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Abstract: The use of drones to inspect transmission lines is an important task for the energy mainte-
nance department to ensure the stability and safety of power transmission. However, the current
electric power inspection is inseparable from the participation of artificial vision. It is necessary to
establish an automatic visual recognition technology with high reliability, high flexibility, and low
embedded cost. This paper develops an improved YOLOv5S deep-learning-based transmission line
disaster prevention safety detection model, called Model E. Compared to the original network, we
use the Ghost convolution operation in the Model E network to improve the redundant computa-
tion caused by the conventional convolution operation. The BiFPN network structure is adopted
to enhance the feature extraction ability of the original PANet network for unsafe objects in the
transmission line image. This occurs in the process of Model E transmission line disaster prevention
safety detection model learning. Equalized Focal Loss (EFL) is used to improve the Model E sample
imbalance problem processing mechanism. The Model E proposed in this paper is 6.9%, 1.7%, 1.7%,
and 2.9% higher than the current lightweight mainstream algorithms YOLOv3-Tiny and YOLOv5S,
Model C (based on the original YOLOv5S network, the BiFPN structure in the Model E network
part is improved), and Model D network (in the Backbone layer, four conventional convolutions are
improved as Ghost convolution operations, and the rest of the structure is the same as the Model
E network) in mAP@.5 evaluation index. Meanwhile, the size of the model is only 79.5%, 97.7%,
84.9%, and 93.8% of the above algorithm model. The experimental results show that the Model
E transmission line disaster prevention and safety detection model proposed in this paper shows
stronger competitiveness and advancement, with high reliability, flexibility, and fast detection ability,
and can be applied to cost, reliability, and efficiency in order to have a higher standard of practical
engineering needs.

Keywords: aerial remote sensing; power transmission line; disaster prevention safety inspection;
embedded applications; lightweight convolutional neural network; YOLOv5S

1. Introduction

Electricity is an indispensable energy source in modern society. With the rapid de-
velopment of modern industry, electricity demand is constantly expanding. As the only
channel for long-distance transmission of electric energy, transmission lines play a very
important role in human life [1]. Uninterrupted power transmission for different regions
is a big challenge for the power maintenance department. There are often complex safety
hazards on the transmission line, such as bird nests and insulator damage. In addition, the
leakage of power transmission lines and fires also occur from time to time, leaving a huge
safety hazard for the transmission of power. Power failures often bring huge losses to the
economy and life [2]. For example, the power outage in Jordan in May 2021 caused traffic
chaos, and hospitals could only rely on generators to supply patients urgently [3]. In June
2021, a fire at a substation in Monacillos, Puerto Rico, left hundreds of thousands of people
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without electricity across the island [4]. According to an annual report by NERC and the
Iran Grid Management Company, about 70 percent of blackouts are due to equipment and
grid failures [5]. It can be seen that the safety maintenance of transmission lines is very
important, and inspection work plays an important role in preventing circuit disasters
from occurring [6]. However, the erection of power lines, especially UHV transmission
lines, is generally arranged on high mountains and hills and even in harsh environments
with high altitudes and high latitudes, which poses huge challenges for human inspection
or auxiliary equipment inspection that relies on human inspection [7]. At the same time,
inspections that rely on manpower often find it difficult to ensure the life safety of staff in
harsh climate environments [8]. In addition, there are many disadvantages such as low
efficiency, high cost of manpower and inspection equipment, and the influence of human
subjective factors that can easily lead to different detection standards.

In recent years, drone technology has developed rapidly, and it has shown irreplace-
able convenience, safety, and efficiency in disaster prevention and safety inspection of
transmission lines, especially in harsh environmental conditions [9–13]. The autonomous
intelligent line-following technology of the UAV can perform the line-flying flight of the
transmission line through a one-time setting and can optimize the battery to achieve a rela-
tively ideal working cruise state [14]. The fault detection performance of the hardware and
software carried by the UAV is the focus of realizing the disaster prevention and inspection
of transmission lines, the installation of hardware equipment and equipment such as radar
infrared, and sensors, which increase the cost of inspection equipment [15–17]. With the
rapid development of image processing technology, the inspection of transmission lines
based on computer vision technology has received extensive attention from an increasing
number of scientific researchers [18–20].

