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Abstract: Robots have been critical instruments to exploration of extreme environments by providing
access to environments beyond human limitations. Jumping robot concepts are attractive solutions
to negotiate complex and cluttered terrain. However, among the engineering challenges that need
to be addressed to enable sustained operation of jumping robot concepts in extreme environments,
the reduction of mechanical failure modes is one of the most fundamental. This study sets out to
develop a jumping robot design, with a focus on a minimal actuation to support reduced mechanism
maintenance and thus limit the number of mechanical failure modes. We present the synthesis of a
Sarrus-style linkage to constrain the system to a single translational degree of freedom thus removing
the need for synchronising gears, which exhibit high failure rates in dusty environments. We have
restricted the present research to vertical solid jumps to assess the performance of the fundamental
main-drive linkage. A laboratory demonstrator assists the transfer of theoretical concepts and
approaches to practical implementation. The laboratory demonstrator performs jumps with 63%
potential-to-kinetic energy conversion efficiency, with a theoretical maximum of 73%. Satisfactory
operation opens up design optimisation and directional jump capability towards the development of
a jumping robotic platform for extreme environments exploration.

Keywords: robotics in hazardous fields; space robotics and automation; jumping locomotion; mecha-
nism design

1. Introduction

The practicality of a mobile robot is often limited by its ability to negotiate obstacles.
Various land locomotion methods enabled by limbs, wheels, tracks, body articulation, and
non-contact locomotion are used in mobile robots to negotiate terrain. Insurmountable
obstacles are generally dealt with by a heading change, shortening the traversable mean
free path. This results in longer commutes and an increased requirement for steering
capability. Conversely, if a robot can overcome all obstacles in its path, then no steering
is required and there is potential to reduce the commute distance, time and subsequent
energy usage requirements.

Walking and crawling locomotion offer high terrain adaptability and obstacle negotia-
tion at the cost of high control complexity; this cost is sometimes warranted in some specific
applications, e.g., [1,2], for example in vertical climbing of snake-like robots. Wheeled and
tracked rovers [3] offer robust mobility whenever sufficient traction between the terrain
adaptation system, e.g., cleated wheel, and the terrain exists. The maximum obstacle
traversable height in wheeled rovers is closely related to the wheel diameter [4]. For exam-
ple, for the typical rocker-bogie chassis-based planetary rover, the maximum traversable
height is roughly 50% the wheel diameter [5]. Whereas jumping robots have been devel-
oped that can traverse obstacles several times their own height, such as the 45 kg∼0.5 m
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height PrOP-F mobile apparatus that was expected to jump ∼50 m on the Mars’ moon
Phobos [5–7], and other prototypes for Earth based operation e.g., Leonardo, Salto, Mowgli,
among others [8–10].

A jumping robot gains kinetic energy through contact reaction force from the ground. If
slippage is limited during the contact phase a jumping system has the potential for reduced
frictional cost of transport compared to walking or rolling systems. This may also imply
reduced design complexity in the terrain adaptation system as contact wearing is reduced
in comparison to other means of locomotion. One of the most appealing characteristics of
jumping locomotion is the ability to traverse challenging terrain using a reduced number
of drivable degrees of freedom. This has the potential to reduce robotic cognitive resources
and sustained power consumption during locomotion.

Jumping locomotion has gained great attention due to the aforementioned characteris-
tics, which may enable small rover concepts with substantial mean free paths and modest
control requirements. This has led to several jumping robots being designed for Earth,
planetary [11,12], and asteroidal exploration [5,7,13,14]. However, there are significant
unmet needs in jumping exploration robot technologies, mostly in robot designs aiming
to extreme environments. For instance, practical jumping robots for space exploration
have been historically limited to microgravity conditions that have permitted the use of
rotational torquers or whiskers to gain satisfactory jump velocity, coining the term of mobile
landers, e.g., The Mobile Asteroid Surface Scout [15] and the Micro Nano-experimental
Robot Vehicle for Asteroids (MINERVA-II) onboard the Hayabusa-2 mission to the Ryugu
asteroid [14]. The success in transitioning from current mobile landers to jumping robotic
explorers will reside in resilient designs able to cope with unforeseen situations, particularly
in situations where direct human control is not possible or greater autonomy is required.

In this work, the development of a main-drive linkage platform for jumping robots
addressing the reduction of mechanical mobility failures in favour of sustained operation
and mission viability is discussed. Thrust force vectoring for jump directionality [16]
is subject of a complementary study. In line with the minimally actuated robot concept
presented here, a landing buffer approach has been proposed for the CLOVER robot in [17].

