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Abstract: The state of the art of high-torque electric motors has been reviewed in this paper. This
paper presents a literature review of high-torque density electric machines based on their airgap
classifications, which brings a unique consideration to new design ideas to increase torque density.
Electric machines are classified into three main groups based on their airgap configuration, i.e., (1) ma-
chines with a constant airgap, (2) machines with a variable airgap, and (3) machines with an eccentric
airgap. This paper also presents the modeling of a high-torque airgap-less electric motor based on the
concept of eccentric airgap. The torque density of this motor has been compared to motors available
in the literature review. Among electrical motors with no permanent-magnet, airgap-less electric
motors take the lead in terms of torque density, which is almost five times greater than the next motor,
“in-wheel for electric vehicle”.
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1. Introduction

Presently, climate change and its impacts on Earth are some of the main issues that
every human should be worried about [1–4]. It is also believed that a big percentage of in-
creased temperature is due to greenhouse gas concentration [5–8]. Based on an article from
NASA, CO2 is one of the most important greenhouse gases that can be released through
human activities such as burning fossil fuels [9–11]. Scientists have been trying for a long
time to reduce the radiation of CO2 worldwide [5,12–15]. Energy consumption is one of the
main phenomena that results in the emission of CO2. Recognizing the biggest consumers
of energy can help optimize energy consumption. In [16], it is stated that electric machines
consume 70% of electrical energy globally. For example, induction machines consume the
majority of energy worldwide [17]. One option for optimizing the consumption of energy
through electric machines is to increase electric machine efficiency [1].

There is a survey in [18] that focuses mainly on efficiency improvements of induction
machines.

Other articles have presented different methods for increasing the efficiency of electric
machines and consequently reducing their losses. In [17], the result was shown of reducing
temperature [19,20] on increasing the efficiency by forced cooling the coils of an induction
motor. This study claims that reducing the coil temperature by 10 ◦C has an effect of 0.5%
efficiency increase. In the same article, it was also shown that internal cooling had more
effect on efficiency than external cooling. The use of a unidirectional fan, reformation of the
fan blade and fan cover shape, and water or oil cooling are some examples of the cooling
methods used in this paper.

Another way to increase the efficiency of electric motors is by using better magnetic
materials. As [21] states, conventional soft laminations can be replaced by new materials
such as high silicon non-oriented steel, and partially cubic textured steel can increase effi-
ciency by 1.5–3%. Magnetic materials such as NdFeB, which are rare-earth magnets, allow
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a very strong magnetic field in a very small volume [22] and a high level of performance.
However, these magnets have two main disadvantages that are their expense and the
extraction and refinement of rare-earth oxides is a potentially environmentally damaging
process, poisoning the farms and villages.

There have been other studies done on the topic of rare-earth magnet-free
motors [23–25].

Electric machines can be categorized based on their torque and torque density (torque
per motor volume). Achieving high-torque density has always been a target while de-
signing electric motors [26], which has inspired new designs as presented in the technical
literature [27]. One of the most important applications for high-torque electric machines
is the use of high-torque-density electric machines in an electric vehicle. In other applica-
tions, such as industrial and commercial applications, hydraulic motors are selected over
electrical motors due to their compact size [28,29]. For example, although the high torque
generated by vernier permanent-magnet motors and motors with partitioned rotors are the
highest among electric motors, they still do not generate torque density that is comparable
with hydraulic motors. Other examples of non-conventional designs of electric machines
and control strategies proposed by industry and academia include (1) a dual-rotor structure
along with a dual excitation [30], (2) an outer-rotor hybrid excitation [31], (3) new control
strategies proposed to enhance mechanical torque [32–35], and (4) injection of third har-
monic current [36]. There are also several studies in the literature which focus on improving
the torque of electric machines [37–40].

This paper presents a unique classification of electric machines considering their gap
characteristics as well as a discussion on high-torque electric motors. Following the intro-
duction, Section 2 will classify high-torque electric machines based on their airgap structure.
Section 3 presents the comparison between two electric machines with different excitation
methods. Section 4 compares the airgap-less electric motor with a switch-reluctance motor
with a different type of excitation.

2. Electric Motor Classification Based on Airgap Structure

The existence of the gap in electric machines is unavoidable. The gap is the physical
space consisting of air or fluids (such as oils or ferrofluids) which will separate the rotor
and the stator of an electric machine. This physical space will allow the rotor to move freely
inside or outside the stator. Although the presence of a gap is fundamental in creating the
rotational movements, designers often try to minimize this space to maximize the internal
flux and consequently electromagnetic torque. Figure 1 shows the classification of electric
machines based on their gap structure.

