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Abstract: The underwater docking of autonomous underwater vehicles (AUVs) is conducive to
energy supply and data exchange. A vision-based high-precision estimation of “the positions and
poses of an AUV relative to a docking station” (PPARD) is a necessary condition for successful
docking. Classical binarization methods have a low success rate in extracting guidance features from
fuzzy underwater images, resulting in an insufficient stability of the PPARD estimation. Based on
the fact that guidance lamps are blue strong point light sources, this study proposes an adaptive
calculation method of binary threshold for the guidance image. To decrease the failure of guidance
feature extraction, a guidance image enhancement method is proposed to strengthen the characteristic
that the guidance lamps are strong point light sources with a certain area. The PPARD is estimated
through solving the minimum value of the imaging error function for the vision-based extracted
guidance features. The experimental results showed that the absolute estimation error for each degree
of freedom in the PPARD was at most 10%, which was lower than that of the orthogonal iteration
(OI) method. In addition, the proposed guidance feature extraction method proved to be better than
the classical methods, with the extraction success rate reaching 87.99%.

Keywords: autonomous underwater vehicle; AUV docking; AUV pose; AUV position; guidance features

1. Introduction

The oceans occupy more than 70% of the earth’s surface, and are rich in resources,
including biological, mineral, and energy [1]. With the growing demand for resources by
humans and sharp reduction in land resources, the exploration and development of ocean
resources has become imminent. Autonomous underwater vehicles (AUVs) are widely
used in ocean exploration. Compared to other types of underwater vehicles, AUVs have
the advantages of a wide detection range, high mobility, and simple operation. AUVs
are typically used in a variety of ocean exploration missions [2]. However, owing to their
limited battery energy, the working time and capacity of AUVs are seriously limited. Future
ocean exploration missions require AUVs to work for longer durations. A lack of energy
may result in damages to AUV equipment and their motion, as well as errors or loss
in perception data [3]. Therefore, as a technical solution to providing data transmission
and exchange, energy augmentation, and maintenance of AUVs, underwater docking is
very critical.

AUV guidance technology plays a decisive role in the successful docking of an AUV.
It mainly comprises acoustic, visual, and electromagnetic guidance systems [4]. Acoustic
guidance has a long effective distance and good versatility, but low precision. Electromag-
netic guidance has high precision and a close effective distance, but poor versatility. Visual
guidance has high precision, a close effective distance, and good versatility.
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After an AUV completes its exploration operation, it usually uses the acoustic guidance
technology with a wide array of effective ranges, from far homing to the initial docking
position [5]. In the process of close docking, high-precision visual guidance technology is
often adopted, usually by detecting guidance lamps of a docking station to estimate the
“positions and poses of the AUV relative to the docking station” (PPARD) [6,7]. A high
accuracy and robust estimation of PPARD is necessary to ensure a successful docking.

A vision-based estimation of PPARD mainly involves three steps: image preprocess-
ing, guidance feature extraction, and PPARD calculation. Image preprocessing includes
image enhancement and segmentation. Image enhancement is mainly based on image
color correction and contrast enhancement to highlight the guidance features. The pro-
cessing methods include the contrast limited adaptive histogram equalization (CLAHE)
algorithm [8], median filter [9,10], and Gaussian filter [9]. Image segmentation is mainly
used to segment guidance lamp regions to extract the guidance features. The processing
methods, here, include the mean-shift algorithm [11], region growing method [12], and
deep learning [13,14]. Guidance feature extraction can be divided into two types, namely
guidance feature extraction based on image binarization (GFEBIB) and guided feature
extraction based on edge detection (GFEBED). GFEBIB makes the guidance features white
and other areas black by binarizing the image. Here, the main processing methods in-
clude the Otsu thresholding method [8], adaptive weighted Otsu method [12], self-tuning
threshold method [15], and fixed thresholding [9,16]. GFEBED, on the other hand, requires
guidance lamps to have a special shape, such as a heart shape. The guidance feature
extraction is realized by extracting and judging the boundary shape of the object. The
main processing methods include the Snake algorithm [11,12], Hough transform [17], etc.
The PPARD is calculated according to the pixel coordinates and actual coordinates of the
guidance features. Here, the main methods include direct linear transform (DLT) [15,18],
efficient perspective-n-point algorithm (EPNP) [19], orthogonal iteration (OI) [8,20], and
binocular vision [11,12].

