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Abstract: The degradation process of bearing performance in the whole life cycle is a complex and
nonlinear process. However, the traditional neural network-based approaches usually consider
the degradation process of bearing performance as linear, which does not accord with the actual
situation of bearing degradation. To overcome this shortcoming, a rolling bearing’s remaining useful
life prediction method based on a Squeeze-and-Excitation-Convolutional long short-term memory
(SE-ConvLSTM) neural network was proposed based on the construction of a new health index in
the process of bearing life evolution. The proposed method considered the change rule of the health
indicator during the whole life cycle evolution of bearings, then constructed the health indicator by
using the SE-ConvLSTM neural network, effectively improving the model prediction accuracy and
training efficiency. Firstly, the original data are filtered and denoised by Ensemble Empirical Mode
Decomposition. Combined with Principal Component Analysis (PCA) dimensionality reduction and
the Local Outlier Factor (LOF) algorithm, the bearing’s life evolution interval is divided. Then, the
health indicator is constructed based on the proposed SE-ConvLSTM model, and the remaining useful
life of rolling bearings is predicted by a particle filter and double exponential model. The proposed
method is compared with other related methods with the PHM2012 dataset, and the results show
that the proposed method has higher accuracy in remaining useful life predictions. Compared with
the traditional method, the health index construction based on the division of the lifespan evolution
interval has higher practical significance.

Keywords: rolling bearing; remaining useful life; health indicator; deep learning

1. Introduction

Large-scale and complex key mechanical equipment presents a trend of automation
and centralization and is often in a continuous operation state of high load and variable
working conditions. The service time of some bearings is far beyond their expected life, and
some bearings have failed when they are used far less than their expected life. However,
regular maintenance cannot maximize the benefit of bearings [1,2]. Therefore, remaining
useful life (RUL) predictions of rolling bearings can prevent faults, reduce accident rates,
and provide a theoretical basis for bearing maintenance and life extension. The remaining
useful life prediction methods are mainly divided into four categories: Physical-model-
based, statistical-model-based, artificial-intelligence-based, and fusion methods [3]. The
method based on physical models and statistical models mainly rely on the establishment of
a mathematical model to describe the bearing degradation process and must be established
the corresponding degradation model according to the specific object, which is not universal.
The machine-learning and statistical methods were used to search the degradation process
from data, which is one of the most effective remaining useful life prediction methods [4].
The remaining useful life prediction of bearings mainly follows the following steps: Data
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collection, health indicator (HI) construction, and remaining useful life prediction. HI
construction is the process of reflecting the bearing degradation from data, therefore the
construction of HI directly affects the accuracy of RUL prediction.

In order to predict the remaining useful life of bearings, numerous scholars have
been committed to the construction of HI. Dong et al. [5] proposed a hierarchical neural
network with random weight parameters based on transfer learning to extract local sub-
band features of a spectrum and complete degradation mode assessment under different
working conditions. Zhang et al. [6] constructed a scale-normalized bearing health index
based on improved phase space distortion (PSW) and a hidden Markov model, which
directly reflected the actual damage degree of bearings. Zhao et al. [7] used FDMDP to
fit the degradation characteristic curves of different bearings and combined them with
KELM to construct the RUL algorithm. Luo et al. [8] proposed an algorithm based on data-
driven and Bi-LSTM to construct HI for the degradation of bearings. Pavle decomposed
signals of different frequency bands based on a wavelet packet and constructed a bearing
health indicator with entropy [9]. Deng et al. [10] proposed the MsDCN neural network,
which improved the operation speed and intensive reading of a convolutional neural
network. GUO selected six sensitive indicators as the inputs of the RNN network and
used the RNN-HI model to fuse the input indicators into a health indicator, and then the
fusion indicator was used to predict the remaining useful life [11]. In addition, to the
traditional algorithm and deep learning remaining useful life prediction methods, the
transfer learning method and meta-learning are also gradually developing in life prediction
and fault diagnosis. Zhang et al. [12] proposed a Bidirectional Long Short-Term Memory
recurrent neural network and different but related datasets to improve RUL estimation
performance. Cao et al. [13] used maximal overlap discrete wavelet transform to divide
the bearing status, and then predicted the remaining useful life of bearings based on the
transfer learning method of the Bidirectional Gated Recurrent Unit, and this method solved
the problem of threshold setting. Mao et al. [14] proposed a new bearing state evaluation
method using deep features and the Pearson correlation coefficient and then predicted the
bearing’s remaining useful life based on transfer learning. On the basis of deep transfer
learning, Sun et al. [15] studied the transfer strategy, including weight transfer, hidden
feature transfer, and weight update, and transferred the SAE network trained by historical
fault information to the new object, thus completing the remaining useful life prediction of
machinery. At present, all prediction algorithms are based on a large amount of complete
data, but it is not easy to obtain data in practical engineering. To solve this problem,
meta-learning has been applied in the field of fault diagnosis. Zhang et al. and Li et al.
have carried out research in this field, indicating that this method is effective for fault
diagnosis [16,17].