Figure 1. Flowchart showing the electric machines classifications.

The gap plays an essential role in defining other parameters of electric machines. For
example, the reluctance of the gap in an electric machine is proportional to the length of
the gap, as shown in (1). On the other hand, the flux of an electric machine is inversely
proportional to the reluctance, as shown in (2), therefore less reluctance will result in
more flux.

< =
g

µ0 A
(1)

φ =
Ni
< (2)
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Although the least amount of gap is always desirable, in theory it will result in a very
large flux, but the length of the gap will never reach zero because of the roughness of the
material, and the flux will be limited by the saturation of the magnetic material.

The gap space between stator and rotor can also be filled with ferrofluids instead of
air [41–44], as air may cause some limitations in performance due to very low permeability.
Additionally, reducing the gap has some negative effects, such as cost, tight tolerances
associated with reliability, heat, and dynamic performance which requires enough clearance.
Ferrofluids are liquids made of nanoscale ferromagnetic or ferrimagnetic material. These
materials have high permeability and consequently will improve the magnetic performance
of the machine.

This section presents electric machines’ classification according to the structure of
their airgap, i.e., (1) constant airgap, (2) variable airgap, and (3) eccentric airgap. In electric
machines, the physical geometry of the rotor and stator defines the characteristics of the
airgap. In a typical electric machine, the rotor with either constant or variable airgap will
only have rotational movement. However, in machines with an eccentric gap, the rotor will
have both rotational and translational movements. Both typical and eccentric gap machines
will be presented in this work.

2.1. Machines with Constant Airgap

Machines with constant airgap will have the same airgap length during one complete
rotor cycle either inside or outside the stator.

2.1.1. Induction Machines

Induction machines are categorized into two categories—induction machine with
squirrel cage rotor, and induction machine with wound rotor. Induction machines with
a squirrel cage rotor operate as the voltage is induced in the rotor windings that will
produce the rotor current and magnetic field [45–48]. Another type of induction machine is
the wound rotor induction machine where the rotor has a three-phase winding inside it.
Both machines are identical in terms of electrical characteristics. However, wound rotor
induction machines are in disuse due to maintenance issues.

An induction motor with an integrated magnetic gear is also an example of a machine
with constant airgap [49]. In this machine, the objective genetic algorithm has been used
for torque calculations. Magnetic gears will transmit torque without any contact at all.
The magnetic gearing effect is used in [50] to propose a magnetically geared induction
machine [51–54]. This machine is shown in Figure 2.

Stationary PM
outer armatureInner stator 

Low speed 

      rotor

dc boost

winding

3-phase

diode

rectifier

High speed 

      rotor

Iron pole

pieces
    PM on the 

high speed rotor

Figure 2. Magnetically Geared Induction Machine.

This machine consists of four different armatures of which two are stationary and two
are rotating. The innermost armature is the stator of the induction machine. This stator
will be excited by a balanced three-phase voltage which will result in creating the magnetic
field. This magnetic field will produce an electromagnetic torque in the high-speed rotor. A
high-speed rotor consists of magnetic gears that are mounted on its outer surface. These
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magnetic gears will then transmit the torque to the low-speed rotor. As shown in Figure 2,
the diode rectifier links the machine rotor with DC boost windings to guarantee a 15%
increase in torque. Integrating the magnetic gear in induction machines has been done in
other studies such as [49,55–57].

2.1.2. Synchronous Machines

Another type of electric machine with constant airgap is a synchronous machine. It
is worth mentioning that synchronous machines fit in both categories: constant airgap
and variable airgap. These machines have a higher torque density among other electric
machines [58] which can be employed in low-speed and high-speed applications.

2.2. Machines with Variable Airgap

Machines with variable airgap will have different airgap lengths during one complete
cycle of the rotor. These machines normally have salient stator, rotor, or both. Figure 3
shows a switch-reluctance motor with variable airgap that has been studied in [59]. As
shown, the gap in this machine is changing between the minimum and maximum while
the rotor is changing position [59].

Figure 3. Switched-reluctance motor with variable gap.

In these machines, when the rotor tooth is aligned with the tooth of the stator, there
will be a smaller airgap than when these teeth are not aligned. In this case, the gap is
defined as a variable gap. There exist studies in the literature on electric machines with
variable gaps [60,61]. Below are several examples of high-torque electric machines with
variable airgaps.