However, the following problems need to be further researched. (1) With respect
to underwater image enhancement, the existing image enhancement methods applied to
guidance images cannot enhance the characteristics that the guidance lamps are strong
point light sources. (2) Regarding the two-dimensional geometric feature extraction of
guidance lamps, the previous studies have used classical binary methods to extract the
guidance features. When the photographed environment or the camera pose and position
change, the guidance lamps and their two-dimensional geometric feature extraction suffer
from a low success rate. It is necessary to study the adaptive threshold binary method
considering the guidance lamps as special color strong point light sources. (3) With regard
to the PPARD estimation, measurement noise interference and guidance feature center
coordinate deviation can cause a larger calculation error in the PPARD.

The dataset Drecovery [14] was used to study the guidance feature extraction. To solve
the above problems, a new method for PPARD estimation based on guidance image
preprocessing and the adaptive extraction of visual guidance features was proposed in
this study. The main contributions of this study are as follows: (1) an adaptive thresh-
old binarization method for the guidance image was proposed based on the fact that
the guidance lamps in the image are strong blue point light sources. The guidance fea-
tures were extracted by combining image binarization and morphological processing;
(2) a preprocessing method for the guidance image was proposed to enhance the intensity
difference between the guidance lamps and the background area, and to segment the guid-
ance target area. This improved the success rate of the guidance feature extraction from
68.89% to 87.99% for Drecovery; (3) based on the principle of camera imaging, this study also
proposed an iterative optimization estimation model for PPARD estimation. The absolute
estimation error for each degree of freedom (DOF) in the PPARD was less than 10%.

The remainder of this paper is organized as follows. Section 2 builds an estimation
model for the PPARD based on the camera imaging principle. An adaptive threshold
binarization method for the guidance image to obtain the input parameters for the estima-
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tion model is described in Section 3. Section 4 presents the guidance image-preprocessing
method. Section 5 discusses the experimental results. Finally, Section 6 concludes the paper.

2. Model Building for PPARD Estimation Based on Camera Imaging Principle

Figure 1 illustrates the coordinate system chosen for the docking station and camera.
The docking station coordinate system (DCS) is expressed as O-xyz, the origin of which
is located at the center of the docking station. The camera coordinate system (CCS) is
expressed as Oc-XcYcZc, whose origin Oc is located at the optical center of the lens, and the
Zc axis coincides exactly with the optical axis. The origin of the image plane coordinate
system, located at the top-left corner pixel of the image, can be expressed as OI-uv (see
Figure 1). The unit is pixel, and each point is represented by an integer.
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The relationship between OI-uv and O-xyz can be described as [21]:
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=
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m31 m32 m33 m34

, (2)

where F is the camera interior parameter matrix; R is the rotation matrix; and t is the
translation matrix of Oc-XcYcZc relative to O-xyz.

Assume that the process of DCS transferring to CCS is as follows: (1) rotate around
x-axis by θx; (2) rotate around y-axis by θy; (3) rotate around the z-axis by θz; (4) move along
the x-, y-, and z- axes by distances lx, ly, and lz, respectively. The rotation matrix R and
translation matrix t can be expressed as

R =
(
RzRyRx

)T , (3)

t =
[
lx ly lz

]T , (4)
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where Rx, Ry, and Rz are the basic rotation matrices for rotations around x-, y-, and z-
axes, respectively.

Due to the fact that the camera is fixed on the AUV, if the “ positions and poses
of the camera relative to the docking station” (PPCRD) are estimated, the PPARD can
be calculated.

Solving for the rotation transformation angle and translation distance of the CCS
relative to the DCS, that is, rotation matrix R and translation matrix t, is equivalent to the
inverse process of camera imaging. Assume that the number of guidance feature points
is n, and their coordinates in the DCS are (xi, yi, zi). Then, the following equation can
be obtained: 

_
u i
_
v i
1

 =
1

Zci
F
[

Ra ta
0T 1

]
xi
yi
zi
1

, (5)

where (
_
u i,

_
v i) is the predicted pixel coordinate of point (xi, yi, zi) under the hypothetical

rotation matrix Ra and translation matrix ta. The real pixel coordinates of the guidance
feature points are (ui, vi), which can be extracted through guidance image processing.