By the above, we can state that neural network-based approaches have great potential
in the construction of bearing HI. However, the research above did not consider the
evolution process of the actual bearing life; during the actual operation of the bearing, the
degradation was not stable. By observing monitoring data such as vibration signals, it can
be analyzed that the degradation of the bearing during operation was not stable, but they
simply considered the performance degradation process of the whole life cycle to be a linear
process, setting the training label as a (0-1) straight line. This training process ignores the
bearing degradation process, which is a nonlinear process, and it does not accord with the
actual situation of bearing degradation. On account of this, this paper divides the bearing
degradation process into three stages, namely running-in, stable, and sharp degradation. It
is divided by the frequency domain features and the LOF algorithm. We then proposed
a novel SE-ConvLSTM Neural Network to construct the HI. At last, the bearing life was
predicted by the double exponential model.
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2. Basic Theory
2.1. SE-ConvLSTM Neural Network

The long short-term memory (LSTM) network [18] increases the gating mechanism to
control the information accumulation speed on the basis of the RNN network. However,
LSTM is fully connected and spatial characteristics of the data cannot be analyzed. There-
fore, SHI et al. [19] changed the fully connected operation to convolution on the basis of
LSTM, then the ConvLSTM neural network was proposed. Figure 1 shows the ConvLSTM
neural network structure, and its formula is as follows:

it = σ(Wxi ∗ xt + Whi ∗ ht−1 + bi) (1)

ft = σ(Wx f ∗ xt + Wh f ∗ ht−1 + b f ) (2)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + bo) (3)

ct = ft � ct−1 + it � tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc) (4)

ht = ot � tanh(ct) (5)

where ∗ stand for the convolution operation; i, f , o, c, h represent the input gate, the forget-
ting gate, the output gate, the memory unit, and the external state, respectively; σ() is a
Logistic function; � is the Hadamard operator; W represents the weight of neurons.
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Figure 1. ConvLSTM neural network.

Since the ConvLSTM network was composed of convolution operation and LSTM lay-
ers, the characteristics of both convolution and LSTM will affect the network performance.
The operation of the convolution layer was usually regarded as the operation of aggregating
spatial information and feature dimension information on the local receptive field, but it is
quite difficult to learn big data by convolution operation alone. Therefore, many works
have been proposed to improve network performance, such as the introduction of the
attention mechanism, the introduction of the temporal convolutional network, and other
methods, but these methods improved network performance from the spatial dimension.
For convolution operations, if the features can be recalibrated, then there was no need
to introduce spatial dimensions to improve network performance, which can reduce the
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difficulty of network training and can automatically obtain the importance of each feature,
improve the important features, and reduce the features that are not useful for the current
task. Therefore, the Squeeze-and-Excitation [20] (SE) module was proposed, as shown in
Figure 2, and its formula is as follows:

uc = vc ∗ X =
C
′

∑
s=1

vc ∗ xs (6)

zc = Fsq(uc) =
1

h× w

h

∑
i=1

w

∑
j=1

uc(i, j) (7)

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (8)

x̃c = Fscale(uc, sc) = scuc (9)

where uc,vc = [vc
1, vc

2, . . . , vc
C′ ] and X = [x1, x2, . . . , xC′

]
; vs

c represents the convolu-

tion kernel of s channels, δ represents the activation function RELU, and W1 ∈ R
C
r ×C,

W2 ∈ RC× C
r , X̃c = [x̃1, x̃2, . . . , x̃C].
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Figure 2. SE model.

The SE module was embedded in the ConvLSTM neural network to improve the
channel attention ability of the network. The SE-ConvLSTM neural network is shown in
Figure 3, and relevant parameters associated with each layer are shown in Table 1. The
whole network structure consisted of a ConvLSTM layer, a Maxpooling layer, a Fully
Connected layer, a Dropout layer, and an SE module.

