16.25%
18 10 7500 1.5 3.913 3.877 −0.93% 3.921 0.21%
19 15 2500 0.5 2.793 2.066 −35.19% 2.402 −14.00%
20 15 5000 0.5 2.294 2.248 −2.05% 2.288 −0.28%
21 15 7500 0.5 2.28 2.702 15.62% 3.218 41.12%
22 15 2500 1.0 2.366 2.376 0.42% 2.368 0.08%
23 15 5000 1.0 3.652 2.440 −49.67% 3.037 −16.83%
24 15 7500 1.0 2.984 2.776 −7.49% 2.986 0.08%
25 15 2500 1.5 4.033 2.745 −46.92% 2.831 −29.82%
26 15 5000 1.5 2.446 2.691 9.10% 2.453 0.30%
27 15 7500 1.5 2.984 2.908 −2.61% 3.524 18.09%

3. Results and Discussion
3.1. A RSM for Surface Roughness

A response surface model was established based on the obtained beech milling surface
roughness data. For mathematical modeling, two-factor interaction (2FI) and quadratic
models are commonly used [16]. The fitting degrees of these three types of models are
given in Table 4. Linear and quadratic models were suggested, but the R2 and adjusted R2

of the quadratic model were 0.96 and 0.91, respectively, and its goodness of fit was higher
than that of the linear model. Therefore, the quadratic term form was chosen to establish
the response surface model, similar to in a previous work [17].

Table 4. Model fit statistics table.

Source Std. Dev. R2 Adjusted R2

Linear 0.46 0.69 0.62 Suggested
2FI 0.42 0.80 0.68 /

Quadratic 0.22 0.96 0.91 Suggested

Fitted statistics of the machined surface roughness are shown in Table 5. The model’s
coefficient of determination R2 and adjusted R2 are 0.96 and 0.91, respectively, and they are
very close to 1. Std. Dev. is the experimental standard deviation, it can reflect the degree of
dispersion of a dataset. Coefficient of variation (C.V.%) is the ratio of the standard deviation
of the original data to the mean of the original data, which was very low. Comparison
of the predicted values and actual values in Figure 2 did not show a significant variant
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point and this shows that the model was fitted, and can be used to establish a mathematical
model of surface roughness.

Table 5. Model fit statistics of Ra.

Model Std. Dev. Mean C.V.% R2 Adjusted-R2 Adeq Precision

Ra 0.2216 3.58 6.2 0.9604 0.9095 15.0924
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Figure 2. Predicted and actual value of Ra.

The machined surface roughness of beech was obtained as shown in Equation (1).

Ra = 3.77− 0.757α− 0.2645n + 0.3263ap + 0.4613αn− 0.1048αap
−0.1183nap − 0.5681α2 + 0.1359n2 + 0.0294ap

2 (1)

where α is rake angle in ◦, n is the spindle speed in r/min, ap is depth of cut in mm.
The ANOVA results of the model are shown in Table 6. The F-value was 18.88, and a

p-value < 0.05 indicated that this model was significant. The cutting parameters represented
by A, B, and C in the table are tool rake angle (α), spindle speed (n) and depth of cut (ap).

Table 6. Result of ANOVA for surface roughness Ra.

Source Sum of Squares df Mean Square F-Value p-Value

Model 8.34 9 0.9267 18.88 0.0004 Significant
A-α 4.58 1 4.58 93.38 <0.0001 Significant
B-n 0.5471 1 0.5471 11.14 0.0125 Significant
C-ap 0.8515 1 0.8515 17.34 0.0042 Significant
AB 0.851 1 0.851 17.33 0.0042 Significant
AC 0.0439 1 0.0439 0.894 0.3759 Insignificant
BC 0.0559 1 0.0559 1.14 0.3212 Insignificant
A2 1.36 1 1.36 27.68 0.0012 Significant
B2 0.0777 1 0.0777 1.58 0.2486 Insignificant
C2 0.0036 1 0.0036 0.074 0.7934 Insignificant