1.1. Design Goals

The main motivation for this work is to establish the mechanical foundation for the
development of a nimble robotic platform capable of complex terrain exploration. Space
exploration and the nuclear industry [18] are quintessential examples of such activities. In
general, such a robotic platform would be mainly used to access environments beyond
human capabilities, and beyond the capabilities of traditional exploration robots e.g.,
wheeled explorers. To achieve this aim, this work reports the development process of a
mechanism with sufficient reliability and versatility as to set the basis of a generic robotic
explorer platform. Thus, we delimit our design using the following three constraints.

Firstly, our design approach is driven by minimising the number of actuators necessary
to support the jumping mechanism. Research efforts are directed toward the development
of the main-drive linkage responsible for transforming potential energy into jump kinetic
energy. Jump directionality poses unique challenges, as discussed by [16], which are
out of the scope of the current work. In the context of this work, we define jumping as
a single action to propel a body to become airborne, while hopping involves repetitive
consecutive jumps. In a real autonomous robot operation, the ability to come to a halt
between jumps may be critical to support system state checks, permit eventual system
recovery, and feedforward mission task planning, among others. This ability becomes
even more relevant in complex or unknown terrain operations. Although the duration of
the halt stage may vary significantly for different applications, this condition implies that
periodic hopping is not a suitable mode of operation to support this design. The rationale
behind the selection of minimal actuation is that driving multiple degrees of freedom
not only consumes additional onboard power, a paramount concern in robotic explorers,
but also adds control, mechanical complexity to the locomotion system. Specifically, in a
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jumping robot where dynamics evolve rapidly to gain kinetic energy, increased mechanical
complexity inherently increases the risk of most fundamental mechanical failure modes.
Furthermore, increased system complexity may be detrimental for small and light robotic
explorer designs because size and mass are compromised.

The second design constraint is the objective physical scale of the platform. Over
the last five to ten years, there has been an upward trend in investment and demand in
robotics for terrestrial, planetary and microgravity applications. This trend is driven by
the increasing need for on-orbit satellite servicing, debris removal, on-orbit manufacturing
and assembly, and space exploration [19,20], and general increased demand for low-cost
low-mass exploration robots such as the unmanned aerial vehicles (UAV), fostered pri-
marily by accelerated technological advancements in autonomous systems around the
world. Additionally, miniaturised satellite platforms for scientific and economic return,
such as CubeSats, have boosted low-cost access to space. These conditions suggest the
timeliness and potential for the development of a miniaturised robotic platform to access
such applications. Thus, a sub-kilogram and sub-metre scale for the demonstrator is set.

The third design constraint is set by the objective operational conditions. Terrain and
environment characteristics are of paramount importance, not only regarding navigability,
but also for robot endurance. Hostile ambient conditions such as thermal extremes and
dust environments may represent sources of mechanical failure. Dust in particular is a
common source of operative deterioration affecting movable joints due to its pervasive
presence in most environments. Furthermore, hazardous dusts [21] such as those from
asbestos, beryllium oxide, and radioactive materials, may transform exploration robots into
unwitting dissemination devices. In planetary rovers, robot-soil interaction is exacerbated
by the dominant presence of loose regolith [22], for example lunar regolith is exceptionally
adhesive to any surface due to its frictional and electrostatic properties. In all, the above
identifies the need of a design approach aiming at reducing or prescinding human me-
diation in routine robot maintenance processes. In turn such design would contribute to
resilient and reliable locomotion.

The robotic platform design resulting from these design goals is hereinafter referred
to as Controlled Leap Operation for a Versatile Exploration Robot CLOVER. The design
programme reported in this paper focuses on the take-off development stage, and is
outlined by the following main design goals:

1. Design for minimal actuation of main-drive jump linkage (thrust force vectoring is
not considered at this stage)

2. Focus on linkage mechanism potential-kinetic energy conversion efficiency
3. Design for reduced linkage mechanism maintenance

In the following Section 2 the theoretical design of the CLOVER is presented.

2. Mechanism Design

In line with the first design goal of maintaining minimal actuation, and acknowl-
edging that the jumping process involves mainly the development of linear momentum,
mechanisms with one translational Degree Of Freedom (DOF) are considered. The simplest
typical mechanisms that fulfil these criteria include the telescopic prismatic mechanism and
the hinge rhomb linkage (Figure 1A,B respectively). When used within a jumping robot
these mechanisms are often spring driven [23–28]; an electric actuator is used to compress
the spring and the actuation force is then removed (e.g., via a mechanical catch) to initiate
the take-off phase. Thrust is generated as the ground reaction force acting on the foot of the
robot, which accelerates the robot with respect to the ground. In the telescopic prismatic
mechanism, the thrust force is maximum when the spring is fully compressed, and reduces
linearly with the spring displacement. From a conceptual perspective, this mechanism
offers a simple solution to the jumping problem. However, experimental evidence has
suggested that this type of mechanism could suffer from spring surge potentially reducing
energy conversion efficiency as reported by [26].
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Figure 1. The telescopic prismatic mechanism (A) and hinge rhomb linkage (B), with their char-
acteristic ground reaction force with longitudinal displacement graph. From (C–F), synthesis of a
synchronous hinge rhomb linkage using a pair of synchronising gears. Dotted line extremes in graph
B highlight singular or nonlinear behaviour of FN with y for specific geometry configurations; these
aspects will be discussed in subsequent sections.