Table 1. Parameter configuration of the proposed network.

Layer Parameters

ConvLSTM_1 Filters = 20, kernel size = (64, 1).
ConvLSTM_2 Filters = 20, kernel size = (3, 1)
ConvLSTM_3 Filters = 1, kernel size = (1, 1)
Maxpooling_1 Pool size = (8,1,1)
Maxpooling_2 Pool size = (2,1,1)
Flatten None
Dense_1 Units = 3
Dense_2 Units = 1, activation = sigmoid
Dropout Rate = 0.5

SE module

Global Average Pooling None
Dense Units = 4
RELU None
Dense Passed by RELU
Sigmoid None

In the proposed SE-ConvLSTM model, the first ConvLSTM layer adopted a large
convolution kernel to extract more local features. In order to suppress over-fitting, the
remaining ConvLSTM layers adopted small convolution kernels and added maxpooling
layers to abstract futures, reducing network parameters and redundancy. At the end of the
network, 3 fully connected layers were set, and the last layer was a single neuron as the
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output—HI. At the same time, in order to prevent overfitting and enhance the robustness
of the network, the dropout layer was added to the fully connected layer.
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2.2. Data Processing and Characteristic Index Construction

In the process of data collection, due to the factors of noise and other disturbances,
it was difficult to ensure the purity of the original vibration data. In the area of signal
processing, Variational Modal Decomposition (VMD), Empirical Mode Decomposition
(EMD), and Ensemble Empirical Mode Decomposition (EEMD) algorithms had advantages
and disadvantages in the field of signal processing. Compared with other algorithms,
EEMD can decompose signals adaptively and effectively avoid modal aliasing [21]. In this
paper, the EEMD algorithm was used to process the original signal before network training.
The main steps of EEMD were as follows [22]:

(1) Set the original signal processing times n.
(2) Add Gaussian noise to n group of signals randomly to obtain a new signal.
(3) The IMF components were obtained by EEMD decomposition of the new signal.
(4) The mean value of IMF components of corresponding modes was calculated to obtain

the decomposition result of EEMD.
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Since kurtosis can reflect the impact on the bearing during operation, after the EEMD
generated 11 components, the components whose kurtosis was greater than the original
signal were selected for reconstruction. The kurtosis formula was as follows:

K =
E(x− µ)4

σ4 (10)

where µ is the mean of x and σ is the standard deviation of x.
The bearing signal processed by EEMD is shown in Figure 4. It can be found that

the vibration signal of the bearing can be effectively decomposed from the original signal
after EEMD.
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Considering the actual situation of bearing degradation, in this paper, we suggest that
the bearing degradation should not be simply set as a (0-1) straight line, but rather should
be designed as three stages. Therefore, after extracting 11 frequency domain indicators of
the bearing, PCA was used to fuse the 11 frequency domain features [23]. The 11 frequency
domain indicators are shown in Table 2. Among them, there are two defined frequency
domain indicators, which are the fifth center frequency and the tenth root mean square
frequency, and the remaining 9 indicators are commonly used in the frequency domain. The
basic principle of PCA is to transform the original variables with a certain correlation into a
set of unrelated data through linear transformation, and its main formula was as follows:

Zm×1= Lm×sXs×1

=


z1 = l11x1 + l12x2 + · · ·+ l1sxs
z2 = l21x1 + l22x2 + · · ·+ l2sxs

...
zm = lm1x1 + lm2x2 + · · ·+ lmsxs


(11)

where X and Z are the original variable and the converted variable, respectively, L is the
transformation matrix, s is the original variable dimension, and m is the dimension of the
variable after transformation; in this paper, m = 1.
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Table 2. The characteristic parameters in frequency domain.