Pure Error 0 4 0
Total 8.68 16
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It can be seen from Figure 3 that Ra is positively correlated with the depth of cut, and
negatively correlated with spindle speed and tool rake angle, whereas the influence of
the cutting parameter on Ra was ranked as α > ap > n. In the RSM model, ANOVA can
be used to explore the impact of variation from different sources to the total variation,
namely, the impacting degree of a factor or two-factor interactions on surface roughness.
Meanwhile, the curve distribution density of a 2D surface plot can indicate the significant
impact of two-factor interactions on surface roughness. Thus, combined with Table 6 and
Figure 4, the cutting parameters (α, n, and ap) have a significant impact on Ra (p < 0.05), and
the influence of the quadratic interaction term α×n on Ra is significant (p < 0.05). In the
analysis of the impacting degree of the quadratic interaction term on Ra, Figure 4a shows
the influence of α×n on Ra; it can be found that rake angle has a higher impacting degree
than spindle speed on Ra; Figure 4b shows the influence of α×ap on Ra, rake angle has a
higher impacting degree than depth of cut on Ra; Figure 4c displays the influence of n×ap
on Ra, it can be found that depth of cut has a higher impacting degree than spindle speed
on Ra.
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Combined with the ANOVA results and Figure 5, the quadratic term α2 of the cutting
parameters has a significant effect on Ra (p < 0.05), then the order of influence of the
quadratic term is as follows: α2 > n2 > ap

2.
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3.2. ANFIS Methodology for Surface Roughness

The Adaptive Network-based Fuzzy Inference System (ANFIS) was proposed by Jang [18]
in 1993, where they used fuzzy if-then rules to map the complex non-linear relationship between
input and output variables, and used a set of input and output data to train the neural net-
work [19,20]. This technology’s ability is to compute complex problems with large uncertainties.
It is a multi-layer structure based on hybrid learning that utilizes Least Squares Estimation
(LSE) and Gradient Descent (GD) methods to construct input–output mappings. The standard
two-pass learning process of ANFIS consists of a forward pass in which the outputs of nodes are
computed until the fourth layer, where the LSE updates the backward parameters. While in the
backward pass, the error propagates forward until the first layer, where GD tunes the premise
parameters, which are membership function parameters. The ANFIS architecture consists of
five distinct layers. Figure 6 shows the functional details of each layer of ANFIS. Function of
Layer 1: Fuzzy the input features x and y with the membership function to obtain a membership
grade in the [0, 1] interval; the output calculation of each node is shown in Equation (2) [21],
which is an example of a generalized bell-shaped membership function. The premise parameter
set (ji, ki, li) defines the shape of the membership function.

M1
i = µAi(x) =

1

1 +
[∣∣∣ x−li

ji

∣∣∣2ki
] (2)

where (ji, ki, li) is the parameter set. The change in these parameters is Ai in various forms,
x is the input feature, and µAi(x) is a ball-shaped function and it has a maximum value of 1
and a minimum value of 0.

Function of Layer 2: Multiply the membership of each feature to obtain the firing
strength of each rule, as shown in Equation (3) [22]

M2
i = wi = µAi(x)× µAi(y) (3)

Function of Layer 3: Normalize the trigger strength of each rule obtained by the
previous layer to represent the trigger proportion of the rule in the entire rule base, that
is, the probability of using this rule in the entire reasoning process. It can be calculated by
Equation (4) [21,22].

M3
i = wi =

wi
w1 + w2

, i= 1, 2 (4)
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Function of Layer 4: Called the deburring layer, it is composed of adaptive nodes, and
its function is shown in Equation (5).

M4
i = wi fi = wi(pix + qiy + ri) (5)

where pi, qi, and ri are consequent parameters, and wi is the output of Layer 3.
Function of Layer 5: Obtain the exact output; the final system output is the weighted

average of the results of each rule by Equation (6) [22,23].

M5
i = f inalO/P = ∑

i
wi fi =

∑i wi fi

∑i wi
(6)

The ANFIS architecture for surface roughness is shown in Figure 7. The input variables
are rake angle, spindle speed and depth of cut, and the output variable is the machined
surface roughness. From the 27 combinations, 19 combinations were selected as training
data (approximately 70%), and the remaining 8 combinations (approximately 30%) were
used as test data.

Figure 8 shows the training and test graphs generated from the training input set and
the test dataset. For the established ANFIS model, 100 learning intervals (epochs) were
performed on 19 training datasets. The trained ANFIS network was loaded and all the data
were predicted to obtain the error data predicted by the model, which is shown in Table 6.
The overall error of the model is small, and there are only a few groups of large deviations,
which are within an acceptable range, so it is feasible to use ANFIS to predict Ra.
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Figure 10 shows the influence of cutting parameters on Ra obtained by the ANFIS
model; this is consistent with the law obtained by the RSM model (Figure 3), of which Ra is
positively correlated with depth of cut, and negatively correlated with spindle speed and
tool rake angle.