Transmission line disaster prevention and detection research based on image process-
ing technology can be divided into two categories: traditional image processing technology
and image processing technology based on deep learning. Based on the traditional image
processing technology, the feature selection of the faulty object to be inspected is com-
pleted manually [21] by relying on differences in color [22], shape [23], etc. For example, X
Wang et al. [24] completed the identification of transmission line insulators based on Gabor
and used support vector machines as classifiers. However, the detection method based
on traditional image processing technology cannot meet the generalization requirements
of fault detection in the complex background of the transmission line in the actual project
through the selection of simple features. With the rapid iterative development of GPU
hardware equipment, image processing technology based on deep learning theory has
begun to be widely researched and applied in the direction of disaster prevention and
inspection of transmission lines [17,25]. Algorithms in this field are generally divided
into two categories; one is a two-stage detection algorithm, such as Mask R-CNN [26],
Fast RCNN [27], and Faster RCNN [28], and other network algorithms; the algorithm first
generates candidate frames and then performs convolutional neural network extraction
and classification. For example, Zhenbing Zhao et al. [29] improved the R-CNN model to
realize the detection of insulators under occlusion with high accuracy (81.8%). Gaoqiang
Kang et al. [30] employed a Faster R-CNN network to locate key catenary components in
transmission lines. Two-stage networks such as R-CNN have large structures and poor
flexibility. Although they have high accuracy, they find it difficult to meet the low-cost and
high-efficiency detection requirements of actual transmission line disaster prevention and
detection projects. Another type of algorithm is the single-stage target detection algorithm,
such as the SSD algorithm [31] and YOLO series algorithm [32]. Its accuracy is slightly
lower than that of the two-stage target detection algorithm, but with the proposal of the
sample imbalance function [33], the performance of the single-stage target detection algo-
rithm is also rising and even surpasses the two-stage detection algorithm. This makes the
single-stage target detection algorithm greatly improved in speed and accuracy. Chuanyang
Liu et al. [34] performed a study based on YOLOv3 to realize the research on the detection
of transmission line insulators under different interference conditions of aerial images, with
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an accuracy of about 90%, but only realized the detection of insulators in transmission
lines without multi-target detection. Chen, BH et al. [35] performed the application of the
YOLOv3 algorithm to realize the detection and counting of distribution network poles
in UAV line patrol video. Although the YOLOv3 algorithm used has a smaller network
structure and faster speed than the two-stage target detection algorithm, it cannot meet the
need to be fast, efficient, and low cost when embedded in the mobile terminal carried by the
UAV. With the rapid update and iteration of YOLO series algorithms, YOLOv5 has shown
good robustness and practicability in the related fields of electric line disaster prevention
detection [36–38]. Zhiqiang Feng et al. [39] used YOLOv5 models with different network
depths to conduct a comparative study, and the results show that YOLOv5X with deeper
network depth has better detection performance. However, the more flexible YOLOv5S
has significant speed and cost advantages in the detection of actual UAV-mounted mo-
bile terminals. Qiang Li et al. [40] proposed to use YOLOv5S for damage detection and
localization of insulators. The analysis and comparison of experimental results show that
YOLOv5S is superior to YOLOv3 and YOLOv4 in terms of speed and accuracy, showing
good flexibility and robustness; however, this research only analyzes and compares the
defects of insulators, and does not conduct multi-target detection research on other faults of
transmission lines. Although the above-mentioned models have achieved relatively good
performance in some aspects, there is still a big gap in the actual direct application, and it is
difficult to meet the task requirements of real-time disaster prevention and safety detection
of transmission lines.

At present, there are still some difficulties and challenges in the disaster prevention
and safety detection of transmission lines. The accuracy and generalization of target
detection models in the disaster prevention and safety detection of transmission lines
need to be improved. It is difficult to find a dataset that can meet the establishment of a
transmission line disaster prevention safety detection model in the public dataset. At the
same time, the hardware equipment space and the load of the UAV are limited, and it is
difficult to carry heavy and high-configuration equipment. To solve the above problems,
this paper proposes the Model E transmission line disaster prevention and safety detection
model, according to the characteristics of the disaster prevention and safety detection of
transmission lines. YOLOv3-Tiny (Model A) and YOLOv5S (Model B) are established. The
modified Model C of the BiFPN structure in the Model E network is only performed on
the original Model B network; in the Backbone layer, four conventional convolutions are
improved as Ghost convolution operations, and the rest of the structure is the same as the
Model E network and Model D network. The four types of transmission line detection
models are evaluated and analyzed. The research work of this paper is mainly carried out
in the following aspects.

(1) Establish an experimental dataset for the disaster prevention and safety detection
of transmission lines, aiming to fill in the current data gaps in the field of disaster
prevention and safety detection of transmission lines.

(2) Improve the lightweight convolutional neural network structure, aiming to improve
the overall performance of the Model E model in the safety detection of transmission
line disaster prevention.

(3) Establish a reliable, flexible, low-cost embedded transmission line disaster prevention
safety detection model.

2. Methods

In the field of target detection of transmission lines, the two-stage target detection
algorithm is difficult to embed into low-cost mobile terminals due to its huge network
structure, and the detection speed is too slow to meet the real-time detection needs. Al-
though the single-stage target detection algorithm has fast detection ability, the accuracy
needs to be further strengthened. The Model B algorithm is essentially a lightweight
deep convolutional neural network, which is a product of the YOLO series of single-stage
target detection algorithms. This model has the characteristics of high precision and high
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speed [41]. We propose a Model E network model based on the Model B algorithm ac-
cording to the actual engineering situation of transmission line disaster prevention and
safety detection, aiming to establish a reliable and advanced transmission line disaster
prevention and safety detection model. The methods of Model E [42] model establishment
are introduced in detail in the following subsections, respectively.

2.1. Model E Network Frame

The YOLOv5 network is a new type of YOLO series of target detection networks
released in June 2020. The author divides the YOLOv5 network into four versions according
to the depth of the network. The most flexible one is the Model B network. Compared
with other target detection models, Model B has significant advantages such as fast speed,
strong robustness, high flexibility, and easy deployment. It has fewer parameters and
lower running costs [43]. At present, some teams have realized the deployment and
detection of Model B in ordinary Android mobile phones [44], which greatly stimulates our
interest in realizing low-cost real-time detection of end-to-end transmission line disaster
prevention and safety. However, Model B still has the shortcomings of low accuracy and
low generalization in the performance of transmission line disaster prevention and safety
detection. Based on the Model B network model, this paper proposes the Model E network
for the actual engineering requirements of transmission lines relying on UAV inspection.
Its network structure is shown in Figure 1, and each module is shown in Figure 2.
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Figure 2. Schematic diagram of each module structure in the Model E network structure. (a) Conv
module structure diagram; (b) Bottleneck module structure diagram; (c) C3 module structure diagram;
(d) Focus module structure diagram; (e) SPP module structure diagram (Concat_B is an improved
BiFPN module structure, Ghost-Conv is an improved Ghost convolution operation, and conv is a
conventional convolution operation. The specific improvement methods are described in detail in the
following two sections.).