2.2.1. Synchronous Machines

As mentioned in the constant airgap section, synchronous machines fit into variable
airgap group as well as constant airgap group. In the case that the rotor, stator, or both
are salient, the airgap will be variable. In [62] the number of slot/pole combinations of a
synchronous machine is studied to find the best combination for low-speed high-torque
applications of synchronous machines. Synchronous machines operate either as a motor or
a generator. In synchronous generators, the rotor winding is excited by the DC voltage and
will induce voltage to the stator. This magnetic field in the rotor winding will rotate the
rotor with a constant speed inside the stator. In synchronous motors, in turn, the AC power
source will power up the stator which will generate a magnetic field. This magnetic field
inside the stator rotates the rotor. Synchronous machines fit in both groups of machines
with constant gap and machines with variable gap. Synchronous machines along with
induction machines are the most widely used type of AC machines.

2.2.2. Permanent-Magnet Machines

Permanent-magnet AC machines are the same type of machines as synchronous
machines with the difference that the field windings in synchronous machines are now
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replaced with permanent magnets [63]. Permanent-magnet machines have advantages such
as fast dynamic performance and high torque or torque per motor volume (torque density),
and ease of control relative to alternative machines [64,65]. Interior Permanent-Magnet
Synchronous Machines (IPMSM) are desirable for electric vehicle (EV) applications due to
their high power and torque density. In [66] the shape of the rotor slots that contain the
magnet bars has been optimized to reduce the cogging torque and increase the torque. PM
machines conventionally are classified into two different types, i.e., permanent-magnet
material on the rotor and permanent-magnet material on the stator. In [67], a permanent-
magnet machine is proposed with PM materials on both rotor and the stator. This paper
claimed that having the dual excitation would result into a higher torque per volume.
Using an extra set of permanent magnets on the ferromagnetic segments of the stator in
a magnetic gear was studied in [57]. This study claimed that by adding an extra set of
permanent magnets on the stationary part, the torque density would increase by 20%.
Figure 4 shows this high-torque density triple permanent-magnet excited the magnetic
gear. In this machine, there exists two rotors—the inner rotor at high speed and outer rotor
at low speed. The ferromagnetic segment is placed between these rotors and modulates the
magnetic field in the airgap between the ferromagnetic segments and the rotors.

Outer stator 

PMs on outer rotorPMs on ferromagnetic

segments

Inner rotor
PMs on 

inner rotor

Stationary 

ferromagnetic 

segments

Figure 4. Triple PM excited Magnetic Gear.

One of the possibilities to achieve a higher torque is to maximize the radius of the
rotor. An outer-rotor claw pole stator has been proposed in [68] in which the torque density
is higher than conventional machines due to the radius of the rotor and the claw pole
structure of the stator. However, there are also drawbacks for these designs, such as higher
stator leakage when the flux is traveling from one pole to the other pole.

2.2.3. Interior Permanent-Magnet Synchronous Machines

Interior permanent-magnet synchronous machines [69–73] are among the most popu-
lar electric motors used in electric vehicles [23]. These machines contain rare-earth magnetic
material which is costly and at the same time has negative impacts on earth. Therefore,
one of the demands in the electric vehicle (EV) industry is to decrease the amount of
rare-earth magnetic material or electric motors that are rare-earth-free machines. In [23], a
switched-reluctance motor has been proposed that does not contain any rare-earth mate-
rial and is competitive with IPMSM in terms of torque density and efficiency. Although
switched-reluctance motors (SRMs) are low cost and simple in design, they have lower
torque density compared to other AC machines. This means that this machine produces
low torque with respect to its volume. In [59] it has been proposed to employ low-cost
magnets on the SRM to increase its torque density and efficiency. It is worth mentioning
that a no-rare-earth magnet has been used in this research. The low-cost magnets are in
stator yoke to avoid losing the capability of wide speed operation.



Machines 2022, 10, 636 6 of 18

2.2.4. Synchronous Reluctance Machine

A comparison study between permanent-magnet synchronous machine and syn-
chronous reluctance machine has been done in [74]. In this study, it is evident that in the
low power motors, the use of permanent magnets does not change the dimensions of the
motor. Also, in cases where weight and size do not matter, the synchronous reluctance
machine can be more desirable than the permanent-magnet synchronous machine due to
its reliability and low cost. In this paper, it was also mentioned that in motors with high
power, having rare-earth magnets is more effective.