Equation Equation

1
P1 =

K
∑

k=1
s(k)

K
7 P7 = P5

P6

2
P2 =

K
∑

k=1
(s(k)−P1)

2

K−1
8

P8 =

√√√√√ K
∑

k=1
fk

4s(k)

K
∑

k=1
fk

2s(k)

3
P3 =

K
∑

k=1
(s(k)−P1)

3

K(
√

P2)
3

9
P9 =

K
∑

k=1
f 2
k s(k)√

K
∑

k=1
s(k)

K
∑

k=1
f 4
k s(k)

4
P4 =

K
∑

k=1
(s(k)−P1)

4

KP2
2

10
P10 =

√√√√√ K
∑

k=1
fk

2s(k)

K
∑

k=1
s(k)

5
P5 =

K
∑

k=1
fks(k)

K
∑

k=1
s(k)

11
P11 =

K
∑

k=1
( fk−P5)

3s(k)

KP3
6

6
P6 =

√
K
∑

k=1
( fk−P5)

2s(k)

K

The LOF (Local Outlier Factor) algorithm was used to divide the life interval of the
indicator generated by PCA reduction. The LOF algorithm is an unsupervised classification
algorithm used to judge the degree of abnormality by comparing the density near the
sample object with the density in the neighborhood. Its main formula was as follows:

LOFk(p) = ∑
0∈Nk(p)

lrdk(o)
lrdk(p)

|Nk(p)| (12)

where lrdk(o) is the locally accessible density of the neighborhood of p, lrdk(p) is the local
accessible density of p, and Nk(p) is the distance of the neighborhood of k and represents
any set of data whose distance from the object was less than the distance.

Through the above data processing operation, the original signal can be denoised and
divided into three stages of life intervals.

3. Health Indicator Model Based on SE-ConvLSTM

The model was built based on the SE-ConvLSTM neural network, and the output
was realized through network stacking and interaction. In the network training stage, the
training data of the input was

{
xt,yt

}T
t=1, where xt ∈ XN×M is the sampling data with M

time steps and the data length is N. yt ∈ [0, 1] is the degree of degradation corresponding
to the time t. In order to fully train and prevent the over-fitting phenomenon of the model,
the sampling time step was set to 5, as shown in Figure 3. The network loss function was
defined as:

L =
1
2

T

∑
t=0
‖yt − yt‖

2

2

(13)

where yt represents the true label and yt represents the model output.
After the HI output, this paper establishes a double exponential model to realize the

bearing life prediction, and its formula is as follows:

X = a exp(bt) + c exp(dt) (14)

where X represents the health status of the bearing, and a, b, c, d are the parameters of the
double exponential model, which will be updated in the stage of particle filter prediction of
remaining useful life.
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As the model established, HI can be output based on the SE-ConvLSTM neural
network model, and then the double-exponential model can be updated by particle filtering
to realize the RUL prediction. The specific process is shown in Figure 5.
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4. Test Verification

In this paper, the public dataset IEEE PHM2012 Bearing accelerated aging data [24]
was used to conduct experimental verification of the proposed model. The test data came
from the PRONOSTIA test rig, which carried out accelerated life degradation tests on
bearings and collected vibration signals within several hours, with a sampling frequency of
25.6 kHz; each sample was 0.1 s, and the samples were sampled every 10 s. This dataset
contained 17 bearings in 3 working conditions. As shown in Table 3, the first two bearings
of each working condition were used as training sets, and the other bearings were used as
test sets. The test rig is shown in Figure 6.

Table 3. IEEE PHM2012 dataset.

Condition Condition 1 Condition 2 Condition 3

Training Data Bearing1_1 Bearing2_1 Bearing3_1
Bearing1_2 Bearing2_2 Bearing3_2

Test Data

Bearing1_3 Bearing2_3 Bearing3_3
Bearing1_4 Bearing2_4
Bearing1_5 Bearing2_5
Bearing1_6 Bearing2_6
Bearing1_7 Bearing2_7
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Figure 6. Aging platform PRONOSTIA.

The computer configuration used in the laboratory was as follows: The CPU was
Intel(R) Core i7-8750H, the RAM was 16 GB, the GPU was Nvidia GeForce GTX 1060, and
the programming language was Python 3.6.2 (64-bit), based on TensorFlow-GPU 2.4.0 deep
Learning framework implementation.

Firstly, the bearing dataset was denoised and divided into degenerate intervals. The
training data, Bearing1_1, were taken as an example, and its time domain signal is shown
in Figure 7. This shows the whole life data, and at the end of life, with the aggravation of
the damage, the vibration amplitude increased significantly, showing a trend of divergence.
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Figure 7. Time domain signal of Bearing1_1.