The imaging error function of guidance feature points can be built as follows:

e = ∑ ei = ∑
√(

_
u i − ui

)2
+
(
_
v i − vi

)2
, (6)

The following nonlinear programming problem is solved to estimate the PPCRD.

min(e = ∑ ei)
s.t. tl < x < tu

(7)

x =
[
θx θy θz lx ly lz

]
, (8)

where tu and tl are the upper and lower limits of the PPCRD, respectively. During the
docking process, the AUV will first use acoustic information to adjust the docking posi-
tions and poses. A visual guidance strategy is adopted when the distance between the
AUV and the docking station is less than 10 m. There will not be too much deviation of
PPCRD. Therefore, tu and tl were selected as [−30◦, −30◦, −30◦, −1500 mm, −1500 mm,
−10,000 mm] and [30◦, 30◦, 30◦, 1500 mm, 1500 mm, 0], respectively, in this paper. The
interior-point method [22] was used to solve Equation (7), which is the estimation model
for the PPCRD. To solve for the PPCRD, the real pixel coordinates of the guidance feature
points need to be extracted.

3. Guidance Feature Extraction Based on Adaptive Threshold Image Binarization

The guidance image for dataset Drecovery is shown in Figure 2a. The resolution of
guidance images in the dataset is 640 × 480. Owing to the different absorption capacities of
water for different wavelengths of light, the entire image was rendered green. The green
component G of the image is shown in Figure 2b. At this time, it was difficult to extract the
guidance lamps from component G by using the threshold method. The guidance lamps
were blue in color. Therefore, the blue component B was used to extract the guidance
features. Component B of the guidance image is shown in Figure 2c. It can be seen that the
B values of the guidance lamps were significantly higher than those of the background area.

The pixel coordinates in the image are represented by (u, v), and the corresponding B
value is represented by b (u, v). With a one-pixel resolution, component B was mapped onto
a three-dimensional surface, as shown in Figure 3. There were eight peaks and troughs
in the guidance lamp area in the figure. The maximum B value of the guidance lamps
and corresponding position of the value could be obtained by extracting the position and
value of the peaks. Each peak position could be regarded as the position of the guidance
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lamps. The extraction process of the guidance lamp peaks in the guidance image is shown
in Figure 4, and the extraction results are shown in Figure 5.
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The following problems can be observed from the results.

(1) Noise points extracted as guidance lamp peaks for filtering could not guarantee the
smoothness of the surface in Figure 3. By extracting the wave peaks, a large number
of connected areas of the wave peaks could be obtained, which was much larger than
the number of guidance lamps.

(2) In order to test whether the noise can be eliminated by setting the wave peaks extrac-
tion threshold tb, it is gradually increased from a small value (100) to 200. During this
period, the noise cannot be eliminated. However, when tb is 200, a guidance lamp
is eliminated. As shown in Figure 5, not all guidance lamps could be extracted, and
there were noise points in the figure. Therefore, all the guidance lamps could not be
extracted without noise by adjusting tb.

(3) The area of the extracted connected area was very small and close to a point. Therefore,
morphological processing could not be used to remove the noise. This was not
conducive to the location of the guide lamps.

To address the above problems, binarization of the image was considered to obtain a
larger connected area of the guidance lamps. The binarization threshold of the image was
selected according to the value of the wave peaks and wave troughs, as shown in Figure 3.
The threshold t is

t = (pmax − vmax)/2 + vmax, (9)

where pmax is the maximum value of all peak values, and vmax is the maximum of all the
wave valley values.

Component B of the guidance image was binarized according to threshold t. The pixels
with a B value larger than t were assigned a value of 1, whereas others were assigned 0, i.e.,

fb(u, v) =
{

1 b(u, v) ≥ t
0 b(u, v) < t

, (10)

where fb(u, v) is a binary image. The guidance image was binarized by Equation (10), and
then morphological processing was performed to extract the guidance features, as shown
in Figure 6.
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4. Preprocessing Method of Underwater Guidance Images
4.1. Underwater Guidance Image Enhancement

As the guidance lamps were blue in color, and the light spread gradually, when the
AUV stood far away from the docking station, variations in the photo camera poses/positions
caused the areas among adjacent lamps to be blue, as shown in Figure 7a,b. This would
lead to a binary threshold value that was too high or too low and resulted in a loss of
guidance lamps or some adjacent guiding lamps merging together or overlapping each
other, as shown in Figure 7c,d.
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Figure 7. Problems of guidance lamp extraction caused by variations in camera poses/positions:
(a) original image; (b) blue components; (c) loss of guidance lamps; (d) adjacent guiding lamps
merging together or overlapping each other.