2.2.5. Permanent-Magnet Flux-Switching Machines

Permanent-magnet flux-switching machines have gained interest in recent
decades [75–77]. Although these machines have been proposed in different applications
such as wind generation and aerospace, they are known to have high-torque ripples be-
cause of the salient stator and rotor. Flux-switching permanent-magnet machines have a
stator equipped with both magnets and armature windings. In this case, the rotor will have
a robust and simple structure which will make the FSPM machines suitable for high-speed
applications [78]. Figure 5 shows the machine that has been studied. This machine operates
as a switch-reluctance machine and the electromagnetic performance of this machine is
given using FEA.

Rotor
Stator

PM

Armature

winding

Figure 5. Flux-switching permanent-magnet.

In [79] a 36/34-pole nine-phase permanent-magnet flux-switching machine is pre-
sented, which will generate higher levels of torque density with lower torque ripples.
Changing the rotor configuration to a partitioned rotor in flux-switching PM machines,
the stator flux leakage will decrease as well as the use of the PM magnets, which becomes
efficient [80]. Due to the high price of rare-earth magnetic material, one of the main goals
in developing permanent-magnet machines is to reduce the volume of the magnets, which
has been the main purpose in [81].

2.2.6. Permanent-Magnet Vernier Machines

One type of permanent-magnet electric machine that has recently gained attention
in the literature is the permanent-magnet vernier machine. These machines are normally
used in low-speed, high-torque applications [82–85]. Vernier machines are one type of
permanent-magnet machine with a difference in the number of stator and rotor poles. It has
been claimed in [86] that this type of machine will generate high-torque density compared
to regular PM machines due to their special operation principle, which is the magnetic gear
effect. Figure 6 shows a typical permanent-magnet vernier machine [87–92].
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PMs

Stator

Rotor

FMPs

Figure 6. Permanent-Magnet Vernier Machine.

In Figure 6, the permanent magnets on the inner and outer rotor produce the inner
and outer back-EMFs, respectively. One of the disadvantages of permanent-magnet vernier
machines is their higher cost due to the permanent magnets used in stator and rotor poles.
Due to this fact, studies presented in the literature have focused on decreasing the cost
of the permanent-magnet vernier machine. In [60], a permanent-magnet vernier machine
has been proposed which adopts a surface-mounted unipolar rare-earth PM in the rotor,
which in turn will reduce the amount of PM used in the machine by half and reduces the
flux leakage.

2.3. Machines with Eccentric Airgaps

Machines with eccentric airgaps can reach an airgap of almost zero at the point of
contact between the stator and the rotor. In these machines, the rotor will have both
rotational and transnational movement simultaneously. Despite having these movements,
when the rotor touches the stator, the airgap will be almost equal to zero. However, due to
the material’s roughness, the airgap will never be absolute zero, but has a very small length.
It is worth mentioning that even in the simulation of the motors with an eccentric gap, it is
not possible to have an airgap of zero as it will result in an infinite force, as shown in (3).

f =
ki2N

g2 (3)

Figure 7a shows an electric machine with an eccentric gap that has been studied in [93].
As is evident in Figure 7b, the airgap will reach almost zero at the points of contact between
the stator and the rotor [94].

Rotor
Stator

(a) (b)

Figure 7. (a) switched reluctance motor with a rolling rotor, and (b) eccentric gap vs. position

Reaching a minimal airgap in these machines leads to a higher force and consequently
a higher electromagnetic torque. These machines are called rolling-rotor electric machines
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in the literature. The authors have studied an airgap-less electric motor with both an
external and an internal rotor in [95,96] which will be explained later in this manuscript.
Another example of rolling-rotor machines is a rolling-rotor switched-reluctance motor
that has been modeled and simulated in [93]. The difference between the modeling and
simulation of the rolling-rotor machines in [93,95] is the method of excitation of the stator
poles as well as the type of the rotor. In [93], an internal rotor has been used while in [95],
an external rotor has been used. An airgap-less electric motor is an eccentric gap type of
motor, which is discussed below.

One of the electric motor’s main advantages and characteristics is its ability to produce
a high torque. However, due to its size, it cannot be used in many applications. In this
case, the torque density will be the main subject of interest, i.e., torque per motor volume.
Additionally, the two main requirements for electric motors are the high-torque density
and high efficiency, as saving energy is the main focus in the world [97].

Based on the type of machine, the stator can have different numbers/types of poles as
well as the rotor. In conventional electric machines, the rotor will be connected to a shaft
inside the electric machine and will only have rotational movement.

In this section, electric motors have been categorized in terms of their torque density
and their torque-producing ability.