An alternative mechanism commonly used for jumping robots is a hinge rhomb link-
age [25–28]. This consists of four links connected by hinge joints (forming two symmetric
dyads), and a spring connecting the intermediate joints of the two dyads as shown in
Figure 1B. This mechanism has more components inherently adding more complexity
to the system in comparison to the telescopic prismatic mechanism (In order to prevent
buckling of the helical compression spring, auxiliary elements are typically used, e.g., guide
tubes, rods. However, here these elements are assumed simpler than in the hinge rhomb
linkage) in Figure 1A. However, the mechanism has been cited as a means of removing
undesirable spring surge and premature take-offs [26], which may lead to reduction in
risk of slippage. Also, the linkage acts as an inverter for the thrust force, which implies
that maximum thrust occurs at the end and not at the beginning of the jump evolution as
occurs in the telescopic prismatic jumping mechanism. This phenomenon reduces the force
required to hold the mechanism when at maximum compression, in comparison to the
prismatic mechanism. The advantage of this is that the release mechanism (e.g., a latch)
would require lower actuation force/torque, and hence lower mass, in the hinge rhomb
linkage system than the prismatic linkage system.

In the hinge rhomb system, the spring carries tensile loading rather than compression
loading. Higher design factors are used in extension springs as these are prone to hooks
fatigue and more catastrophic failure than compression springs, representing more mass
addition to this system. Notwithstanding, the progressive thrust force and absence of
spring surge has shown more practical advantages than disadvantages [26]. Furthermore,
as the hinge rhomb linkage uses tensile loading, the spring drive can easily be replaced with
a flexible material drive with a high specific energy, which allows for alternative designs
that may support overall system mass reduction. From this qualitative analysis, further
synthesis of the proposed design is based on the hinge rhomb linkage.

The implementation of the hinge rhomb linkage in a jumping robot requires the
addition of links for functional purposes, e.g., a foot or platforms for onboard payloads.
This practical requirement is often fulfilled with the addition of extra links separating
the two main dyads acting as legs, i.e., from four links to five or six links. The resulting
modified linkage changes the DOF of the end effector (P from Figure 1C,D) requiring
extra components to recover the original single translational DOF. A common solution
to this employs a pair of synchronising gears [26,29] for the dyads as shown in Figure 1F.
Planar mechanisms like the one described above are often seen in jumping robot designs.
However, this approach is discordant with our third design goal, i.e., design for reduced
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mechanism maintenance, because exogenous materials can easily compromise operation
and reliability of gears and therefore of the whole mechanism. For example, dust or other
contaminants can affect tolerances in gears. This in turn affects the dynamic factor, an
exponential function of a quality number used to account for inaccuracies in teeth in
stress equations [30]; a small variation in the quality number yields large variation in
the dynamic factor and therefore in the teeth stress prompting mechanical failure. In
contrast contamination tolerance and dust sealing technologies for hinge construction
are mature and considerably simpler than those for the isolation of gears. For example,
bearing technologies have been proven in planetary rovers showing high reliability in
extremely challenging and contaminated operation conditions [13]. A contribution of this
work is achieving dyad synchronisation without the use of gears, or any other additional
mechanism, by transforming the planar 6-link mechanism into a spatial 6-link mechanism.
This can be achieved by creating a new plane through the relative rotation of one dyad
with respect to the axis of symmetry defined by the translational vector of the DOF.

The well-known classical Sarrus mechanism is created when the dyad planes are
orthogonal. The Sarrus mechanism is a spatial parallel mechanism with one translational
DOF, consisting of two platforms interconnected with two dyads, each of them having
three revolute joints (3–RRR) perpendicular to the translation axis. Note that despite the
elegant simplicity of this alternative to the gear-synchronised 6-link planar mechanism,
the line of action of the driver that connects the dyad centres lies outside the plane of the
kinematic chain locates (mobility plane); this introduces lateral torques on the revolute
joints. A natural way to overcome this new problem is by recovering mechanism symmetry
about the axis of translation while preserving the dyads in different planes as mentioned
before. This analysis in presented in the following Section 2.1.