To solve the above problems, the following requirements must be met through im-
age enhancement:

(1) Adjacent guidance lamps in the image should be clearly separated, that is, the values
of peaks and troughs of any two adjacent lamps should differ significantly.

(2) Guidance lamps should present the characteristics of strong light sources.
(3) The highlighted area of guiding lamps should have an adequate area, not just a point,

to prevent morphological filtering and causing the loss of guiding lamps.
(4) The brightness of all the guidance lamps should be similar.

Figure 8 shows the red and green components of the guidance image. Compared with
the background area, the guidance lamps in both the images present a bright spot. Thus,
the guidance lamps met requirements (1) and (2).
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Figure 8. Red and green components of the guidance image: (a) red component; (b) green com-ponent.

Owing to a severe absorption of red light by water, the brightness of the red component
was low. At the same time, owing to the influence of external light, the intensity of the
green component was high in the no-guidance lamp area. To solve these problems, the
Retinex algorithm was used to process the image, which is given by [23].

I = IR·IL, (11)

where I is the image obtained by the camera; IR is the incident component; and IL is the reflection
component. IR is mainly determined by the incident light, and IL is determined by the reflection
property of the object itself. The Retinex algorithm was used to obtain the reflection images RL
and GL of the red and green components, respectively, as shown in Figure 9.
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In order to meet the above four requirements after the image processing, the reflected
images of R and G components were extracted using the Retinex algorithm to eliminate
the interference of ambient light. The guidance lamp was a blue point-light source. To
maintain the characteristics of the guidance light, the Retinex algorithm was not used for
the B component to maintain its blue component characteristics.

The images RL and GL were added to further strengthen the guidance lamps, which
had the characteristic of being strong light sources. Then, image K was obtained, as shown
in Figure 10.

K = RL/2 + GL/2, (12)
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Figure 10. Image K (K = RL/2 + GL/2).

A dynamic piecewise nonlinear adjustment was used to enhance K and improve the
enhancement effect. The background region intensity was adjusted by an exponential
function of index of 2 to lower its value and fasten to a low value closer to 0. The guidance
lamp region intensity was adjusted using an exponential function of index of 0.5, to
smoothen and narrow its value. The adjustment equation is as follows:

K′ =


K′wt ×

(
K

Kwt

)2

K′wt + (K′tb − K′wt)· sin
[(

K−Kwt
Ktb−Kwt

)
× 2π

3

]
K′tb + (1− K′tb)×

√(
K−Ktb
1−Ktb

)
0 ≤ K < Kwt

Kwt ≤ K < Ktb

Ktb ≤ K ≤ 1

, (13)

∃!εi ∈ ε,
εi−1

∑
S=0

NS < 0.5N ∧
εi

∑
S=0

NS ≥ 0.5N ⇒ Kwt = εi, (14)

∃!ε j ∈ ε,
ε j−1

∑
S=0

NS < 0.95N ∧
ε j

∑
S=0

NS ≥ 0.95N ⇒ Ktb = ε j, (15)

ε = {a/255|a ∈ Z&0 ≤ a ≤ 255}, (16)

where N is the total number of pixels of the entire image and NS is the pixel number of value
S. The parameters Kwt and Ktb are the adjusted upper limits of the intensity value of image
K. Figure 11 shows the image intensity dynamic piecewise nonlinear adjustment results.
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It can be seen that the brightness of the guidance lamps was enhanced and the area
of the highlight-connected area of the guidance lamps increased. However, there were
some high-brightness noises in the image. The binary processing could easily produce
the pseudo-guidance lamps. To solve this problem, the component B was adjusted using
Equation (17) to obtain B′. Then, B′ and K′ were added to obtain a new image M, as shown
in Figure 12.