Although achieving high torque is important in designing electric motors, presently,
torque density has become one of the most important topics among electric motor designers.
Since the space issue plays an important role in designing the motor, designers often try to
minimize the space and maximize the torque, resulting in a high-torque density (torque
per motor volume Nm/L).

3. Modeling of the Airgap-Less Electric Motor

The airgap-less electric motor is an eccentric motor designed and modeled by the
authors [95,98]. The stator of this motor consists of 18 teeth and nine phases. The bipole
configuration has been used to model this motor, i.e., each phase consists of two teeth (north
and south). This motor has an external rotor that has both rotational and transnational
movement. This family of motors is comparable to hydraulic motors in terms of torque
density. Although the name of this motor is the airgap-less electric motor, it does not mean
that the gap is zero. Due to the material’s roughness, the gap will never reach zero, but
it will reach a very small number in the points of contact. As we minimize the gap, the
electromagnetic force and torque will increase. This machine will have both rotational and
translational movements, so it needs a gearbox to convert this movement to a rotation-only
movement. The application of this machine is winches, cranes, or jackhammers. In all three
applications, sound and vibration will not be an issue. Additionally, the airgap-less motor
has a structure and mechanical configuration similar to a hydraulic motor. Below is a brief
review of the analysis that has been done for this machine.

Modeling of this motor starts with obtaining the airgap expression using the geometric
approach shown in Figure 8.

Figure 8. Geometric approach used for airgap derivation.

The airgap expression derived using Figure 8 is as shown in (4)
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g(θ) = r2 − r21cos(θ)−
√

r2
1 − r2

21sin2(θ) (4)

where r21 is the difference between both radii (i.e., r21 = r2 − r1). In this design the radius
of the rotor and stator are close to each other, i.e., r1 ≈ r2. Therefore, the gap expression
can be simplified as follows:

g(θ) = r21[1− cos(θ)] (5)

Figure 9 shows the equivalent circuit of the airgap-less electric motor, where Rs and
Rr are the reluctances of the stator and rotor, respectively; Ry is the reluctance of the gap y
(with y = 1a, 1b, 2a, 2b, 3a, 3b); and Fy is the magneto-motive-force created at tooth y. The
reluctances are given by:

R3b

f
1a

1a

1b

2a

2b

3a

3b

R

R

R1a

R1b

R2a

R2b

R3a

f
1b

f
2a

f
2b

f
3a

f
3b

F
1a

F
1b

F
2a

F
2b

F
3a

F
3b

s

r

Rr

Rr
Rr

Rr

Rr

Rs

RsRs

Rs

Rs

Figure 9. Equivalent circuit of the magnetic device.

Rr = lr/(µr Ar) (6)

Rs = ls/(µs As) (7)

Rn = gn(θ)/(µ0 As) (8)

where µr is the permeability of the rotor, µs is the permeability of the stator, lr is the length
of the flux path in the rotor, Ar is the surface area of the rotor (seen by the flux lines), ls is
the length of the flux path in the stator, µ0 is the permeability of air, and n is the number of
phases for which in this motor it is from 1 to 9.

Please note that in Figure 9, a three-phase version of the actual airgap-less motor is
shown due to space limitations. Additionally, for the 18-teeth motor, it is hard to see all
the flux paths. Following the derivation of gap and reluctance, the inductance has been
calculated using Figure 10 followed by the torque calculation. Figure 11a,b show the current
and the electromagnetic torque in the airgap-less motor, respectively.

R1a R1b

f
1a f

1b
F

1a F
1b

Req1

Figure 10. Equivalent circuit used for derivation of the inductance.
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Figure 11. Simulation results (nine-bipole machine). (a) current, and (b) torque.

Figure 12 presents torque densities for six high-torque electric motors available in
the literature. The airgap-less electric motor (proposed by the authors) is also among
these motors.

Figure 12. Torque density comparison chart for electric motors with permanent magnets.

Except for the airgap-less electric motor, all other motors in this figure consist of
permanent magnets, which will result in high torque and, at the same time, will add to
the cost of the overall motor. Clearly, in this figure, the airgap-less electric motor does not
win in terms of torque density, but as mentioned, there is no permanent magnet in the
airgap-less electric motor.

In turn, Figure 13 compares six high-torque electric motors without permanent mag-
nets with the airgap-less electric motor.
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Figure 13. Torque Density Comparison Chart for Electric Motors without Permanent Magnet.

In this figure, it is evident that the airgap-less electric motor has the highest torque
among other induction and synchronous motors with no permanent magnet.