The Anchors part in Figure 1 is the initial anchor frame, which is used to predict
the output of the frame and compare it with the real frame. By calculating the gap, it
iteratively calculates the update of the network parameters. The backbone is the back-
bone network part of the YOLO algorithm, and the input image mainly extracts feature
information through the backbone network part. The Head part of this paper mainly uses
the BiFPN network structure to further integrate the feature information of the backbone
network to achieve efficient information transmission. In the Detect part, the information
features previously processed by the network are used to predict the object to be mea-
sured. Conv2d is a convolution operation performed on a two-dimensional image through
methods such as convolution kernel convolution. Conv is a conventional convolution
operation, which can increase the nonlinear characteristics under the condition of constant
scale. The Bottleneck module is a dimension reduction calculation. After the convolution
operation of conv, the dimension is reduced to reduce the amount of calculation. Focus
is a slice operation designed for the YOLOv5 network, expanding the input channel. C3
learns residual features through four slices and connection layers. The SPP module, the
network structure of Rongguoguo as shown in Figure 2, reduces the problem of image
distortion, solves the problem of extracting repeated features in the image, and improves
computational efficiency.

The overall network improvements proposed in this work are as follows: We integrated
the GhostConv network structure in the Backbone part and the BiFPN network structure in
the Head part. At the same time, in the process of training, we improved the Focal Loss
to make efficient use of the training samples and adopted the FEL function to improve
the sample imbalance processing mechanism of the Model E transmission line disaster
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prevention and safety detection network model. Table 1 shows the specific structure and
process settings of the improved Model E network algorithm.

Table 1. Configuration table of Model E transmission line disaster prevention and safety detection
model (from = −1 represents the current module connected to the previous module, the number
represents the number of the current module, the module represents the type of the current module,
and Argus represents the parameters of the current module).

Backbone Head
From Number Module Args From Number Module Args

−1 1 Focus 64, 3 −1 1 GhostConv 512, 1, 1
−1 1 Conv 128, 3, 2 −1 1 Upsample None, 2, nearest
−1 3 C3 128 −1 6 Concat_B 256, 256
−1 1 Conv 256, 3, 2 −1 3 C3 512, False
−1 9 C3 256 −1 1 Conv 256, 1, 1
−1 1 Conv 512, 3, 2 −1 1 Upsample None, 2, nearest
−1 9 C3 512 −1 4 Concat_B 128, 128
−1 1 GhostConv 1024, 3, 2 −1 3 C3 256, False
−1 1 SPP 5, 9, 13 −1 1 Conv 512, 3, 2
−1 3 C3 1024, False −1 6, 13 Concat_B 256, 256

−1 3 C3 512, False
−1 1 GhostConv 1024, 3, 2
−1 9 Concat_B 512, 512
−1 3 C3 1024, False

2.2. Improve Model E Backbone Network Feature Extraction Efficiency

The demand for the deployment of deep convolutional neural networks in embedded
devices is gradually rising. In the disaster prevention and safety inspection of UAV transmis-
sion lines, the deployment of embedded devices is indispensable. Researchers have actively
conducted research and proposed a series of lightweight convolutional neural network
models. Examples include MobileNets [45], based on deep separable convolutional neural
networks, MobileNetV2 [28], based on inverted residual blocks, and ShuffleNetV2 [46],
network models that run at actual hardware speed. Although the above models reduce
FLOPs, they are not well exploited in the correlation and redundancy between feature
maps [47]. The Backbone part of Model B is composed of many convolution operations.
A large number of convolution operations consume a lot of computing space and slow
down the speed of computing. There is extensive redundancy of feature information in
the convolution operation of a convolutional neural network (CNN) [47]. To reduce the
redundant information calculation time of the transmission line disaster prevention safety
detection model, Model E, and improve the feature extraction efficiency of the backbone
network for transmission line disaster prevention safety detection, as shown in Figure 1,
we have integrated the Ghost module into the Backbone part, and the schematic diagram of
its network structure and the CNN convolutional network structure is shown in Figure 3.

The aerial image of the transmission line that we input in the conventional convolution
operation can be expressed as X ∈ c × h × w, where c, h, and w represent the channel
number, height, and width of the input aerial image, respectively, then the n feature maps
generated by the convolution operation are defined as shown in Formula (1):

Y = X� f + b (1)

The above formula � represents the convolution operation, b is the bias term, Y ∈ c’
xh’xw’ f ∈ c × k × k × n is the convolution filter of this layer, h’, w’ are the output height
and width dimensions after the convolution operation, respectively, k × k is the size of the
convolution filter f convolution kernel, and the FLOP required in this process is defined as
Formula (2).

NFLOP = n× h× w× c× k× k (2)
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In conventional convolution operations, the values of n and care are usually large,
and thus more FLOP resources are consumed. However, in fact, the output result of
the aerial image of the transmission line after the conventional convolution operation
contains many redundant feature maps, and there is a large similarity in the content of the
information, which wastes the calculation cost. Given this, we introduce the Ghost module,
and the convolution operation of the transmission line disaster prevention and safety
detection model through Ghost can generate a large amount of image feature information
by consuming a small amount of calculation. Φ as shown in Figure 3, Φ represents the
kernel convolution. Compared with the conventional convolution, the Ghost convolution
only needs to perform the convolution calculation on one channel, and the calculation cost
is greatly reduced. According to the ghost feature maps generated by the calculation of the
intrinsic feature maps, its definition is shown in Formula (3).

yij = φi,j(y′i)∀i = 1, 2 . . . , m, j = 1, 2, . . . , m (3)

In Equation (3) above, yi represents the i-th feature map in the aerial image intrinsic
feature maps of the transmission line, i represents the serial number of m intrinsic feature
maps of the aerial image of the transmission line, and j represents the aerial image feature
of the intrinsic feature maps. A linear transformation of the graph was performed j times.
Through the calculation of Formula (3), we perform an s-1 linear transformation on each
feature map containing the image information of the transmission line in the intrinsic
feature maps, thereby greatly reducing the amount of calculation of redundant information
generated by the convolution operation [47] to improve the efficiency of the Backbone
part of Model E for image feature extraction of transmission line disaster prevention and
safety detection. Among them, please refer to https://github.com/huawei-noah/ghostnet
(accessed on 23 May 2022)for the implementation of the Ghost source code [48].
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2.3. Improve the Feature Extraction Capability of the Head Network of Model E

Transmission lines often exist in remote areas such as high mountains and hills,
and such backgrounds have certain complexities, such as the serious similarity between
weeds and bird nests in transmission lines. In the work of this paper, we are aware
of this interesting problem; therefore, we introduce the BiFPN network for the feature
enhancement extraction of the Head layer network. The purpose is to improve the Model
E model to mine deep information in aerial images of transmission lines, reduce the
probability of missed detection and false detection of the detection model, and further
improve the reliability and practicability of the Model E network model in the safety
detection of transmission line disaster prevention. As shown in Figure 1, we use the BiFPN
convolution module in the head layer P5 part of Model E instead of the conventional
convolution operation in the original PANet network structure. The BiFPN network
structure was first proposed in 2019 by Mingxing Tan et al. [49]. The comparison between
its network structure and PANet network structure is shown in Figure 4.
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Table 2. Laboratory environmental conditions established by the Model E model.