2.1. Kinematic Chains and Mobility Analysis

In first instance, the mobility of the Sarrus mechanism can be investigated by exploring
the geometry characteristics of the mechanism. In a general architecture of a Sarrus-
based mechanism in Figure 2, an upper and base platform are connected through n–RRR
kinematic chains identical in topology. Each kinematic chain i–RRR with i = 1, 2, 3, . . . n
always remains in its mobility plane πi. The i-th kinematic chain only allows its terminal
connector, i.e., the one connected to the upper platform in this analysis, independent planar
motions on πi. Due to the common connection between the n–RRR kinematic chains
through the upper platform, its mobility is constrained to one translation (up and down)
along the common intersecting line of the πn planes. As this line lies in the central line of
the mechanism, this general architecture can be defined as a centralised moving parallel
mechanism. From these observations, the mobility analysis of the mechanism can be
formalised as follows.

Figure 2. n–sided Sarrus linkage.
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Mobility analysis of mechanisms is typically carried out using the Grübler–Kutzbach
Criterion (G–K), which is based on simple arithmetic. The G–K criterion can be successfully
applied to almost all planar and some spatial mechanisms. However, when redundant
constraint or over-constraint appears in a mechanism G–K fails in most cases [31]. For
this reason, Screw theory is often used in the analysis of spatial mechanisms. Appendix A
presents the mobility analysis of the over-constrained Sarrus linkage based on screw theory.
From this analysis it is concluded that the sole condition to preserve one translational
DOF in this type of mechanism is that at least two dyads remain in nonparallel planes.
Therefore, a family of mechanisms of this kind can be named with respect to a fundamental
configuration ensuring the essential mechanical behaviour of the linkage, e.g., the classical
Sarrus mechanism as shown in Figure 3.

Figure 3. Family of mechanisms and tensile loadings distribution. From left to right, the classical
6-link Sarrus mechanism S− 0, first dyad redundancy S− 1, and second dyad redundancy S− 2,
from S− n possible configurations. The arrows show force vectors generating null net torque on the
revolute joints.

The presented family of mechanisms also shows tensile loading arrows created by the
spring, which originally connected the intermediate joints of the two dyads (hereinafter
referred to as knee) in the hinge rhomb linkage in Figure 1A. Note that the first fundamental
configuration, S− 0, shows no rotational symmetry; that is, the angle between the two
dyad planes (n = 2) is different from 2π/n radians. Conversely to S− 0, configurations
with rotational symmetry are advantageous from the point of view of load distribution
(Figure 3). The second configuration S− 1, highlights one-dyad redundancy with respect
to the fundamental configuration S− 0, with rotational symmetry of order 3 (120◦ between
planes). Similarly, other symmetric configurations of higher order can be formed without
affecting the mechanical behaviour of the linkage.

Figure 3 shows the S− 1 configuration with tensile loadings TB at aperture angles
γ/2. Each TB has two orthogonal components, one projected along the dyad plane that
is responsible of actuating the mechanism, and a complementary orthogonal projection
adding torque to the root revolute joints. As long as the loads show bilateral symmetry with
respect to the link pane, they will produce no net torque on the joints. Notwithstanding,
any value of γ 6= 0 prompts stretch reduction, affecting the elastic potential energy of the
drive, which is a function of stretch squared.

2.2. Thrust Force

The approach implemented in the CLOVER robot design is based on the S− 1 configu-
ration illustrated in Figure 4, due to geometric simplicity in line with our third design goal
in Section 1.1. Additionally, γ = 60◦ is set for the sake of a simplified anchorage design
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for the drive as discussed later in this section. The leg length is a, leg swing angle is θ, the
fixed leg separation distance is c, l is the variable distance between fixed points in the knees
serving as anchorage points for the drive, the variable linkage height is h, and the thrust
force is Fy. For the sake of practical implementation, it is assumed that b is the variable
length running from the analysed body-leg joint to the effective anchorage point of the
elastic element; p and q are lengths that relate a and b. Note that p and q could be used
to capture in-plane offsets between the axis of rotation of the knee revolute joint, and the
practical anchorage point of the elastic element. In our knee design, p and q are constant
lengths capturing manufacturing trade-offs discussed later in Section 3.

The masses of the components are labelled as mi from bottom to top, and are used in
the following subsection. The value of h can be described with Equation (1) in terms of the
constants a, p, and the time varying θ.

h = 2a sin θ + 2p (1)

Figure 4. Linkage cage. Elastic elements, not shown in the illustration, are anchored to the knees and
run along the distance l.