According to the data processing process mentioned above, EEMD was firstly used
for denoising the original data, and the 11 IMF components decomposed by EEMD are
shown in Figure 8. Then, based on the kurtosis criterion described in Chapter 2, the
components with kurtosis greater than the original signal were selected for reconstruction,
as shown in Figure 9. The kurtosis values of IMF1, IMF2, and IMF3 were larger than the
original signal, so these three components were selected for signal reconstruction, and then
11 frequency domain features were extracted, as shown in Figure 10. Subsequently, the PCA
fusion algorithm was used for feature fusion. Then LOF algorithm was used to divide the
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degraded interval operation on the basis of the fused feature indicator. Finally, this paper
designed a three-stage feature indicator. The data processing flow is shown in Figure 11.
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The processed data were imported into the proposed SE-ConvLSTM model for training
and compared with reference [25] and a classic CNN. In order to effectively evaluate the
health indicators, after the network training, the monotonicity and trend analysis of HI
were conducted [26], and the formula was as follows:

Mon =

∣∣∣∣ HIpos − HIneg

K− 1

∣∣∣∣ (15)

Corr =

∣∣∣∣ K
∑

k=1
(HIk − H̃I)(Tk − T̃)

∣∣∣∣√
K
∑

k=1
(HIk − H̃I)

2 K
∑

k=1
(Tk − T̃)

2
(16)

where HIpos, HIneg are the positive and negative values of the time derivative of HI. H̃I
and T̃ represent the mean of HI and T.

The monotonicity and trend results are shown in Table 4. It can be seen from Table 4
that the proposed model had better monotonicity and tendency.
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Table 4. The monotonicity and tendency of HI.

Proposed Method LSTM CNN

Mon 0.976 0.887 0.892
Corr 0.981 0.973 0.962

In addition, in order to evaluate the data processing method and the SE-ConvLSTM
neural network proposed in this paper, an ablation study was conducted, and the following
three models were designed and compared:

(1) Original data and SE-ConvLSTM neural network were used for training.
(2) Processed data and ConvLSTM neural networks without the SE module were used

for training.
(3) Processed data and the SE-ConvLSTM neural network were used for training.

By comparing the HI output results and loss, the above three models were used to
analyze the superiority of the proposed method. It can be seen from Figure 12 that the
training process of the proposed method was relatively stable, and the failure threshold of
the output HI was 1. However, it can be seen from Figure 12a that HI fluctuates greatly in
the training process of (1) and (2), and the failure threshold of (1) was not stable to 1, but
rather between 0.8 and 0.9, which will have a negative effect on the subsequent remaining
useful life prediction. In addition, it can be seen from Figure 12b that the loss of the training
process of the method proposed in this paper was stable between 0.01 and 0.02, indicating
that the fitting effect of the label and data was relatively stable. By comparing the loss of (1)
and (2), although the loss tends to be stable due to the network effect, combined with the
output HI and loss values, the overall effect was not as good as the method proposed in
this paper.

In order to analyze the hidden layer characteristics of the proposed model, the t-SNE
algorithm [27] was used for visual analysis. The training data Bearing1_1 were taken as
an example, where the selected hidden layers were the input layer, the first maxpooling
layer, and the last fully connected layer, and the results are shown in Figure 13. Each point
in Figure 13 represented the feature distribution at different times t. It can be seen from
Figure 13 that, with the deepening of neural network layers, the training data changed
from chaotic to ordered, which can reflect the bearing degradation process.
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Figure 13. Hidden layer features displayed by t-SNE. (a) Input layer, (b) the first maxpooling layer,
(c) the first fully connected layer.

Then 11 test bearings were tested on the trained model. Taking Bearing1_3 as an
example, the particle filter was used to predict the remaining useful life of the HI output
from the model. The prediction results are shown in Figure 14, where the red curve is the
HI predicted by the double exponential model. Figure 14a is the RUL result of the model
proposed in this paper, and it can be seen that the threshold value of 1 is reached at period
2232, so the predicted remaining useful life is 430 (10 s). Figure 14b shows the predicted
result of the LSTM neural network. It can be seen that the threshold value of 1 is reached at
the time of cycle 1973, so the predicted remaining life is 171 (10 s). Figure 14c shows that
for the prediction result of the classical convolutional neural network CNN, its threshold
value of 1 is reached at period 2232, so the predicted RUL is 288 (10 s).
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Figure 14. RUL results of Bearing1_3. (a) Remaining useful life prediction results based on the
model presented in this paper, (b) remaining useful life prediction results based on the LSTM model,
(c) remaining useful life prediction results based on the CNN mode.