The Ra of the predicted ANFIS values and real-time experimental values were facil-
itated by the Sugeno rule viewer, which effectively supports tracking of predetermined
input–output datasets and supervised learning processes. 19 rules between input and
output values are defined in Figure 9.

In the analysis of the influence degree of the secondary interaction term on Ra obtained
by the ANFIS model and the interactive effects of spindle speed and tool rake angle on Ra,
tool rake angle is the main influence. Among the interactive effects of depth of cut and tool
rake angle on Ra, tool rake angle is the main influence; and among the interactive effects of
depth of cut and spindle speed on Ra, depth of cut is the main influence. Obviously, this is
highly consistent with the trend obtained by the RSM model (Figures 5 and 11).

3.3. Optimization and Verification for High-Quality Machining

After processing, the surface roughness of beech wood is an important measure to
evaluate its machined quality, which is related to subsequent use and surface decoration
processes [24,25]. In the above analysis, cutting parameters and surface quality were closely
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related. Appropriate machining parameters were predicted using response surface and
adaptive fuzzy neural networks, and the goal was to obtain the best machining surface quality.
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The input variables in predicting optimal parameters are rake angle, depth of cut and
spindle speed, respectively. Meanwhile, the optimal parameter ranges are as follows: a
rake angle of 5–15◦, a spindle speed of 2500–7500 r/min, and a depth of cut of 0.5–1.5 mm.
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Based on the experimental results, it can be found that the red points in Figure 12 are the
most suitable locations for each parameter prediction, and the prediction points are also
shown in Figure 13. In order to verify the reliability of the predicted results, the error of
the model prediction obtained by verification experiment is shown in Table 7, the error
value is −5.24% within acceptable limits. Moreover, it was observed that surface roughness
at the optimal processing parameters was smaller than the minimum value obtained in
the original experimental design, it further indicated that the model prediction result was
reliable. Therefore, the optimal processing parameters for beech wood processing were a
rake angle of 15◦, a spindle speed of 3357 r/min, a depth of cut of 0.62 mm, and an optimal
surface roughness of 2.383 µm.
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Table 7. Model prediction error rate.

Tests Rake Angle (◦) Spindle Speed (r/min) Depth of Cut (mm) Surface Roughness (µm)

Prediction 15 3357 0.62 2.258
Verification 15 3357 0.62 2.383
Error rate \ \ \ −5.24%

4. Conclusions

In this paper, a beech wood milling test was used to make prediction models. The
cutting parameters were rake angle, spindle speed and depth of cut, and special focus was
given to surface roughness Ra at difference cutting conditions. Based on the experiment
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results, a RSM model was established, and the influence degree of each input parameter
primary term, interaction term and quadratic term on Ra is systematically analyzed. At
the same time, the adaptive neuro-fuzzy inference system (ANFIS) was used to predict
and analyze the cutting data, and the obtained results were compared with the RSM. The
following conclusions were obtained:

(1) Ra is positively correlated with depth of cut, and negatively correlated with spindle
speed and tool rake angle; meanwhile, the degree of influence of the cutting parameter
on Ra was ranked as α > ap > n; the degree of influence of the interaction term on Ra
was ranked as α×n > n×ap > α×ap; the order of influence of the quadratic term of the
cutting parameters was α2 > n2 > ap

2.
(2) The established ANFIS model is reliable for Ra prediction. Based on the Sugeno

inference system, the non-linear modeling prediction becomes simple and reliable.
(3) The relationship between the influence of each cutting parameter on Ra obtained

by RSM and ANFIS is highly consistent, which not only proves the reliability of the
model, but also the reliability of the obtained influence law.

(4) With the optimal cutting quality as the goal, the optimal milling condition is a tool
with a rake angle of 15◦, a spindle speed of 3357 r/min and a depth of cut of 0.62 mm.

Surface roughness, cutting energy, tool wear, chip formation, etc., are important
indicators to evaluate the cutting performance of beech, and this needs further research in
the follow-up.
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