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Abstract: With a strong legal basis and regulatory authority, cost-effective transient emission sensors
that reflect real-driving emissions are key factors for accomplishing environmental requirements.
It is difficult for the existing NOx emission monitoring techniques to achieve a balance between
accuracy and timeliness. Fundamentally, in-cylinder combustion is the thermodynamic cause of
NOx emissions and the main excitation source for engine vibration and noise emissions. A novel
vibration-based virtual NOx sensor is developed based on these critical relationships for real-time NOx

monitoring. First, the correlation between vibration and NOx emission was characterized in-depth.
Then, a technique of constructing two-dimensional filters for vibration signals is proposed to extract
combustion-related information. A principal component regression (PCR) model for NOx prediction
was established based on the reconstructed in-cylinder pressure. Finally, the virtual NOx sensor is
tested and validated on a single-cylinder diesel engine bench. The virtual NOx sensor is proven to
meet the accuracy requirement of vehicle emission monitoring for both steady-state and transient
conditions and has a better frequency response compared to the emission measurement system.

Keywords: PCR; vibration analysis; NOx emission; real-driving emissions; virtual sensor

1. Introduction

Nitrogen oxide (NOx) is one of the main emissions from combustion ignition (CI)
engines which causes ambient air pollution, resulting in large numbers of premature deaths,
especially in urban areas where traffic congestion is increasing. NO2 also contributes to
global warming, and in some cases can cause acid rain. Tight emission regulations have
been put forward to monitor real driving emissions, increasing interest in cost-effective
transient emission sensors. The high cost of the physical sensors and the need to improve
response speed limit its applications in NOx emission monitoring and transient control.
It has great significance to develop a low-cost, portable, and reliable on-board real-time
emission monitoring method. Virtual sensing technology is regarded as one of the most
feasible alternatives.

Virtual sensors can be categorized into physics-based, black-box, and grey-box mod-
els [1]. The physics-based virtual sensor is constructed based on the operating mechanism
of behavior to be measured, accurately describing the essential correspondence between
input and output physical quantities. However, the construction of physics-based virtual
sensors heavily relies on abundant measured inputs, leading to a large demand for comput-
ing resources and high cost of information collection. Black-box virtual sensors are typically
created through a data-driven fitting process and strive to describe the correspondence
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between input and output quantities with fewer parameters. It provides high computa-
tional efficiency but relies on high calibration effort. The grey-box method is the preferred
solution in practice because of its balance of efficiency and accuracy. The feature extraction
based on the physical model enables the grey-box virtual sensor to handle the prediction
of transient conditions better. The simplified mathematical model enables the grey-box
method to be applied more efficiently and cost-effectively.

Previous works have developed several virtual NOx sensors for diesel engines and
achieved many beneficial results. Most existing virtual NOx sensors are developed based
on characteristic parameters extracted from measured in-cylinder pressure signals. This is
because the generation of NOx is mainly related to in-cylinder combustion behaviors, and
one of the most important characteristic parameters of the combustion state in-cylinder
pressure. In 2011, C. Guardiola et al. [2] proposed a NOx model and developed NOx
predictive emission control in diesel engines. Only in-cylinder pressure and several mean
variables available in the ECU were selected as the predictive model’s input signal. Experi-
ments show that the proposed predictive model possesses high computational efficiency
that only takes less than one cycle to complete the NOx prediction, making it suitable
for real-time application. In 2014, Simone Formentin et al. [3] proposed an engine speed
and indicated a pressure measurement NOx estimation method. The principal component
analysis (PCA) is performed to construct predictive variables based on in-cylinder pressure
and L2 regularization techniques to derive the NOx estimator. Based on the NOx formation
model proposed by Seykens et al. [4], Paul Mentink et al. [5] developed a virtual NOx
sensor with in-cylinder pressure as the primary input. Their verification test demonstrated
the potential of a virtual NOx sensor for real-time engine control and transient emission im-
provement. They also validated their virtual NOx sensor on a EURO-VI heavy-duty diesel
engine [1], which indicates that the virtual NOx sensor meets the accuracy of a commercial
NOx sensor for steady-state conditions. Christian Benatzky et al. [6] established a virtual
NOx sensor based on static polynomial black-box modeling for heavy-duty off-road diesel
engines. It is shown that black-box virtual sensors achieved high-accuracy NOx prediction
with fewer regressors. In 2014, Sumit Roy et al. [7] developed an artificial neural network
(ANN)-based virtual sensor for emissions monitoring of a diesel–CNG dual-fuel engine.
Similarly, Dipankar Kakati et al. [8] developed an ANN-based black-box virtual sensor to
predict NOx emissions of a diesel–methanol dual-fuel engine, which further confirmed the
feasibility of applying a pressure-based virtual sensor to achieve real-time engine emissions
control. However, an in-cylinder pressure sensor is more expensive than the production
NOx sensor, making the pressure-based virtual NOx sensor impractical for popularization
and application. It is necessary to explore more cost-effective virtual sensors for NOx
emission monitoring.