Name CPU GPU System Framework Accelerator

Disposition
Intel(R)
Xeon(R)

Gold 5218

GeForce RTX
2080 Ti/11GB ubuntu18.04 pytorch1.7.0 CUDA10.2

cuDNN7

The introduction of the BiFPN network structure aims to improve Model E’s ability
to mine the deep-level information of the transmission line disaster prevention and safety
detection images. The BiFPN module and the PANet module are both feature information
processing modules, but different network processing methods have different results on the
feature processing of the transmission line. The feature extraction of PANet adopts the same
processing method for feature information of different importance, which weakens the
importance of deep-level semantic feature information to a certain extent and instead pays
more attention to information such as shallow-level information [50]. This is bad for the
distinction of complex backgrounds in transmission lines. As shown in Figure 4, the BiFPN
network structure cancels the nodes that are not fused at the two endpoints in the middle,
which reduces the amount of computation and speeds up the network. As mentioned
above, the importance of the information contained in different features is different. The
BiFPN network extracts more important information by using fast normalized fusion
weighted fusion, thereby improving the feature extraction capability of the Head layer,
which is defined as shown in Formula (4). This makes the model more focused on the
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effective information in the aerial image. In Formula (4), the learning weight wi adopts the
ReLU activation function and takes the value ε = 0.0001 to enhance the numerical stability.

O = ∑i
wi

E + ∑j wj
· Ii (4)

The deep convolutional network Model E, in the process of extracting feature informa-
tion of aerial images through continuous conventional convolution operations, loses the
feature information of the target of disaster prevention and safety detection of transmission
lines in the aerial images to a certain extent [51]. To comprehensively improve the informa-
tion mining ability of the Model E transmission line disaster prevention and safety detection
model for aerial images, and at the same time to avoid a large amount of information loss
of both ends of the nodes caused by repeated use of the cycle, it was decided that the
BiFPN network was to be improved in the Head layer network. The specific details of
the experiments will be introduced and analyzed in detail in the following sections. The
definition of the BiFPN network module in the P5 layer of the Model E network is shown
in Formula (5).

Ptd
5 = Conv

(
w1·Pin

5 +w2·Rwsize(Pin
6 )

w1+w2+E

)
Pout

5 = Conv
(

w′1·Pin
5 +w′2·Ptd

5 +w′3·Resize(Pout
4 )

w′1+w′2+w′3+E

) (5)

In the above formula, Ptd
5 represents the middle feature of the fifth layer from the

top to the bottom, Pout
5 represents the output feature of the fifth layer from the bottom

to the top, and wi is the same as Formula (4). The fifth layer improves the model E
network’s processing ability to extract feature information by interacting and merging
the target information of transmission line disaster prevention and safety detection with
different layers. This aims to enhance the robustness of Model E for disaster prevention
detection of transmission lines. For the implementation of BiFPN source code, see https:
//github.com/zylo117/Yet-Another-EfficientDet-Pytorch(accessed on 23 May 2022) [52].

As shown in Figure 5 below, it is a comparison chart of feature extraction between
the original image and the improved image, in which Figure 5a,c show the conventional
convolution extraction features and Ghost convolution extraction features, respectively.
By comparison, we can find that the features extracted by the Ghost convolution module
have more obvious feature information than the conventional convolution operation; in
particular, the contour information is significantly more obvious than the conventional
convolution operation; Figure 5b,d show the feature extraction effects of the Model B
network and the Model E network proposed in this paper on the detection images of
disaster prevention and safety targets in transmission lines. Through comparison, we
can find that the features processed by Ghost convolution and BiFPN network structure
proposed in this paper are very significant compared with Model B, and the information
contained is more abundant.

https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
https://github.com/zylo117/Yet-Another-EfficientDet-Pytorch
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2.4. Optimize the Sample Imbalance Handling Mechanism of Model E

The problem of sample imbalance restricts the development of single-stage networks.
Especially for the application of disaster prevention and safety detection of transmission
lines, there are a large number of negative background samples. In practical engineering,
the occurrence of sample imbalance is inevitable, and at present, not a lot of researchers
in this field have noticed the existence of this problem. The Model B network uses Focal
Loss to improve it during model learning. The main mechanism of Focal Loss is relatively
simple. By controlling the weight of positive and negative samples and controlling the
weight of easy and difficult samples, the sample imbalance is corrected. It is defined in
the following Formula (6), where pt ∈ [0, 1] represents the prediction confidence score of
a candidate frame target; αt is used as a parameter for balancing positive and negative
samples, and γ is a parameter variable that increases as the imbalance of positive and
negative samples increases.

FL(pt) = −α(1− pt)
γ log(pt) (6)

Through the analysis of the above formula, we find that Focal Loss uses the same
modulation factor to balance the problem of sample imbalance, which has a good effect
under the condition of class balance, However, the foreground categories are not balanced in
the detection of transmission lines, so the traditional Focal Loss algorithm cannot effectively
solve the long tail problem encountered in the detection of disaster prevention and safety
of transmission lines [53]. Therefore, in the learning and training process of the Model
E network, we use Equalized Focal Loss (EFL) [53] to improve the mechanism of Model
E to deal with sample imbalance, which is defined as Formula (7). Among them, the
Weighting Factor of the j-th bridge loss target is defined as (γb + γvj)/γb. Balancing the
loss work of different categories reduces the importance of the rare and difficult samples
in the learning of the transmission line disaster prevention safety detection model, and
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prevents the occurrence of individual scarce samples from affecting the dominant direction
of Model E model learning.