B′ =


B′wt ×

√
B

Bwt

B′wt + (B′tb − B′wt)· cos
[(

B−Bwt
Btb−Bwt

)
× 2π

3

]
B′tb + (1− B′tb)×

√(
B−Btb
1−Btb

)
0 ≤ B < Bwt

Bwt ≤ K < Btb

Btb ≤ B ≤ 1

, (17)

∃!εi ∈ ε,
εi−1

∑
S=0

NS < 0.5N ∧
εi

∑
S=0

NS ≥ 0.5N ⇒ Bwt = εi, (18)

∃!ε j ∈ ε,
ε j−1

∑
S=0

NS < 0.8N ∧
ε j

∑
S=0

NS ≥ 0.8N ⇒ Btb = ε j, (19)

M = K′/2 + B′/2, (20)
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Figure 12. The final enhancement image M.

The brightness of the guidance lamps and noise had an evident difference. Image
M met the four requirements mentioned above and was more advantageous for image
binarization processing and the feature extraction of guidance lamps.

4.2. Segmentation of Guidance Lamp Region

The image was divided into n image blocks and the following features were extracted
for each image block:

(1) Average intensity lm;
(2) Gradient mean dm;
(3) Strong boundary pixels number b.

The mean values of all of the image blocks of the three features were expressed as,
lmm = ∑ lm/n,dmm = ∑ dm/n, and bm = ∑ b/n. The image was segmented according to
Equation (21) to obtain the guidance lamp area, as shown in Figure 13.

Mnew(x, y) = M(x, y)× S(x, y), (21)

S(x, y) =
{

1 lmi ≥ lmm&dmi ≥ dmm&bi ≥ bm&(x, y) ∈ Ωi
0 else

, (22)

where lmi, dmi, and bi are the above three features of the image block Ωi. After image
preprocessing, the guidance features were extracted from the image Mnew (instead of
the component B) using the adaptive threshold image binarization method proposed in
Section 3. The results are shown in Figure 14.
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5. Experimental Verification
5.1. PPARD Estimation Steps Based on Image Processing

The following are the PPARD estimation steps:

(1) Acquire a guidance image from the camera.
(2) Preprocess the guidance image, including image enhancement and image segmentation.
(3) Binarize the image using the adaptive threshold binarization method, proposed in

Section 3. Extract the guidance features and calculate their pixel coordinates.
(4) Input the pixel coordinates and actual coordinates of the guidance features into

Equation (7) to solve for PPARD.

5.2. Experimental Equipment

Due to the difficulty in obtaining the real relative PPARD, it is impossible to use
the camera mounted on AUV to conduct a PPARD estimation accuracy test. Thus, a
PPARD estimation test platform (shown in Figure 15) was designed to analysis the accuracy
of PPARD estimation in this paper. The experimental device was rectangular-shaped.
Four guidance lamps were installed at the midpoint of the four sides at one end of the
experimental device to simulate the entrance of the docking station. The other end was
equipped with a camera to simulate the camera installed in front of the AUV platform. The
two ends were connected by rods with adjustable lengths to realize the distance adjustment
in the z-direction.

The camera, whose resolution is 640 × 480, was installed on a three-dimensional
turntable. It could rotate around the x-, y-, and z- axes. A three-dimensional turntable was
installed on the mounting plate of the camera. Several camera mounting positions with
different x- and y- coordinate combinations were designed on the camera mounting plate,
which could help to adjust the camera’s positions in x- and y- directions. The experimental
device could adjust and sign the six DOFs of the camera relative to the DCS O-xyz. The
PPARDs were fixed on the land. Then, the experimental device was placed in the pool (see
Figure 16) to collect the underwater guidance image. The positions and poses of the camera
relative to the DSC O-xyz were estimated to test and analyze the accuracy of the method
proposed in this paper.
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Figure 16. Photograph of the pool used in the study.

The values of six DOFs set in the experiment are listed in Table 1. If all of the combina-
tions for poses and positions were tested, the number of experiments would be very large.
Thus, the orthogonal experiment method was used to remove the redundant experimental
PPARD combinations, and a total of 25 experimental groups were used.

Table 1. Values of six DOF set in the experiment.

DOF Value

θx (◦) –10, –5, 0, 5, 10
θy (◦) –10, –5, 0, 5, 10
θz (◦) –10, –5, 0, 5, 10

lx (mm) –400, –200, 0, 200, 400
ly (mm) –400, –200, 0, 200, 400
lz (mm) –2000, –3000, –4000

5.3. Accuracy Analysis of PPARD Estimation

Figure 17a shows an example of a guidance image collected by the camera. In the
experiment, the PPARD for each group of experiments was marked according to the
designed position and the angle adjusted by the three-dimensional turntable. Figure 17a
is the original image, whereas Figure 17b shows the extracted guidance features, and
Figure 17c shows the result of the PPARD estimation.