The main thermodynamic cause of NOx emissions and one of the main excitation
sources for engine vibration is in-cylinder combustion. The structural vibration of engines
contains abundant response characteristics related to in-cylinder combustion behaviors.
The study on structural vibration and in-cylinder combustion laid a solid foundation
for emission monitoring based on vibration signal analysis. Tang et al. [9] proposed a
finite element model showing that the changes in combustion pressure can replicate by
the deformation of cylinder head. Cheng et al. [10] confirmed the similarity between the
cylinder head vibration velocity and increasing in-cylinder pressure rate. Zhao et al. [11]
and Chiatti et al. [12] identified key features of the in-cylinder combustion process based on
measured vibration signals. Polnowski et al. [13] and Ornella et al. [14] further investigated
the correspondence between structural acceleration and in-cylinder pressure of heavy-duty
diesel engines. El-Ghamrya et al. [15] remodeled the in-cylinder pressure of a diesel engine
based on measured acoustic emission using complex spectrum analysis.

However, the credibility and accuracy of remodeled in-cylinder pressure curves
based on vibration signals are always unsatisfactory due to the interference of mechanical
events and strong background noise, thus limiting its further research and application.
Cali et al. [16] extracted similarity information from different digital images by introduc-
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ing the structural similarity index measure (SSIM) method. A two-dimensional matrix
describing the global similarity of two images was obtained, which inspired the develop-
ment of a similarity analysis technique for different signals in the time-frequency domain.
Yang et al. [17] evaluated cylinder vibration and in-cylinder pressure similarity based on the
SSIM method and explored the reconstruction of in-cylinder pressure based on measured
vibration signals.

This work aims to propose a technique for predicting NOx emissions based on mea-
sured structural vibration. First, the correlation between vibration and NOx emission was
analyzed. Then, a technique of designing two-dimensional filters for vibration signals was
proposed to extract combustion-related information. A PCR model for NOx prediction,
i.e., a virtual NOx sensor, was established based on the reconstructed in-cylinder pressure.
Finally, the predictive performance of the proposed virtual NOx sensor was evaluated
through both steady-state and quasi-transient tests.

2. Characterizing the Correlation between Vibration and NOx Emission

In-cylinder combustion is the primary cause of engine vibration and NOx emissions.
An in-depth understanding of combustion’s role in structural vibration and NOx generation
is critical for modeling the complex correspondence between structural vibrations and
NOx emissions.

2.1. The Correlation between Combustion and NOx Emission

NOx is a collective term for nitrogen monoxide (NO) and nitrogen dioxide (NO2). The
proportion of NO2 in NOx emissions after combustion in the exhaust is much lower than
that of NO, accounting for only 10–15%. Therefore, the research on the correlation between
combustion and NOx emissions should be focused on NO formation.