Similarly, b is given by Equation (2).

b2 = a2 + p2 + q2 + 2a(p sin θ + q cos θ) (2)

The distance l is given by Equation (3).

l = c +

√
12b2h4 − 3h6

2h2 (3)

The thrust force is obtained from the spring force along l, Fl , by applying the principle
of virtual work in Equation (4), yielding Equation (5).

Fy = Fl
dl
dh

(4)

Fy =

√
3Flh3

2
√

4b2h4 − h6
(5)

For the specific case of constant stiffness, that is Fl = k∆l, with k the so-called spring
constant, and ∆l is the length difference between the distorted length l and undistorted
length l0, the thrust force is given by Equation (6).

Fy =
kh
[
2
√

3(c− l0)h2 + 3
√
(4b2 − h2)h4

]

4
√
(4b2 − h2)h4

(6)

To illustrate the thrust profile, the specific case of a single pin knee joint, i.e., p = q = 0
recovering the simplicity of the S− 1 configuration, and equal leg length segments (a = b)
in Equation (6) can be analysed. The spring in this robot design will be an elastic material,
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which is assumed to only apply a load to the system when it extends beyond its natural
length, and no load when it is compressed. This is modelled in the system using a Heav-
iside step function H(∆l), collapses the thrust force to zero for cases where the spring
is compressed.

The resulting profile of Fy is shown in Figure 5 for some combinations of l0 and c, with
a and k equal to one. From the figure it is observed that the thrust force peaks before full

distension of the elastic element. In fact, for the condition of c < l0 and a >

√
(c−l0)

2

3 , the
thrust force peaks at (Equation (7))

hFymax = 2

√√√√√a2 −
[

a4(c− l0)
2

3

] 1
3

(7)

The linkage height at full spring distension, hFyd, is defined by Equation (8)

hFyd = 2

√
3a2 − (c− l0)

2

3
(8)

Note in Figure 5 that for l0 > c at hFyd the force flow is null, which in practice implies
minimum stress in joints. On the other hand, the closer the values of l0 and c are, the
greater the force at hFyd, which result in backlash in joints when inertial effects are included.
Backlash is a source of mechanical failure due to mechanical fatigue in joints as a result
of the unreleased thrust energy circulating within the conversion mechanism. These two
conditions call for trade-offs in the design to maintain acceptable performance as well as
practical functionality as discussed in the following sections.
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a = 1, k = 1. The curves illustrate two relation cases for l0 and c. For the sake of illustration l0 − c = 0.7 is
used to cover the case l0 > c. For l0 = c, the force inversion observed in the hinge rhomb linkage is recovered.
Conversely for l0 > c the behaviour of nonlinear spring is created.
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r2,GC =
a
2

cos θ ı̂+ a
2

sin θ ̂

r3,GC = a cos θ ı̂+ (a sin θ + p) ̂

r4,GC =
a
2

cos θ ı̂+
(

3
2

a sin θ + 2p
)
̂

r5,GC = 0 ı̂+ h ̂

(9)
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ṙ2,GC = − a
2

θ̇(sin θ ı̂− cos θ ̂)
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ṙ4,GC = − a
2

θ̇(sin θ ı̂− 3 cos θ ̂)

ṙ5,GC = 0 ı̂+ 2a cos θθ̇ ̂

(10)
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M4 = m3 + 2m4 + 2m5

(11)

T =
a2

8
[4M1 cos 2θ +M2]θ̇

2 +
1
2
(I1 + I2)θ̇

2 (12)

Figure 5. Thrust force vs. leg extension normalised to maximum values of l0 = c, for equal leg
length a = 1, k = 1. The curves illustrate two relation cases for l0 and c. For the sake of illustration
l0 − c = 0.7 is used to cover the case l0 > c. For l0 = c, the force inversion observed in the hinge
rhomb linkage is recovered. Conversely for l0 > c the behaviour of nonlinear spring is created.

2.3. Dynamic Modelling

In this subsection the equations of motion for the system during the decompression
phase up to the instant of take-off are formulated. Assume the geometric positions of
gravity centres are given by Equation (9).

r2,GC =
a
2

cos θ ı̂ +
a
2

sin θ Ĵ

r3,GC = a cos θ ı̂ + (a sin θ + p) Ĵ

r4,GC =
a
2

cos θ ı̂ +
(

3
2

a sin θ + 2p
)

Ĵ

r5,GC = 0 ı̂ + h Ĵ

(9)
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The velocities of the gravity centres in Equation (10) are derived from the geomet-
ric positions.