Figure 18 shows the PPARD estimation results. It can be seen that the estimated values
of the six DOFs fluctuated around the experimentally set values. To obtain the absolute
accuracy of the PPARD estimation, the differences between the estimated and set values
were calculated, and are shown in Figure 19.
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Figure 17. Example of PPARD estimation: (a) original image; (b) extracted guidance features; (c)
PPARD estimation result.
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Figure 18. PPARD estimation results: (a) θx; (b) θy; (c) θz; (d) lx; (e) ly; (f) lz.
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Figure 19. Differences in the estimated and set values: (a) three rotation angles; (b) lx and ly; (c) lz.
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It shows that, for any DOF, the errors under different positions or poses setting values
were relatively close. The estimation error for the rotation angles of the three axes was less
than 1◦ and the relative error was less than 10%. The estimation error of the positions in
the x- and y- directions was less than 80 mm, and the relative error was less than 10%. The
estimation error of the positions in the z-direction was less than 140 mm and the relative
error was less than 3.5%.

To further evaluate the accuracy of the PPARD estimation, the evaluation methods
proposed for rotation error Erot and translation error Etrans in [24] were used.

Erot =
3

max
k=1

arccos
(

rk
true·rk

)
, (23)

Etrans = ‖t− ttrue‖/‖ttrue‖ × 100%, (24)

where rk
true and rk are the k-th columns of the true value Rtrue and the estimated value R of

the rotation matrix; t and tture are the estimated and true values of the translation matrix,
respectively. Using these two indicators to evaluate the accuracy of the PPARD estimation
algorithm, the results are shown in Figure 20. In the experiment, the distance between
the camera and guidance lamps along the z-direction was 4000 mm for experiments 1–10,
3000 mm for experiments 11–20, and 2000 mm for experiments 21–25. From the results,
it can be seen that the rotation error was less than 1.3◦. The general trend was that the
rotation error decreased with a decrease in the distance between the camera and guidance
lamps along the z-axis. The translation error was less than 12%.
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Figure 20. The rotation error and translation error: (a) rotation error Erot; (b) translation error Etrans.

However, because the term ‖ttrue‖ in Equation (24) is a variable, when the distance
between the camera and guidance lamps along the z-axis became smaller, it would also
become smaller. It was difficult to reflect the change in the translation error with a change
in the distance between the camera and guidance lamps along the z-axis. Therefore, the
equation is modified as follows:

Etransc = ‖t− ttrue‖/‖tr‖ × 100%, (25)

where tr is the range of t. The results are shown in Figure 21, which shows that the
translation error was not more than 8%, and the smaller the distance between the camera
and guidance lamps along the z-axis, the smaller the translation error.
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5.4. Comparison of Proposed Method and OI Method

Slovepnp, a classical function in Opencv for poses and positions estimation, is used
to solve PnP problems. The OI method in the Slovepnp function has the highest accuracy.
Therefore, we compare the PPARD estimation and OI methods. The guidance feature
extraction was carried out using the method proposed in this study, and the PPARD
estimation results are presented in Table 2.

Table 2. Statistical indicators of PPARD estimation results.