EFL(pt) = −
C

∑
j=i

αt

(
γb + γ

j
v

γb

)
(1− pt)

γb+γ
j
v log (pt) (7)

Among them, the source code implementation of Equalized Focal Loss is detailed at
https://github.com/ModelTC/EOD(accessed on 23 May 2022) [54].

3. Experiment

The hardware and software configurations of the experiments conducted in this paper
are shown in Table 2. We trained and tested the experimental models in the experimental
equipment with the following configurations. The experimental workflow of this paper
is shown in Figure 6. We mainly divided it into three parts: preliminary preparation,
intermediate experiment, post-analysis, and summary. In the following subsections of this
chapter, we will introduce and explain the details of the experimental implementation,
the establishment of the dataset, the establishment of the evaluation indicators, and the
experimental results in the work of this paper in a complete and detailed manner.
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3.1. The Establishment of Evaluation Indicators

To comprehensively evaluate the performance of the Model E lightweight convolu-
tional neural network model proposed in this paper in the field of disaster prevention
and safety detection of transmission lines, we mainly introduce ten evaluations from
three perspectives of detection efficiency, reliability, and advancement. The indicators
comprehensively evaluate the work of this paper. The following is the introduction and
definition of the evaluation index of the transmission line disaster prevention and safety
detection model.

https://github.com/ModelTC/EOD
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(1) The confusion matrix

A confusion matrix is the basic definition of many evaluation indicators in the field of
target detection, and it lays the foundation for the evaluation of transmission line disaster
prevention and safety detection models. It mainly includes four types of indicators: TN
(predict negative samples as negative samples), FN (predict positive samples as negative
samples), TP (predict positive samples as positive samples), and FP (predict negative
samples as positive samples).

(2) Precision, Recall, F1-score, and PR curve

Accuracy is the evaluation index of how many real sample targets of potential safety
hazards are predicted by the transmission line disaster prevention safety detection model
as real samples, that is, the proportion of the real required transmission line safety hazards
that target positive examples in the prediction results, which is defined as the following
Formula (8). Recall indicates how many bridge damages are correctly predicted in the
dataset, i.e., the proportion correctly predicted by the model in all positive examples. This
is used to evaluate the detection coverage of our experimental model for bridge damage
targets in the sample, which is defined as Formula (9). In fact, in the actual experiment, the
two indicators Precision and Recall are a pair of contradictory measures. When Precision
is high, Recall is low, and vice versa. To more accurately measure the precision and recall
balance performance of different models in the experiment in the detection of transmission
line disaster prevention and safety targets, the F1 score is introduced in this paper to
rebalance the contributions of the two and intuitively express it in a quantitative form. It
is defined as Formula (10). The PR curve is drawn with P as the ordinate and R as the
abscissa, which can intuitively find the advantages and disadvantages of different models
in transmission line detection through the image.

Precision(P) =
TP

TP + FP
(8)

Recall(R) =
TP

TP + FN
(9)

F1 score(F1) = 2×P× R
P + R

(10)

(3) mAP@.5 (mean Average Precision IoU = 0.5), mAP@.5:.95

Accuracy is an important evaluation index to evaluate the different experimental mod-
els in this paper in the disaster prevention and safety detection of transmission lines. It is
defined as the following Formula (12). It represents the proportion of positive samples and
negative samples accurately predicted by the model in the transmission line safety hidden
danger data. The work of this paper is not only to classify the targets of hidden dangers
of transmission lines but also to mark the location information of the targets. Intersection
over Union (IoU) also participates in the performance of the model. To comprehensively
evaluate the overall performance of the model in the transmission line disaster prevention
safety detection, the Accuracy is calculated under the condition of IoU = 0.5 (the correla-
tion between the prediction frame and the rear frame is 50%), and the average mAP over
different IoU thresholds (from 0.5 to 0.95, step size 0.05) is defined as Formula (13), IoU = x.

Pinterp(r) = max
∼
r

p
∼
(r) (11)

AP =
1
11 ∑

γ∈{0,0.,0.2,...,1}
pinterp(r) (12)

mAP =

3
∑

i=1
APi

3
(IoU = x) (13)
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(4) Giga Floating Point Operations Per Second (GFLOPs), Frames Per Second (FPS),
and Parameters

In practical engineering, the cost of carrying energy by drones, the cost of embedded
hardware devices, considering the available space, etc., have extremely high requirements
for the small size and rapid detection of the transmission line disaster prevention safety
model. Therefore, we introduce FLOPs and FPS to evaluate the structural complexity and
detection speed of the model, aiming to evaluate the practicability of the model in the
detection of disaster prevention and safety of transmission lines.

GFLOPs are used to calculate the floating-point arithmetic of the transmission line
disaster prevention and safety detection model to measure the complexity of the model.
The larger the value, the higher the complexity of the model. The higher the model
complexity, the greater the loss in speed and flexibility. FPS represents the detection rate
of the transmission line disaster prevention and safety detection model and expresses the
number of frames per second transmitted by the screen. For example, the perceived speed
of the human eye to video is generally 10-12 FPS [55]. Parameters are the parameters of a
model, generally expressed as the size of the model. Generally speaking, the smaller the
model, the more flexible it is. The hardware configuration required to run the algorithm
can be lower, so the model with high flexibility can meet the needs of easy deployment,
low cost, and high speed in practical engineering.