There are five ways for NOx producing: Zeldovich (thermal NOX), Fenimore (prompt
NOx), N2O (nitrous oxide), Fuel-bound (fuel-bound nitrogen), and the Diazanul (NNH).
The principal reactions of NO formation from molecular nitrogen and oxygen in the period
of combustion are often showed by the Zeldovich method, which consists of three chemical
reactions and seven components for NO production [18], as shown in Figure 1. On the
one hand, the Zeldovich mechanism supposes that NOx production occurs when the
combustion chamber temperature is highest [2,19,20]. The adiabatic flame temperature
(Tad) is the most appropriate variable to characterize the NOx formation. In contrast, it
considers that fuel combusts at the fuel/air stoichiometric equivalence ratio (ϕ = 1) and
the temperature is near-adiabatic. Therefore, it is concluded that the formation of NOx is
closely dependent on the instantaneous evolution of adiabatic flame temperature and heat
release rate.

Figure 1. The relationship between vibration, combustion, and NOx emissions.

The vital characteristic constraint for indicating the performance of in-cylinder com-
bustion in diesel engines is in-cylinder pressure. In practice, adiabatic flame temperature
and heat release rate are usually measured based on characteristic parameters from the
in-cylinder pressure evolution. It has been confirmed that there is a solid theoretical basis
for indirect assessment of NOx emission based on measured in-cylinder pressure. Several
pressure-based virtual NOx sensors have been developed and have achieved promising
results [1,5–8,21].
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2.2. The Correlation between Combustion and Vibration

Combustion shocks are the main causes of engine vibration and noise emissions. The
structural vibration of IC engines contains abundant response characteristics related to
combustion shocks. Many previous studies on identifying and reconstructing in-cylinder
pressure information from vibration signals have been carried out. Many researchers cate-
gorize and locate combustion events on the time-domain vibration curve without extracting
frequency information and resonance responses. Li et al. [22] found that the resonance
response to combustion shock can effectively reflect the excitation event’s frequency com-
ponents and energy distribution. It is necessary to investigate the correlation between
structural vibration and in-cylinder combustion to explore a suitable method for extracting
combustion-related information from vibration signals.

There are two main pathways for combustion shock to cause vibration responses,
as shown in Figure 1. The first is the direct impact of combustion gas on the chamber
walls, and the other is the gas-driven piston knocks on the cylinder liners. Inertial force,
kinetic characteristics of crank-link mechanism and oil damping characteristics are also
factors to product piston knocking in cylinder combustion [22]. The connection between
the piston knock-induced vibration response and in-cylinder combustion behavior is weak
and indirect, therefore only the vibration response to the combustion shock is selected as
the data source for combustion information extraction.

The in-cylinder pressure signal mainly contains two frequency components: the low-
frequency components associated with speed frequency and high-frequency components
associated with combustion oscillations. The pressure rise rate (PRR) operating at a speed
of 1800 r/min and load of 40 Nm clearly shows results by short-time Fourier transform
(STFT), and that the combustion shock contains abundant frequency components at a
wide frequency range, as shown in Figure 2a. The (PRR) and measured pressure signals
are drawn below by the STFT in Figure 2b. Short-time Fourier transform (STFT) results
in Figure 2a show a series of oscillations at a frequency range of 4000–8000 Hz during
premixed combustion phase around 370◦, marked as Impact Co. Unstable gas turbulence
in the combustion chamber and lack of homogeneity cause these vibration oscillations [23].

Figure 2. STFT of measured in-cylinder pressure. (a) STFT of measured in-cylinder pressure (b) PRR
and measured pressure by the STFT.

A transient dynamic model of a single-cylinder engine was established to simulate
the vibration response of cylinder liners and to facilitate the study of the correspondence
between structural vibration and in-cylinder pressure [22]. Figure 3 shows the predicted
liner responses to a measured in-cylinder pressure at an operating condition of 1800 r/min
and 40 Nm. The predicted displacement curve is close to the measured pressure with
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significant responses cluster near the combustion top dead center (TDC), as shown in
Figure 3b. The response feature around combustion TDC and located in the frequency
range of 5–8 kHz is labeled as Impact Co in the Figure 3a. The high similarity between the
oscillatory features of the predicted dynamic response and measured in-cylinder pressure
indicates that the Impact Co in predicted displacement is primarily a forced response
caused by in-cylinder gas shocks, as shown in Figure 2a.