ṙ2,GC = − a
2

θ̇(sin θ ı̂− cos θ Ĵ)

ṙ3,GC = −aθ̇(sin θ ı̂− cos θ Ĵ)

ṙ4,GC = − a
2

θ̇(sin θ ı̂− 3 cos θ Ĵ)

ṙ5,GC = 0 ı̂ + 2a cos θθ̇ Ĵ

(10)

The Lagrangian mechanics approach is used to derive the governing equations of
motion. The Lagrangian, L ≡ T − V, is derived from the potential of the conservative
forces of the system. From Equation (10), and from the substitution variablesMi defined
in Equation (11) used to simplify equation notations, the total kinetic energy T can be
expressed by Equation (12), with I1 and I2 as mass moments of inertia.

M1 = m4 + 2m5

M2 = m2 + 4m3 + 5m4 + 8m5

M3 = m2 + 3m4 + 2m3 + 4m5

M4 = m3 + 2m4 + 2m5

(11)

T =
a2

8
[4M1 cos 2θ +M2]θ̇

2 +
1
2
(I1 + I2)θ̇

2 (12)

From Equation (9), the total potential energy V is given by Equation (12), with g as the
gravitational acceleration.

V =
1
2

agM3 sin θ + pgM4 (13)

As not all the forces acting on the system are derivable from a potential, the Lagrange’s
equation can be written as in Equation (14).

d
dt

∂L
∂θ̇
− ∂L

∂θ
= Q (14)

In this equation Q is the generalised forces term in Equation (15) given by the
thrust force and non-conservative damping torques for frictional losses with characteristic
Coulomb coefficient µC.

Q = Fy
∂h
∂θ
− µCsgn

(
θ̇
)

(15)

Finally, by solving Equation (14) for θ̈ and after further mathematical manipulation,
Equation (16) presents the Dynamical Model governing equation, hereinafter referred to
as DM.

θ̈ =
4M1a2 sin 2θ

a2(4M1 cos 2θ +M2) + 4(I1 + I2)
θ̇2−

2a cos θ
(

gM3 − 4Fy
)
+ 4µCsgn

(
θ̇
)

a2(4M1 cos 2θ +M2) + 4(I1 + I2)

(16)

The dynamical model governing equation derived so far is meaningful only within
the linkage decompression phase 0 ≤ t ≤ toff ending at take-off. After this time, the aerial
phase takes place. Also note that the governing equation is independent of m1 as this
remains static, in contact with the floor during the linkage decompression phase. Thus, the
issue at hand is now to derive an equation for the take-off velocity that includes m1 in order
to simulate the jump trajectory, as shown in Figure 6. The first and second derivatives of
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Equation (1) with respect to time yield the linear velocity and acceleration in Equations (17)
and (18) respectively.

ḣ = 2a cos θθ̇ (17)

ḧ = 2a cos θθ̈ − 2a sin θθ̇2 (18)

During the time the linkage is decompressing moving upwards, the mass in motion is
mT −m1 with the total mass given by Equation (19). Under this condition, the maximum
value of Equation (17) is reached when the value of Equation (18) is zero.

mT =
5

∑
i=1

mi (19)

After the total mass reaches its maximum velocity (ḣmax), the effect of gravity starts to
slow down the motion but the upward movement continues while the robot is still on the
ground. The instant of take-off, toff, occurs when the ground reaction force in Equation (20)
equals zero.

FN = (mT −m1)ḧ + (mT −m1)g + m1g (20)

And at this instant the velocity of the centre of mass is defined as ḣtake-off. Immediately
after take-off the velocity of the centre of mass is obtained by assuming conservation of
linear momentum:

v0 =
mT −m1

mT
ḣ(toff) (21)

Note that for a massless foot (m1 = 0), v0 = ḣ(toff); in any other case some of the
momentum is transferred to the foot.

Figure 6 illustrates the jump dynamics. The decompression phase is modelled using
Equations (17) and (18), with the position data obtained from numerical integration of
Equation (16). The aerial phase is treated as a ballistic trajectory in a gravity field with
take-off velocity given by Equation (21).
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Figure 6. Characteristic kinematic curves of a squat jump. Note that v0 < ḣ(toff); after reaching
maximum velocity ḣmax, the effect of gravity starts to slow down the motion but the upward
movement continues. When the force due to body acceleration equals the weight of the foot, the
whole linkage finally moves together and take-off occurs. The maximum flight height is denoted
by hmax.