3.2. The Establishment of the Dataset

Deep learning models are data-driven, and the quality of data plays a crucial role in
model building. However, most of the currently published datasets are single-type data
about insulator faults in transmission lines, which have difficulty in meeting the generaliza-
tion training requirements for multi-target detection in practical projects. To this end, we
aim at the multi-objective and complex background requirements for model generalization
in transmission line disaster prevention safety detection. The dataset required in this paper
is established by taking bird’s nest, flame, arc (leakage phenomenon), and insulator defects,
that is, there are similarities (such as flame and arc) and there are differences (such as insu-
lator and bird’s nest) in feature categories as samples, and the transmission line disaster
prevention safety dataset-2022 (TLDPSD-2022) is named. The purpose is to fully train and
test the performance of different deep learning models in transmission line disaster preven-
tion and safety detection, and further establish the applicability of the model establishment.
This experimental dataset TLDPSD-2022 mainly uses web crawlers to crawl related images
and open the insulator dataset, InsulatorDataSet-master [56,57]. After careful selection,
labeling is used to mark it. The search for datasets is very time-consuming. To further
improve the efficiency of data utilization, one must increase the amount of data to train the
transmission line disaster prevention and safety model, and improve the generalization
ability and robustness of the model. At the same time, to make the data more suitable for
the input of the Model E model and make it more suitable for the size requirements of the
algorithm training, we standardized the TLDPSD-2022 dataset, and scaled and filled all
the dimensions to 640 × 640 pixels. A total of 1158 pieces of data are formed, and they are
independently divided into the training set, validation set, and test set according to the
ratio of 8:1:1. The details of the TLDPSD-2022 dataset are shown in Table 3, and its data
enhancement processing data display and part of the dataset are shown in Figure 7.

Table 3. Configuration table of learning parameters of the experimental model in this paper.

Name Epoch Learning Style lr0 lrf

Disposition 1000 Cosine
annealing 0.001 0.2
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3.3. Implementation Details

The learning ability of each deep network learning model in this experiment deter-
mines its performance in disaster prevention and safety detection of transmission lines.
We use the same environmental conditions for the training, validation, and test sets of the
TLDPSD-2022 dataset. Model E is trained and compared with the representative Model A,
Model B, Model C, and Model D methods in the lightweight target detection network. The
training parameters are configured as shown in Table 3.

The learning process of a single model takes about 4 h, and the loss function during
the learning process expresses the learning ability of different transmission line disaster
prevention and safety detection models, as shown in Figure 8. During the training process,
with the continuous reduction of the loss value, the adequacy of the model learning is
continuously improved, until the loss function convergence model reaches the upper limit
of the transmission line disaster prevention and safety detection capability provided by the
dataset. In Figure 8, Train Box Loss, Train Object Loss, and Train Class Loss represent the
prediction box position, target, and confidence learning loss function of the experimental
model in the training set learning; Val Box Loss, Val Object Loss, and Val Class Loss
represent the prediction box position, target, and confidence of the validation loss function
of the experimental model when it is validated on the validation set, respectively. Through
the comparison and analysis of the loss functions of different models in Figure 8, we found
that after 1000 Epochs of iterative learning, the five types of transmission line disaster
prevention and safety detection models in this experiment have all been fully learned. By
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comparing the learning ability of the five types of models in Figure 8a, Train Box Loss,
and Figure 8d, Val Box Loss, it can be found that the Model E proposed in this paper has
more sufficient Box learning ability in the TLDPSD-2022 training set and validation set; by
comparing the learning ability of the five types of models in Figure 8b, Train Object Loss,
and Figure 8e, Val Object Loss, it can be found that the Model E proposed in this paper
has a better ability to learn Objects in the TLDPSD-2022 training set and verification set;
however, after 1000 Epoch iteration, the five types of models all have a certain overfitting
phenomenon; in the performance of Class learning ability, the learning performance of
the five types of models is consistent and sufficient, but in terms of training speed, Model
B and Model E proposed in this paper achieve convergence faster. In general, from the
analysis of Figure 8, the Model A model has poor learning ability and has a significant gap
with other models. The Model E transmission line disaster prevention and safety detection
model proposed in this paper shows excellent learning ability.

Machines 2022, 10, x FOR PEER REVIEW 15 of 22 
 

 

prevention and safety detection models, as shown in Figure 8. During the training process, 
with the continuous reduction of the loss value, the adequacy of the model learning is 
continuously improved, until the loss function convergence model reaches the upper limit 
of the transmission line disaster prevention and safety detection capability provided by 
the dataset. In Figure 8, Train Box Loss, Train Object Loss, and Train Class Loss represent 
the prediction box position, target, and confidence learning loss function of the experi-
mental model in the training set learning; Val Box Loss, Val Object Loss, and Val Class 
Loss represent the prediction box position, target, and confidence of the validation loss 
function of the experimental model when it is validated on the validation set, respectively. 
Through the comparison and analysis of the loss functions of different models in Figure 
8, we found that after 1000 Epochs of iterative learning, the five types of transmission line 
disaster prevention and safety detection models in this experiment have all been fully 
learned. By comparing the learning ability of the five types of models in Figure 8a, Train 
Box Loss, and Figure 8d, Val Box Loss, it can be found that the Model E proposed in this 
paper has more sufficient Box learning ability in the TLDPSD-2022 training set and vali-
dation set; by comparing the learning ability of the five types of models in Figure 8b, Train 
Object Loss, and Figure 8e, Val Object Loss, it can be found that the Model E proposed in 
this paper has a better ability to learn Objects in the TLDPSD-2022 training set and verifi-
cation set; however, after 1000 Epoch iteration, the five types of models all have a certain 
overfitting phenomenon; in the performance of Class learning ability, the learning perfor-
mance of the five types of models is consistent and sufficient, but in terms of training 
speed, Model B and Model E proposed in this paper achieve convergence faster. In gen-
eral, from the analysis of Figure 8, the Model A model has poor learning ability and has a 
significant gap with other models. The Model E transmission line disaster prevention and 
safety detection model proposed in this paper shows excellent learning ability. 