Figure 3. Short-Time Fourier Transform predicted displacement response to combustion under
40 Nm and 1800 r/min. (a) STFT predicted displacement response to combustion under 40 Nm and
1800 r/min (b) Predicted displacement curve near the combustion top dead center (TDC).

Furthermore, a series of high-frequency responses in the 8–12 kHz band sustain for a
longer duration, marked as Impact Cs in Figure 3a. This structural mode-dependent high
frequency resonance is excited by a pressure shock during premixed combustion period,
which can be used to estimate the heat release rate and adiabatic flame temperature.

It can be concluded that the structural vibrations of the combustion chamber contain
abundant response characteristics related to in-cylinder combustion, which provides a solid
basis for the subsequent evaluation of the in-cylinder combustion state and reconstruction
of the pressure based on measured vibration signal.

2.3. Vibration-Based NOx Virtual Sensing

The formation of NOx is closely related to the in-cylinder pressure trace that can be
identified and reconstructed from the structural vibration response [3]. Therefore, it is
feasible to develop a vibration-based virtual NOx sensor based on the connection between
the three.

The key to developing a vibration-based virtual NOx sensor is to accurately identify
combustion information and reconstruct in-cylinder pressure from measured vibration
signals. Previous studies on the reconstruction of in-cylinder pressure mostly focused on
temporal information extraction [3], in which frequency characteristics are not adequately
included and often result in less accurate reconstruction. In contrast, reconstruction meth-
ods in the frequency domain inevitably introduce interferences caused by other mechanical
events, such as valve impacts that are less related to combustion.

To overcome the limitations of previous methods, this paper proposes a combustion
information extraction technique based on a two-dimensional filtration of vibration signals
in the joint time and frequency domain.

The main procedure of model construction (blue dashed box) and emission prediction
(yellow dotted box) of the virtual NOx sensor are shown in Figure 4. First, time-frequency
analysis and corresponding grayscale image conversion are performed on the in-cylinder
pressure, and structural vibration is measured simultaneously under steady-state condi-
tions. A two-dimensional filter is constructed through structural similarity index (SSIM)



Machines 2022, 10, 594 6 of 18

analysis to extract pressure-related features from measured vibration signals. Then, princi-
pal component analysis (PCA) is performed on the reconstructed in-cylinder pressure trace
to construct predictor variables, thereby constructing a principal component regression
(PCR) prediction model.

Figure 4. Schematic diagram of the construction and application of virtual NOx sensor.

In practical applications, time-frequency transformation and grayscale processing are
firstly performed on the measured vibrations. The above established two-dimensional filter
corresponding to a specific operating condition is called to construct the predictor variables.
The NOx emission level can be predicted in real-time based on the established PCR model.

3. Test Design

Test studies were performed based on a single-cylinder diesel engine to evaluate the
proposed method. The main specification of the engine is listed in Table 1. This single
cylinder engine avoids multiple events influences and focuses on the identification and
extraction of characteristics related to combustion events from measured vibration response.

Table 1. Test engine specification.

Manufacturer/Model DELUX Diesel Engine Co., Ltd. (Guangdong, China)

Engine type DLH1122
Number of cylinders Single
Combustion system Direct injection

Bore/stroke 122/120 mm
Compression ratio 17.5:1

Cylinder liners Cast iron replaceable wet liner
Rated power 18/2300 kW/r/min

The schematic diagram of the test bench is shown in Figure 5a and sensor arrangement
scheme, as shown in Figure 5b. Structural vibrations can be measured by accelerometers
installed on the cylinder liner and cylinder head. AVL FTIR multi-component emission
meter is used to measure NOx emissions. Furthermore, time-based crank angle, engine
speed, and in-cylinder pressure were also recorded with the data acquisition system
(Sinocera YE6232B, SINOCERA PIEZOTRONICS, INC, Jiangsu China) for further analysis.
The sampling frequency of vibration and pressure signal is 96 kHz, and the sampling
frequency of NOx emissions is 1 Hz. The sampling time for each steady-state condition
is 30 s. The sensor arrangement scheme in which the pressure sensor and accelerometer
are installed on cylinder head, and another accelerometer is installed on cylinder liner, is
shown in Figure 5b.
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Figure 5. (a) Schematic diagram of test bench. (b) Sensor arrangement scheme.