Machines 2022, 10, 640 11 of 24

3. Laboratory Demonstrator Design

This investigation set out to develop a minimally actuated linkage platform for jump-
ing robots. In this section, the design of a laboratory demonstrator used to assist the
evaluation of the proposed linkage approach is discussed. It is known from Section 2
that the proposed linkage has one translational DOF and is intended to develop linear
momentum for a jump. It is worth mentioning that the take-off, aerial, and landing phases,
each pose specific requirements for a practical jumping robot explorer. In practice, the
traverse mode would require thrust force vectoring, may require robot attitude control
during aerial phase, and self-righting capability would be essential in preparation of a
subsequent jump. Acknowledging this and that other robot design elements stem from
the characteristics of the linkage dynamics, such as foot design and thrust force vectoring
approach, the scope of the design of the laboratory demonstrator at hand is limited to
the take-off development stage; specifically, the fundamental jumping ability metric, the
potential-to-kinetic conversion efficiency is discussed in this section. Additionally, from
Section 2, note that the functional difference between the plates m2 and m5 in Figure 4 is
defined by the mass in contact with the floor at a specific time, i.e., the foot could be either
plate according to its capability to generate thrust force. This characteristic of the linkage
enables reversible jumping robot designs and simplistic robot self-righting approaches
such as those presented by [32,33], which in practice are desirable for resilient locomotion.
The reversible jumping robot approach will be preferred in subsequent iterations of the
CLOVER robot design. However, for the laboratory demonstrator design presented herein,
the plates are predefined as foot and head in favour of a simple compression and latching
mechanism for the linkage efficiency tests.

The overall design of the CLOVER robot laboratory demonstrator presented here
embodies trade-offs between materials and components availability towards the intended
desired functionality. Firstly, commercial off-the-shelf components and materials are pre-
ferred as a way to find rapid solutions to test fundamental design routes. In this tenor,
the legs of the laboratory demonstrator are built with commercial carbon fibre box profile,
and custom-made parts with PolyLactic Acid (PLA) through additive manufacturing. The
selection of the carbon fibre box profile was made on the basis of bending resistance, light
weight, and adequate subjection for leg attachments. For the CLOVER robot laboratory
demonstrator TheraBand resistant band is identified as suitable energy storage drive be-
cause of its high snap resistance and availability of material sizes and broad range of
stiffness values [34].

The experimental force-stretch curve for uniaxial elongation of a stripe of TheraBand
Latex used in the CLOVER robot laboratory demonstrator, shows a characteristic hyperelas-
tic behaviour of rubber-like materials. Rubber-like elasticity is suitably modelled with the
Gaussian theory, which is a statistical-mechanics-based equation of state in Equation (22),
where C0 is a material constant, T is the temperature of the material, and deformation ratio
λ = l

l0
. Although Gaussian theory breaks down at higher strains, it highlights the insight-

ful relationship between force and temperature in rubber-like materials, i.e., the force is
proportional to temperature. Therefore, temperature variations equally affect the restoring
force. However, temperature and force are dependent variables of state in rubber-like
materials. For example, a sudden deformation of the material that may render heat transfer
from/to the environment negligible, i.e., quasi-adiabatic stretching, produces changes in
the material temperature. In this way, if the material is suddenly stretched its temperature
increases; conversely if it is suddenly distended its temperature decreases.

Fl,G = C0T
(

λ− 1
λ2

)
(22)

TheraBand band stretching is a slow process in the CLOVER robot, which implies heat
transfer from the band to the environment. Under this condition, an isothermal process
taking place in the material is a reasonable assumption yielding force variation a sole
function of the stretch. Band distension on the other hand, occurs in a fraction of a second
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enhancing the thermoelastic effect of the material. By comparing the thermoelasticity of a
rubber band for a range of stretch values of interest for this research, i.e., 1 ≤ λ < 3, this
supposes a temperature change of less than 1 K [35]. Furthermore, from Figure 4 is evident
that linkage decompression involves rotational movement of the anchorage points of the
band that in turn enhance heat transfer through forced convection. This mitigates the effect
of thermoelastic force reduction during distension.

A better fit of the experimental values is achieved with the use of the phenomenological
Mooney-Rivlin model for hyperelastic materials. The Mooney-Rivlin equation for the
uniaxial deformation force-stretch is given by Equation (23). The values of C1 and C2 are
found through statistical curve fitting and reported in Table 1. The Mooney-Rivlin model is
used in the subsequent analysis.

Fl,MR

A0
= 2C1

(
λ− 1

λ2

)
+ 2C2

(
1− 1

λ3

)
(23)

The energy conversion efficiency in Equation (24), is used to assess the laboratory
demonstrator performance in transforming the potential energy into kinetic energy.

η =
EK
EP
× 100% (24)

The potential energy (From Equation (23) and from the general definition of potential
energy stored in a lossless flexile material EP =

∫ l f
lo Fldl) stored in the hyperelastic material

is given by Equation (25). The energy contained in the storage drive is ultimately released
and transformed into various physical phenomena such as mechanical movement, heat,
vibrations, etc. A key design objective in the design of jumping robots is the reduction of
irreversibilities to transform most of the potential energy into kinetic energy available for
the jump.