 
Figure 8. The learned loss functions of different models in the TLDPSD-2022 training set. (a) Train 
Box loss; (b) Train Object loss; (c) Train Class loss; (d) Val Box Loss; (e) Val Object Loss;(f) Val Class 
Loss. 

3.4. Results and Discussions 

Figure 8. The learned loss functions of different models in the TLDPSD-2022 training set. (a) Train
Box loss; (b) Train Object loss; (c) Train Class loss; (d) Val Box Loss; (e) Val Object Loss; (f) Val
Class Loss.

3.4. Results and Discussions

To prove the performance of the proposed method in transmission line disaster preven-
tion and safety detection, we compare the following transmission line disaster prevention
and safety detection side algorithms under the same laboratory environment and parameter
settings. The models are the representative Model A, Model B network, Model C, and
Model D network in the lightweight deep learning network. Model E is proposed in this
paper; its network structure has been introduced in detail in the above chapters. The size
of the input image to be detected in the test experiment is 640 × 640, and the batch size
is 32. According to the performance results of the five types of transmission line disaster
prevention safety detection models in the TLDPSD-2022 test set, we draw the PR curves and
the confusion matrix of the five types of models, as shown in Figure 9. To comprehensively
evaluate the advanced nature of the work proposed in this paper in disaster prevention and
safety in transmission lines, we have conducted a detailed evaluation of various indicators.
The detailed evaluation results are shown in Table 4.
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Table 4. Evaluation results of different transmission line disaster prevention and safety detection
models in the test set in the experiments of this paper.

Evaluate Metrics Model A Model B Model C Model D Model E

mAP@.5 0.904 0.956 0.956 0.944 0.973
mAP@.5:.95 0.544 0.701 0.701 0.666 0.719

Presion 0.864 0.984 0.984 0.982 0.961
Recall 0.877 0.95 0.943 0.938 0.971

F1-score 0.871 0.967 0.963 0.959 0.966
FPS 179 133 185 185 172

GFLOPs 12.9 16.4 17.7 15.9 16.7
Parameters 8,673,622 7,062,001 8,128,256 7,357,157 6,899,333

Through the PR curve analysis of the five types of transmission line disaster prevention
and safety detection models in the TLDPSD-2022 test set in Figure 9, we can intuitively
find that the PR curve of the Model E transmission line disaster prevention and safety
detection model proposed in this paper wraps other models, and at the same time, using
the balance point F1 to judge the performance of Model E is still outstanding. Therefore, it
can be concluded that the Model E deep network learning model proposed in this paper
has advanced features in the disaster prevention and safety detection of transmission
lines. Through the confusion matrix analysis of different algorithms in the TLDPSD-2022
test set of the five types of transmission line disaster prevention and safety detection
models in Figure 8, it is found that the accuracy rate of the YOLOv3-Tiny algorithm for
detection of Flam and insulator defects in the disaster prevention and safety detection
of transmission lines is much lower than other models, the performance is poor, and
the overall performance gap of other models is small. However, through the analysis
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of the confusion matrix, we can intuitively see that the above five types of transmission
line disaster prevention and safety detection networks are strongly interfered with by
background environmental factors in both Nest and Flame categories. For single-stage
target detection algorithms, their generalization performance needs further enhancement.

To be able to comprehensively evaluate the reliability, applicability, and advancement
of the Model E network proposed in this paper in practical engineering, we evaluate
mAP@.5, mAP@.95, Precision, Recall, F1-score, FPS, GFLOPs, as well as the Parameters
index; a comprehensive and detailed evaluation was carried out from the perspective
of meeting the actual engineering needs. In mAP@.5 evaluation indicators, the Model
E model proposed in this paper leads the Model A, Model B, Model C, and Model D
models by 6.9%, 1.7%, 1.7%, and 2.9%, respectively. In the mAP@.5:.95 evaluation index,
the Model E model proposed in this paper leads the Model A, Model B, Model C, and
Model D models by 17.5%, 1.8%, 1.8%, and 5.3%, respectively. In the Presion evaluation
index, the Model E model proposed in this paper is ahead of the Model A, Model B, Model
C, and Model D models by 9.7%, −2.3%, −2.3%, and −2.1%. In the Recall evaluation
index, the Model E model proposed in this paper is ahead of the Model A, Model B,
Model C, and Model D models by 9.4%, 2.1%, 2.3%, and 3.3%, respectively. In the F1-score
evaluation index, the Model E model proposed in this paper is ahead of the Model A,
Model B, Model C, and Model D models by 9.5%, −0.1%, 0.3%, and 0.7%, respectively.
Model B, which is relatively improved in terms of speed, is 39 frames per second faster,
although slightly slower than other networks, but it can fully meet the needs of practical
projects in terms of speed. In terms of the complexity of the model, we experimented on
the same hardware equipment. The computing power of the Model E network proposed
in this paper is only slightly inferior to that of Model C, and it is superior to or even
significantly superior to other networks. In terms of Parameters, the Model E network
proposed in this paper is significantly better than other networks, and its parameter sizes
are 79.5%, 97.7%, 84.9%, and 93.8% of the Model A, Model B, Model C, and Model D
networks. After a comprehensive assessment of the above evaluation indicators, The Model
E model proposed in this paper has excellent reliability and advancement in the safety
detection of power transmission line disaster prevention and has the flexibility of a UAV
practical engineering application in terms of the parameter size and processing capacity of
the model.