Two types of test schemes are proposed for model construction and performance
verification. The first is a steady-state test composed of 15 operating conditions, and the
other is a grid measurement with 44 operating conditions at various engine speeds and
loads. In the steady-state condition, the engine was running at five speeds, respectively,
1000, 1200, 1400, 1600, and 1800 r/min with three different constant 10, 30, and 50 Nm
engine loads.

As shown in Figure 6, transient performance of the virtual NOx sensor is assessed
based on two ramp tests: one is at constant engine load (10 Nm, 30 Nm, 50 Nm) with
increasing (from 1000 r/min to 1800 r/min at 200 r/min intervals) and then decreasing
(from 1800 r/min to 1000 r/min at 200 r/min intervals) running speed. The other is to
maintain a steady speed (1000 r/min, 1200r/min, 1400 r/min, 1600 r/min, and 1800 r/min)
with increasing (from 10 Nm to 50 Nm at 20 Nm intervals) and then decreasing (from
50 Nm to 10 Nm at 20 Nm intervals) engine load. In the start, the speed step and torque
response indicate a certain deviation from the control logic of the bench control system.

Figure 6. Speed and torque trajectories for the grid measurement tests: (a) Speed lifting conditions;
(b) Torque lifting conditions.
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4. Installation of Virtual NOx Sensor

The first step to construct a virtual NOx sensor based on vibration signal is to extract
in-cylinder pressure-related information from the measured vibration signal accurately.
First, it is necessary to quantify the correspondence between vibration and in-cylinder
pressure signals and to construct a two-dimensional filter. Then, the second derivative of in-
cylinder pressure can be reconstructed by performing an inverse time-frequency transform
on the filtered vibration signal. Finally, PCA analysis was performed on the predicted
variables extracted from the reconstructed curve and the measured NOx emissions for the
subsequent construction of the PCR prediction model.

4.1. Source Data Selection

The internal combustion engine has a combustion chamber that consists of the inner
wall of the cylinder liner, the upper piston area, and the bottom of the cylinder head. When
combustion gas starts to combust in the combustion chamber, it directly impacts each
combustion chamber wall. It is very difficult to extract combustion-related information
from liner vibrations because it is excited by both piston knocks and gas shocks. Therefore,
selecting the most suitable signal from the vibration signals measured at different measuring
points for pressure reconstruction is necessary.

The continuous wavelet transform (CWT) can highlight the local vibration response in
the time and frequency domain of the measured vibration containing random noise and
exhibiting high non-stationarity. Measured vibration contains random sound and indicates
high-frequency continuous wavelet transform (CWT) to highlight localized responses in
both time and frequency domains. Figure 7 shows the effects of CWT measured cylin-
der head vibration, second derivative in-cylinder pressure output, and liner vibration at
operating conditions of 1600 r/min and 30 Nm.
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The response pattern in the CWT of cylinder head vibration is closer to the second
derivative of in-cylinder pressure than that of the liner vibration. Notably, the pattern of
local features in cylinder head vibration near combustion TDC is highly consistent with
that in the second derivative of pressure. Therefore, it is appropriate to choose cylinder
head vibration as the data source for reconstructing in-cylinder pressure.
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4.2. Similarity Analysis of Time-Frequency Signals

The structural similarity index measure (SSIM) algorithm was employed to evaluate
the time-frequency similarity between vibration and in-cylinder pressure to suppress
interference of various transient noises. SSIM is a method to measure similarity between
two types of images. The SSIM index can be noticed as a quality measure of the image.
The difference with other methods, such as mean squared error (MSE) or peak signal to
noise ratio (PSNR), is that they measure absolute errors. The pixels have strong inter-
dependencies of structural information when they are spatially close. These dependences
carry important statistics about the structural relevance of local features in the image
matrices [24].

Accordingly, the SSIM method can be extended to evaluate the two-dimensional
similarity of different signals in time-frequency spectra, which provides a technical basis
for reconstructing in-cylinder pressure based on vibration signals.