Evaluating Indicators DOF Proposed Method OI

Mean error of RRARD

θx (◦) 0.42 3.77
θy (◦) 0.45 3.95
θz (◦) 0.34 1.22

lx (mm) 45.76 163.60
ly (mm) 36.07 191.88
lz (mm) 61.80 89.97

Maximum error of PPARD

θx (◦) 0.91 6.59
θy (◦) 0.90 5.92
θz (◦) 0.89 3.03

lx (mm) 76.67 294.50
ly (mm) 69.20 274.30
lz (mm) 132.25 131.65

Root mean squared error of PPARD

θx (◦) 0.49 4.28
θy (◦) 0.53 4.36
θz (◦) 0.41 1.47

lx (mm) 49.89 206.35
ly (mm) 40.73 219.20
lz (mm) 71.30 98.85

5.5. Analysis of Guidance Feature Extraction
5.5.1. Success Rate of Guidance Feature Extraction

The Drecovery dataset was used to study the guidance feature extraction. It contained
2306 images of active underwater guidance lamps. Drecovery was collected by the SIA-3
AUV (shown in Figure 22) in shallow-water field experiments using the lamps and docking
station deployed in [14]. The SIA-3 AUV had a diameter of 384 mm, a length of 5486 mm,
and a weight of 1500 kg in air. The maximum distance between the AUV and the lamps
was approximately 8 m in the experiments. The extraction was regarded as a successful
extraction if the number of detected lamps was equal to the number of predefined lamps;
otherwise, it was regarded as a failed extraction.
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The guidance images (dataset Dexperiment) collected in our experiments were also used
to test the image processing algorithm. The results are presented in Table 3. The maximum
distance between the camera and the lamps was 4 m in the experiments. The success rate
of guidance feature extraction without image preprocessing was 68.89% for Drecovery, and
was improved to 87.99% when image preprocessing was carried out. Thus, there was an
improvement of approximately 19%. At the same time, the rate of fake guidance lamps
extracted from the guidance image decreased to 0.39%. Therefore, image preprocessing
was indispensable for feature extraction.

Table 3. Results of guidance features for datasets Drecovery and Dexperiment.

Database
Without Image Preprocessing With Image Preprocessing

Successful
Extraction (%)

Fake Guidance Lamps Existing
in the Failed Extraction (%)

Successful
Extraction (%)

Fake Guidance Lamps Existing
in Failed Extraction (%)

Drecovery 68.89 8.58 87.99 0.39
Dexperiment 100 0 100 0

5.5.2. Comparison of Adaptive Threshold Image Binarization and Classical Binarization Methods

Next, four GFEBIB methods were compared with the method proposed in this study.
The four methods were fixed thresholding, Otsu thresholding, histogram-based adaptive
thresholding (HATS), and histogram-based statistical thresholding (HSTS).

Fixed thresholding uses a guidance feature extraction threshold. The value of points
higher than the threshold in the guidance image are assigned a value of 1, and all the other
points are assigned a value 0. The guidance features are extracted using morphological
processing. Through testing data set Drecovery, this method could obtain the highest success
rate of guidance feature extraction, when the threshold was 233.5.

The basic idea of Otsu thresholding is to use a threshold to divide the data in the
image into two categories. In one category, the intensity of the image pixels is less than
this threshold, and in the other category, the intensity of the image pixels is greater than
or equal to this threshold. If the variance of the intensity of the pixels in the two classes
is greater, the obtained threshold is the best threshold. Then, the guidance image can be
binarized to extract guidance features using the threshold.

The HATS is a guidance feature extraction method proposed in reference [25] aiming
at the docking problem between the AUV and the docking station. It takes the value of the
second largest peak for the guidance image histogram as the binarization threshold.

The HSTS is used to count the proportion of pixels in the histogram that are less than
the threshold th. When the pixel proportion reaches a, the corresponding threshold th is
selected as the binarization threshold of the guidance image. In this study, parameter a was
selected as 0.93. At this time, the guidance feature extraction of data set Drecovery achieved
the highest success rate.
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Figure 23 shows the guidance feature extraction results of the five methods for an
example guidance image. The comparison results are presented in Table 4. It can be seen
from the results that the guidance feature extraction success rate of the proposed method
was the highest among the five methods for Drecovery and Dexperiment. Therefore, it was more
conducive to the PPARD estimation and visual guidance of AUV docking.
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Figure 23. The guidance feature extraction results of five methods for an example guidance image:
(a) original image; (b) extracted guidance features from the method proposed in this study;
(c) extracted guidance features from fixed thresholding; (d) extracted guidance features from
Otsu thresholding; (e) extracted guidance features from HATS; and (f) extracted guidance features
from HSTS.

Table 4. Comparison of results for guidance feature extraction using five different methods.

Data Set Proposed Method Fixed Thresholding Otsu Thresholding HATS HSTS

Drecovery 87.99% 35.94% 2.29% 34.47% 34.78%
Dexperiment 100% 41.94% 4.12% 31.46% 32.21%

6. Conclusions and Discussion

Aiming at the docking problem between an AUV and a docking station, a new PPARD
estimation method based on visual guidance feature extraction was proposed in this paper.
The conclusions of this study are as follows:

(1) This study derived the imaging error function of the guidance features according
to the principle of camera imaging. The model for estimating PPARD was built by
optimizing the function to obtain a minimum value.