It can be seen from Figure 14 that when the red curve reached the threshold of 1, it
represented the termination of remaining useful life. The prediction error (33.86%) and
95% Confidence Interval (CI) of the proposed method are higher than those of the other
two methods (77.31% and 49.74%). The results of other test sets are shown in Table 5.
The method proposed in this paper was also compared with other methods to reflect
its superiority. For example, to achieve the prediction of RUL, Guo et al. [28] proposed
a prediction model based on EMD-RISI-LSTM, as shown in reference [11]. Sensitive
indicators and an RNN are used to predict the remaining useful life. In order to describe
the superiority of this model, the absolute mean error was adopted to evaluate the model
results, and its formula was as follows:

Eri =
ActRULi − RULi

ActRULi
× 100% (17)

where ActRULi represents the true life of group i test data and RULi represents the pre-
dicted life of group i test data.

Table 5. Prediction results and comparison of RUL.

Test Data
Current

Time True RUL Prediction
RUL

Proposed
Method

Reference
[28]

Reference
[11] LSTM CNN

(10 s) (10 s) (10 s) (%) (%) (%) (%) (%)

Bearing1_3 1802 573 430 33.86 17.28 43.28 77.31 49.74
Bearing1_4 1139 289 330 −14.19 40.34 67.55 61.08 57.85
Bearing1_5 2302 161 134 16.77 −27.33 −22.98 −25.33 −39.91
Bearing1_6 2302 146 122 16.44 −34.25 21.23 16.26 22.46
Bearing1_7 1502 757 701 7.40 5.15 17.83 20.74 18.47
Bearing2_3 1202 753 485 35.59 −11.69 37.84 40.17 38.08
Bearing2_4 612 139 162 −16.55 −31.65 −19.42 38.47 −30.26
Bearing2_5 2002 309 90 70.87 −9.06 54.37 49.27 55.25
Bearing2_6 572 129 130 −0.78 −13.95 −13.95 24.91 −20.65
Bearing2_7 172 58 70 −20.69 50.00 −55.17 −40.12 −69.47
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Table 5. Cont.

Test Data
Current

Time True RUL Prediction
RUL

Proposed
Method

Reference
[28]

Reference
[11] LSTM CNN

(10 s) (10 s) (10 s) (%) (%) (%) (%) (%)

Bearing3_3 351 83 74 10.85 None 3.66 12.84 12.54
Er 21.37 22.10 32.48 36.98 37.70

Compared with reference [11], reference [28], LSTM, and classical CNN, the error of the proposed method is
lower, which proves the superiority of the proposed method.

5. Conclusions

The accuracy of health indicator construction directly affected the precision of remain-
ing useful life predictions of bearings. In this paper, a bearing health index construction
model based on a three-stage life interval partition and SE-ConvLSTM was proposed, and
the remaining useful life prediction method was obtained by combining it with a particle
filter. After verification on the IEEE PHM2012 bearing dataset, the results showed that the
method proposed in this paper has higher accuracy. The following conclusions were drawn
from the experimental analysis:

(1) Proposed the SE-ConvLSTM health index construction model, which realized the
bearing health index output by utilizing the time and space characteristics of the
convolutional long short-term memory neural network and attention mechanism of
the SE Block.

(2) Machine learning algorithms including EEMD and LOF were used to divide the
bearing degradation interval, and then we constructed a health indicator in line with
the bearing degradation process. By comparison, it was concluded that the three-
stage performance indicator proposed in this paper predicted the bearing’s remaining
useful life with higher accuracy and had important reference significance for bearing
health evaluations.

6. Discussion

The degradation process of bearing performance in the whole life cycle is a complex
nonlinear process. However, traditional neural-network-based methods usually consider
the bearing performance degradation process to be linear, which does not conform to
the actual situation of bearing degradation. Therefore, considering the actual situation of
bearing degradation, this paper divides the bearing life cycle and designs a three-stage label.
However, in actual engineering, due to practical problems such as changes in working
conditions and frequent shutdowns, it is not easy to obtain full-life-cycle data of bearings.
Therefore, data mining should be more in-depth, the division of the degradation stage
should be clearer and more detailed, and it should be interpretable. Therefore, in future
research, we should dive deeper into the process of bearing life evolution, learn from
existing theories, start with practical problems, and conduct more in-depth research.
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