4.2.1. Image Graying

Before SSIM analysis, it is first necessary to convert the time-frequency spectra of
signals into grayscale images. The saturation data were removed from RGB of time-
frequency spectrum images to obtain grayscale images, as shown in Figure 8. After greying
processing, the time-frequency spectrum shows less information than the original spectrum,
as shown in Figure 8. This is because the display scale of grayscale images is inconsistent
with original spectra. A gamma correction technique was performed to highlight more
detailed information on linear RGB images of the time-frequency spectrum to enhance
image contrast, as shown in Figure 9. This further confirmed that the similarity between
head vibration and the second derivative of in-cylinder pressure is better than that between
liner vibration and pressure, as proposed in Section 4.1.
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Figure 10. Cylinder head vibrations before and after gamma correction and SSIM maps of 2-order pressure.

Figure 10 shows that the mean SSIM value without gamma correction (0.6571) is higher
than the mean SSIM value with gamma correction (0.3598). Because of this, the gamma
correction processing makes many nonstationary responses unrelated to the combustion
event in the cylinder head vibration. It impairs the overall difference between 2nd-order
in-cylinder pressure and the vibration signal, thus effectively overpowering the great false
similarity affected by the strong background noise. In fact, near the combustion TDC, the
SSIM map after gamma correction shows the most obvious resemblance pattern associated
with the combustion event, as marked with a triangular dotted frame. Therefore, the
vibration signal will be filtered based on the gamma-corrected SSIM map in the subsequent
pressure reconstruction process.
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4.2.3. Reconstruction of the Second Derivative of In-Cylinder Pressure Based on 2D
Vibration Filtering

The SSIM similarity map, as a two-dimensional filter, can obtain reconstructed spectra
containing information about the 2nd derivative of in-cylinder pressure. Figure 11a,b
show that the reconstructed second derivative of pressure precisely maintains oscillation
information related to the in-cylinder combustion event. The contour of the time-frequency
spectrum of the reconstructed signal is smoother than that of the original second derivative
of pressure, which is due to the calculation error introduced by the filtering process. Due to
the loss of phase information during the reconstruction process, there is a slight deviation
between the reconstructed and the measured curves around the combustion top dead
center (TDC).
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Then, the time-domain curves of the 2nd-order derivatives can be calculated by per-
forming inverse time-frequency transform on the wavelet matrices. As shown in Figure 12,
the reconstructed signal agreed well with the original one. It can be seen from the enlarged
view in Figure 12b that the reconstructed curve contains most vibration characteristics in
the original signal. This indicates that the reconstructed curve based on the vibration signal
retains combustion-related information and is suitable as an input for the construction of a
virtual NOx sensor.

Figure 12. Inventive and remodeled second derivative of pressure time-domain curves. (a) global
view, (b) enlarged view.

4.3. Construction of NOx Prediction Model

This paper proposes a principal components regression (PCR) model to connect the
selected features to the target NOx value. In previous studies, this well-established method
evaluated the NOx emission based on measured in-cylinder pressure. It maintains accuracy
while using a small number of modeling parameters [3,21]. PCR is a method of modeling a
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response variable when many predictor variables are highly correlated or even collinear.
The linear combinations of the original predictor variables create new predictor variables
known as principal components. In the meantime, the latest AI models can also be used for
modeling. Unfortunately, it could not achieve such a performance and often has issues that
need balanced labeled data samples.

To build a prediction model, it needs to extract suitable predictor variables from
reconstructed pressure trace to connect to the target variables. It is hardly efficient to
perform PCA analysis for compress predictor variables using the in-cylinder pressure
curve of a complete operating cycle. Most existing research divided the pressure curve
into multiple segments according to the engine working process and compressed predictor
variables by describing the contour of segments. However, the lack of low-frequency
or quasi-static response information in the reconstructed curve makes it inefficient and
inaccurate to perform contour description-oriented PCA information compression on
signal segments.