Through further analysis of the above results, the performance of the algorithm based
on the Model B network in the transmission line disaster prevention and safety detection
model is generally higher than that of the lightweight deep learning network algorithm
Model A. By comparing the Model B network and the Model C network, we can find that
the reliability of the BiFPN network in the TLDPSD-2022 dataset is more consistent, but the
computing power and speed have been significantly enhanced. Due to the introduction of
the BiFPN network structure in this paper, the network structure of Model E is effectively
simplified by cutting out the feature transmission nodes of the redundant transmission line
image, and the efficiency of the transmission line disaster prevention and safety detection
model is improved; however, the number of model parameters increases to a certain extent
through the addition of multiple fusion channels; when we improve all the conventional
convolution operations in the Head part of the Model B network to Ghost convolution
operations, we can find that the reliability performance of the Model D network in the
transmission line disaster prevention and safety detection is significantly reduced, but
the model size is significantly reduced. This is mainly because, in the Ghost module,
redundant feature maps are generated by using a linear transformation method with a
small amount of computation, and the convolution operations used are greatly reduced.
However, the results show that although the Ghost convolution operation can effectively
reduce the size of the model, many overly cheap calculations weaken the image feature
information in the transmission line to a certain extent, resulting in the reduction of the
robustness of the model [58]. Model E proposed in this paper uses an appropriate amount
of Ghost modules to perform convolution operations to extract the feature information of
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disaster prevention and safety targets in transmission lines. In addition, one must adopt the
BiFPN network structure, by cutting low-efficiency nodes and adding efficient information
transmission channels, to integrate the characteristic information of disaster prevention
and safety goals in transmission lines. The experimental results show that the Model E
network model proposed in this paper can meet the practical engineering needs that have
higher requirements on speed, cost, and reliability.

Because the erection environment of transmission lines is generally located in dense
areas far away from human habitation, such as mountains and hills, it is difficult and
complex to control the background environment. To a certain extent, this increases the diffi-
culty of transmission line disaster prevention safety detection. To further comprehensively
evaluate the applicability of the work proposed in this paper in transmission line disaster
prevention safety detection, we have performed visual detection tests on illumination
enhancement, small targets, unconventional inspection perspectives, and similar targets,
and the results are shown in Figure 10. In Figure 10a, the actual target is a flame, but the
five types of transmission line disaster prevention safety detection models are all identified
as arcs. Although the visual images of the two are similar, the experimental results show,
however, that the quality of the dataset in this experiment needs to be further improved to
improve the generalization ability of the model, and it also reveals that the lightweight deep
network learning model in the current experiment needs to be further strengthened in the
extraction of feature information; in Figure 10b, we have selected the conditions where the
target information is similar to the background information for evaluation and comparison.
Model C has a false detection situation, and the detection ability of the other models is
better; in Figure 10c, we select the target under the condition of enhanced illumination
for detection. We can find that the Model A algorithm has poor robustness under this
condition, is greatly interfered with by the illumination factor, and cannot effectively detect
the target information. The Model E proposed in this paper has the highest confidence in
detecting target information and is the least affected by light. Under this condition, it has
strong robustness and has significant advantages in the daily inspection of transmission
line disasters frequently occurring in summer in actual projects. In Figure 10d, we detect
small objects, and by comparing the confidence, we find that Model A has poor robust-
ness. However, the Model E transmission line disaster prevention safety detection model
proposed in this paper has the highest confidence and shows excellent disaster prevention
safety detection performance.

Through the comparison of the above evaluation results, we believe that the Model
E network proposed in this paper can significantly improve the detection speed of the
model and enhance the feature extraction to mine deeper feature information through the
improvement of the BiFPN network structure to reduce the occurrence of false detections.
By using the Ghost convolution operation, the parameter quantity of the model is further
reduced, and the flexibility of the model is improved. Through EFL, the Model E network
model is improved to deal with the problem of sample imbalance during training, so that
the training of the model is more adequate, and the purpose is to improve the robustness
of the Model E model in the safety detection of transmission line disaster prevention.
To sum up, the Model E transmission line disaster prevention safety detection model
proposed in this paper can meet the needs of the actual project of transmission line safety
inspection that has high requirements for the complex operating environment, inspection
cost, and reliability.
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4. Conclusions

In this paper, an advanced lightweight deep network learning model, Model E, is
proposed, which is used in the safety and inspection of transmission lines with embedded
equipment on UAVs. In the work of this paper, firstly, we collect images of unsafe objects
in transmission lines through public dataset extraction and web crawling. The initial
dataset is formed by manual and meticulous annotation, and then the data are enhanced
using illumination enhancement, position transformation, etc., to establish the TLDPSD-
2022 transmission line disaster prevention and safety detection dataset required for the
experiment in this paper. Given the complex background of the transmission line and the
needs of the embedded model for UAV inspection, we use Ghost convolution operation to
improve the feature extraction method of the conventional lightweight target detection deep
network learning model and reduce the size of the model. The BiFPN network structure
is used to strengthen the ability of the Model E transmission line disaster prevention
safety detection model to extract the feature information of unsafe targets. In the training
phase of the model, this paper adopts the EFL strategy to deal with the sample imbalance
function. This was used to comprehensively evaluate the performance of the Model E
model proposed in this paper in the disaster prevention and safety detection of transmission
lines. We conducted a comprehensive and detailed evaluation and comparative analysis of
the representative Model A network model in the field of lightweight detection, as well as
Model B and Model-B-based improved models. The experimental results show that the
Model E transmission line disaster prevention and safety detection model proposed in this
paper shows excellent results in mAP@.5, and mAP@.5:95, Precision, Recall, F1-score, FPS,
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GFLOPs, and Parameters index. Meanwhile, the work presented in this paper reduces
the size of the model, The parameter sizes are 79.5%, 97.7%, 84.9%, and 93.8% of those of
Model A, Model B, Model C, and Model D networks, which meet the practical engineering
requirements of the strongest reliability and the highest flexibility. Therefore, the Model E
transmission line disaster prevention and safety detection model proposed in this paper
is advanced and practical in the inspection work of transmission lines and can meet the
needs of projects with higher cost and reliability requirements.

The Model E transmission line disaster prevention safety detection model proposed in
this paper is more suitable for the detection of unsafe factors under the complex conditions
of the actual transmission line inspection work and has good practicability and reliability.
Compared with other target detection models, Model E can be more flexibly deployed in
lower-cost embedded devices, and Model E has shown excellent performance in the test of
transmission line disaster prevention safety detection.
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