Table 1 shows the rated power, voltage and speed of these machines.

Table 1. Parameters for the machines shown in charts above.

Machine Power (W) Speed (r/min) Voltage (V)

IPSM 3728.5 1000 325

High Power Factor VPM 2400 30 27

Dual Stator Consequent Pole 398 300 47

Airgap-less Electric Motor 100 0.6 20

In-Wheel for Electric Vehicle 75,000 4000 900

IM with Integrated MG 44,000 975 400

4. Comparison of Airgap-Less Electric Motors with a Switched- Reluctance Motor

In this section, the airgap-less electric motor will be compared to a switched-reluctance
motor studied in [93] in terms of torque-generation capabilities. This switch-reluctance
motor has the same movement as the airgap-less electric motor, i.e., rolling rotor. As
mentioned in previous sections, the torque density and efficiency of electric machines have
recently become the focus in the development of these machines. The airgap-less electric
motor fits in the category of rolling-rotor machines. This motor consists of an external rotor
and an internal stator.

In the machines with rolling rotors, the airgap between the stator and the rotor varies
by the rotation of the rotor. The conventional rotors in the machines that were mentioned
previously with variable and constant airgaps only have rotational movements, while in this
type of machine (rolling rotor), the rotor has both rotational and translational movement.
In these machines, the rotor touches the stator at points of excitation, which will minimize
the airgap and consequently maximize the force. In other words, the rotor is attracted to
the stator at the points of excitation. The pole excitation of the airgap-less electric motor has
been discussed by the authors in detail in [95–98]. It is worth mentioning that the bipole
excitation mode has been used in this motor. This means that two teeth will be forming a
bipole (north and south) which will create a closed flux path. To have a fair comparison
between the airgap-less electric motor and the switch-reluctance motor studied in [93], all
the dimensions of both motors and the simulation parameters have been kept the same.
The only difference between these two machines is the method of excitation of the stator
poles. In the switch-reluctance motor, an alternate form of excitation has been considered.
Below are the results of comparison between both machines. Please note that both machines
are excited with Vdc = 10 V. The gaps in both machines are the same since both rotate in
the same manner. To avoid confusion in this section, the motor with alternate excitation
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mode is called SRM and the motor with bipole excitation mode is called airgap-less. These
two machines have different reluctances as they have two different magnetic equivalent
circuits. Figure 14a shows the equivalent reluctance of the SRM, while Figure 14b shows
the reluctance of the airgap-less electric motor.

0.7 0.75 0.8 0.85 0.9 0.95 1

Time(s)

0

1

2

3

4

5

6

7

R
el

u
ct

a
n
ce

10
6 Equivalent Reluctance

(a)

0.7 0.75 0.8 0.85 0.9 0.95 1

Time(s)

0

1

2

3

4

5

6

7

R
el

u
ct

a
n
ce

10
6 Equivalent Reluctance

(b)

Figure 14. (a) The machine with alternate excitation mode, (b) the machine with bipole excita-
tion mode.

As is evident in Figure 14, the reluctance in the machine with bipole excitation mode
is higher and therefore the inductance in this machine is lower, as shown in Figure 15.
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Figure 15. (a) Inductance of the machine with (a) alternate excitation mode and (b) bipole excita-
tion mode.
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A lower inductance will result in a higher current, as shown in (9).

V = L
di
dt

(9)

Figure 16 shows the current in both machines. The co-energy in both machines is then
calculated using (10) which leads to the electromagnetic torque as shown in (11).Please note
that this is the same equation that has been used in [93] to calculate the electromagnetic
torque.
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Figure 16. (a) Current in the machine with (a) alternate excitation mode, (b) bipole excitation mode.

Wc =
1
2

Li2 (10)

Te =
∂Wc

∂θ
(11)

The electromagnetic torques for both machines are shown in Figure 17, in which
it is evident that the electromagnetic torque in the airgap-less electric motor is higher
while the torque ripple is lower in the motor with alternate excitation mode, i.e., switched
reluctance motor.
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Figure 17. (a) Torque of the machine with (a) alternate excitation mode, (b) bipole excitation mode.

5. Conclusions

In this manuscript, the state of the art for high-torque electric motors has been pre-
sented. The modeling of the airgap-less electric motor previously studied by the authors of
this manuscript has been briefly described. This airgap-less electric motor is also compared
to both electric motors with permanent magnet and motors with no permanent magnet. The
results show that the airgap-less electric motor takes the lead in motors with no permanent
magnets in terms of torque density.
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