Based on the analysis as mentioned above, predictive variables are constructed from
the 2nd-order derivatives proposed. Instead of drawing the segmented contour, it only
extracts statistical information of signal segments, including the root-mean-square (RMS)
value, peak value, and kurtosis. The whole pressure profile is divided into 6 segments
according to different mechanical events or combustion states. Figure 13 shows a typical
second derivative curve of in-cylinder pressure and 5 division points.

Figure 13. 6 segments divided in a typical in-cylinder pressure profile.

The segment of in-cylinder pressure between intake valve close angle (IVC) and
exhaust valve open angle (EVO), the segment with drastic changes, is selected as the
selection interval for predictor variables. These division points, respectively, are intake
valve close angle (IVC), the injection starting angle (ISA), top dead center (TDC), the end of
combustion (EOC), and exhaust valve open-angle (EVO). The EOC is at the crank angle,
where the apparent heat release rate attains a flat slope prior to the engine’s exhaust stroke.
The first twelve predictor variables are defined as RMS, peak, and kurtosis of the 2-order
pressure segments in four intervals at crank angles of 218–338◦ CA, 338–360◦ CA, 360–445◦

CA, and 445–485◦ CA. The RMS and time integral of the complete pressure curve are
selected as the 13th to 14th predictor variables.

Then, principal component analysis was executed on the 14 predictor variables and
measured emission result. Several principal components regression prediction models
with different numbers of principal components for NOx emissions were established to
estimate emission levels. A PCR model constructed based on 7 principal components was
selected as the virtual NOx sensor to balance prediction accuracy and calculation efficiency.
This model is constructed with the fewest components and satisfies the condition that the
coefficient of determination is greater than 0.95.
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5. Results and Discussion

The established virtual NOx sensor is validated for steady-state and transient mea-
surement data.

5.1. Steady-State Operating Conditions

The virtual NOx sensor is verified based on repeated experiments of 15 steady-state
operating points, consistent with the operating conditions used for model construction. The
predicted NOx agrees well with the experimental data, indicating that the developed virtual
sensor’s predictive ability for NOx was commendable. The coefficient of determination
(R2) between the predicted NOx and experimental NOx was found to be 0.959, as evident
from Figure 14. The relative error between virtual sensor and measured NOx is given in
Figure 15. All operating points show inaccuracy well below ±10%.

Figure 14. Predicted and measured NOx under steady-state conditions. Blue dots show the intensity
and predictions of the measured NOx.

Figure 15. Prediction accuracy of virtual NOx sensor. The blue dots show the intensity of pre-
dicted NOx.

5.2. Transient Operating Conditions

The virtual sensor updates the prediction of NOx emission state in each engine cycle.
As engine speed increases from 1000 r/min to 1800 r/min, the response time of the virtual
NOx sensor is gradually shortened from 120 ms to 67 ms, which is always much faster
than the response time of the physical NOx sensor. The minimum sampling interval of the
emission meter is 1s, limiting the transient validation of the virtual NOx sensor. Therefore,
the prediction results within a fixed sampling period (1 s) are averaged to enhance the
comparability between predicted and measured data. Transient performance of the virtual
NOx sensor is assessed based on two ramp tests, as detailed in Section 3.

Figures 16 and 17 show the comparison between the virtual NOx sensor and the
physical NOx sensor for different ramp tests. It can be observed from Figure 16 that, for the
transient test with constant load and variable speed, with the step changes of engine speed
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(black dotted line), the measured NOx emission presents drastic changes, and the virtual
NOx sensor is capable of following the emission measurement. Under high load conditions
of 50 Nm, the predicted NOx shows more peak deviations compared to measured data.
This is due to the fast response capability of the virtual NOx sensor, which enables it to
more accurately describe the dramatic fluctuations in emission levels caused by transient
operation. By contrast, the response delay of the physical NOx sensor is equivalent to
a filtering operation applied to the transient emission curve, which introduces error in
predicting transient emission to a certain extent.

Figure 16. Comparison of predicted and measured NOx under variable speed conditions.

Figure 17. Comparison of predicted and measured NOx under variable torque conditions.