(2) The characteristics of the guidance images were analyzed. The guidance lamps
were found to be strong blue point light sources. Based on this characteristic, an
adaptive threshold binarization method for the guidance image was proposed in this
study. The guidance features were extracted by combining image binarization and
morphological processing.

(3) To improve the robustness of guidance feature extraction, this study proposed an
enhancement method for guidance images. It became more obvious that the guidance
lamps were strong point light sources with a certain pixel area in the enhanced
image. In addition, the texture features of the guidance image were analyzed and
used to segment the guidance target area. Image enhancement and segmentation
could improve the failure of guidance feature extraction caused by changes in the
photographing environment and pose/position of the camera.

(4) A PPARD estimation test platform was designed in this study. The experimental
results of the PPARD estimation showed that the estimation accuracy of the proposed
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method was better than that of the OI method. The absolute errors of the three rotation
angle estimations were less than 1◦; the position estimation errors along the x- and
y- axes were less than 80 mm; and the position estimation error along the z-axis was
less than 140 mm. In the comprehensive evaluation index, the rotation error was
less than 1.3◦ and the translation error was less than 8%. Furthermore, the feature
extraction method proposed in this study was compared to fixed thresholding, Otsu
thresholding, HATS, and HSTS using datasets Drecovery and Dexperiment. The results
showed that the guidance feature extraction method proposed in this study yielded a
better environmental adaptability and success rate.

The limitations and application extension need to be discussed.

(1) Limitations. This method requires that the brightness of the guidance lamps is similar.
Its great difference can easily cause the failure of guidance feature extraction. Thus,
the PPARD estimation cannot be realized. If one or two guidance lamps are too dark,
the pixel value of the corresponding imaging position in the obtained guidance image
is low. The adaptive threshold calculated using Equation (9) may be higher than
the maximum pixel value of the too dark guidance lamps, resulting in the loss of
guidance lamps in the binary image. If one or two guidance lamps are too bright, the
area between adjacent guidance lamps may be overexposed, and the guidance lamps
will be connected into one piece. It is impossible to extract all guidance lamps. All of
the above will lead to the invalidation of the PPARD estimation method.

(2) Application extension. This method is proposed to aim toward the problem of AUV
underwater docking guidance. It will be applied to the AUV docking operation in
the future. Its main function is to estimate the PPARD. This method can be applied
to other scenes that need to estimate the positions and poses of the AUV relative to
the target objects through further research and development. For example, in the
AUV cluster, AUVs can use this method to estimate the relative positions and poses
between AUV groups by carrying guidance lamps. In addition, for oil field pipeline
intervention operations, guidance lamps can be configured on the pipeline valve to
estimate the positions and poses of the AUV relative to the valve, and then control
the manipulator installed on the AUV to screw the valve.

In the future, the following studies are required.

(1) The prerequisite for the feature extraction of this method is that the four guidance
lamps in the image cannot become a large over-exposed dot, and there must be a
non-over-exposed region between the four guiding lamps. Camera parameters, the
size of the docking station, and the power of guidance lamps all affect the success
of feature extraction. The limited range of distance from the camera to the docking
station and whether the algorithm is working well need to be analyzed for the specific
docking application. In the future, this method will be used in the actual AUV
docking scenarios. During docking, multiple experimental analyses will be required
to determine the suitable distance for feature extraction and PPARD estimation.

(2) In the experiment results, the failure in the extraction of guidance lamps was mostly
owing to the fact that the guidance lamp extraction had not received all the guidance
lamps. Aiming at this type of extraction results, the PPARD estimation algorithm
needs to be studied to ensure that it can also be carried out when the guide lamps
are not extracted completely. In addition, there were pseudo guidance lamps in some
failure extraction results. The image classification-based identification of guidance
lamps and the proposal of pseudo guidance lamps need to be studied in the future.

(3) The vision-based PPARD estimation proposed in this study had a high accuracy. The
following work for the docking problem of the AUV and docking station involves
applying it to an AUV docking control. It can provide feedback information for
docking control and help the AUV to realize docking with a high precision and high
success rate. Furthermore, lake and ocean experiments for AUV docking will be
carried out to test the performance of PPARD estimation and AUV docking control.
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