As shown in Figure 17, under the operating conditions of constant speed and variable
torque, the measured NOx fluctuates greatly with the torque change. In most transient
conditions, the predicted value of the virtual NOx sensor is well agreed with the measured
result. At high load conditions, the predicted NOx also showed obvious peak deviation,
similar to the aforementioned constant load and variable speed test.

As shown in Figure 18, the relative error between the predicted NOx and the measured
NOx is less than 20% (the 20% error limit is marked as a red dotted line) at most transient
operating points, and the prediction error for high-concentration NOx above 700 ppm is
less than 10% (the 10% error limit is marked with a green dashed line), which indicates
that the built virtual NOx sensor has better accuracy in predicting transient NOx under the
premise of acceptable precision. The dynamic frequency responses of both virtual sensor
and emission measurements are shown in Figure 19. For the speed input, the response of
the NOx sensor is close to that of the emission measurement.
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Figure 18. Comparison of predicted with measured NOx under variable speed conditions. The blue
dots show the intensity of predicted NOx around the error limits. The error limits range has been
discussed in the above section.

Figure 19. Emissions measurement frequency response and virtual NOx sensor for speed input.

The comparison of predicted and measured NOx under variable torque conditions is
shown in Figures 20 and 21. In most transients, the relative error between forecast NOx and
measured NOx is less than ±20%. The prediction accuracy of the virtual NOx sensor for
the transient torque is worse than that for the speed. At a higher frequency, 0.2 Hz torque
input response of the virtual NOx sensor starts dropping off (−3 dB) as compared to the
physical sensor frequency at around 0.09 Hz. This indicates that the virtual sensor’s system
response is significantly faster (around 122%) than the physical sensor.

Figure 20. Comparison of predicted with measured NOx under variable torque conditions. The blue
dots show the intensity of predicted NOx around the error limits. The error limits range has been
discussed in the above section.
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Figure 21. Frequency response of emissions measurement and virtual NOx sensor for torque input.
The circle on the red line shows the predicted NOx peak at near the TDC at different frequency and
the circle on the blue line shows measured NOx.

6. Conclusions

For developing a virtual sensor for real-time monitoring of NOx emissions, a
physics-informed model was developed to establish the interdisciplinary connections
between vibration and NOx emissions. A time-frequency two-dimensional filter was
developed to extract combustion-related information from raw vibration signals. The
information from the second derivative of in-cylinder pressure is represented by 7 prin-
cipal components. Consequently, a principal components regression (PCR) model can be
developed to predict NOx values for different engine operating conditions.

The experimental validation of virtual sensors at steady-state conditions shows that the
predicted NOx is in good agreement with the measured NOx, with an error less than ±10%.
The virtual NOx sensor is proven to meet the accuracy requirement of vehicle emission
monitoring for both steady-state and transient conditions and has a better frequency
response compared to the emission measurement system. In the quasi-transient operating
condition, the response time of the virtual NOx sensor is gradually shortened from 120 ms
to 67 ms, which is always much faster than the response time of the physical NOx sensor.
The quasi-transient test shows that the virtual sensor responds faster than the emission
measurement, under the premise that the prediction is consistent with the measured
NOx trace. The experiments results indicate that the virtual sensor’s system response is
significantly faster (around 122%) than the physical sensor. The virtual NOx sensor is
verified based on repeated experiments of 15 steady-state operating points, consistent with
the operating conditions used for model construction that indicates the developed virtual
sensor’s predictive ability for NOx was magnificent. The prediction results regarding
transient operating conditions within a fixed sampling period (1 s) are averaged to enhance
the comparability between predicted and measured data.

7. Future Research

Future research should consider the potential effects of the development and validation
of a vibration-based virtual sensor for real-time monitoring NOx emissions of an RCCI
engine. Many different adaptations, tests, and experiments have been left for the future.
Future work concerns the deeper analysis of particular mechanisms, new proposals to try
different methods, or simply curiosity about RCCI engine NOx emission. In the future,
more detailed correlation between vibration and NOx emission will be characterized in-
depth. We will improve the technique of constructing two-dimensional filters for vibration
signals and extract from combustion-related information.
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