EP =
A0l0
λ2 (λ− 1)2[C1λ(λ + 2) + 2C2λ + C2] | λ ≥ 1 (25)

Equation (26) shows that the kinetic energy at take-off is given by its total mass mT
and initial take-off velocity v0.

EK =
mT
2

v2
0 (26)

The following Sections 3.1 and 3.2 discuss the compression and docking mechanism
approaches implemented in the CLOVER robot laboratory demonstrator.

Table 1. Fit model coefficients for the Mooney-Rivlin equation in Equation (23) representing the
force-stretch curve of the strip of TheraBand® Latex, A0 = 7 mm2, at room temperature T = 296 K.
With C0 goodness of fit: root mean squared error 0.18, R-Square 0.97. With C1 and C2 goodness of fit:
root mean squared error 0.03, R-Square 0.99.

Coefficient Value

C0 47.94× 10−4 N K−1

C1 68.88 kPa
C2 73.61 kPa

3.1. Compression Mechanism Design Approach

The compression mechanism shown in Figure 7, consists of a compound pulley with
mechanical advantage and velocity ratio of two. The extremes of the thread are anchored
to the head of each leg and to the reel. A lightweight strong Kevlar thread passes through
two sheaves, one located in the upper body and another in the lower body. Note that the
head of the leg is a segment of a sheave of radius r as shown in the figure. This shape offers
two main advantages to the design: firstly, the initial tension, developed by the reel on the
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thread when this is wound, eases the compression process by ensuring outward flexion
of the leg linkage acting like a class 1 lever (pin acting as a fulcrum), and secondly the
resulting moment can ease the compression by enabling a least effort path.

Figure 7. Compression mechanism and release latching mechanism approaches.

The compression process gradually stores energy in the Theraband by the action of an
electric motor. From the solutions of Equation (16), the phase portrait of the trajectories of
the DM can be traced in Figure 8. As the robot is compressed (reducing θ) the state moves
towards a singular point of the saddle point. Physically, the saddle point illustrates that the
knee can open as intended (positive values of θ) or can open inverted (negative values of
θ), the latter being considered as a failure mode. For this reason, practical designs should
avoid being compressed to values of θ close to zero.

When the stored elastic potential energy is released from the spring the system follows
an equi-energetic trajectory; examples of release trajectories from various initial leg angles
θ0 are shown in Figure 8.

Another interesting feature shown in the phase portrait is a singular point of the centre
type in the vicinity of π/2; the location of this stable manifold in the phase portrait is
related to the design of Fy requiring l0 − c > 0 for thrust force peak before full distension of
the TheraBand band. In other words, the stable manifold corresponds to the rest leg angle
at EP = 0.

In a damped system, the trajectory of the dynamical model will reach equilibrium
position by traversing equi-energetic trajectories. In a particular practical case, for an-
gles near θ = 0, it is common that the thrust force is lower than static friction in joints
impeding the decompression. For this reason, a practical design should avoid proximity
to θ = 0. Acknowledging this is fundamental in the design of the docking mechanism
discussed below.
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Figure 8. Phase portrait of the trajectories of the dynamical system for the parameters reported in Tables 1 and
2. The damped trajectory characterising the laboratory demonstrator moves from a high potential energy state
located near an unstable singular point, to a low potential energy state during linkage decompression. If the
rotational kinetic energy (EP converted to EK) in the linkage is damped out, then the trajectory of the dynamical
model will move towards the stable singular point and remain idle afterwards. Undamped trajectories, i.e.,
µC = 0, are shown for reference.
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Figure 8. Phase portrait of the trajectories of the dynamical system for the parameters reported in
Tables 1 and 2. The damped trajectory characterising the laboratory demonstrator moves from a
high potential energy state located near an unstable singular point, to a low potential energy state
during linkage decompression. If the rotational kinetic energy (EP converted to EK) in the linkage is
damped out, then the trajectory of the dynamical model will move towards the stable singular point
and remain idle afterwards. Undamped trajectories, i.e., µC = 0, are shown for reference.

3.2. Docking Mechanism Design Approach

Some examples of common energy release mechanisms found in current jumping
robots are overrunning clutches, snail cams, locking mechanisms, and detaching idler
gears. In order to meet the sub-kilogram scale and low power consumption goals of
the CLOVER robot design, the most suitable approach is to use a locking mechanism.
The locking mechanism is a robust, simple, and small size solution for energy release.
Figure 7 illustrates the fundamental components of the designed latching mechanism. The
figure shows the docking configuration wherein the capture bar is firmly anchored by the
stopper and latch locking pin. This configuration enables the operation of the compression
mechanism. As the compression of the linkage evolves, the trigger gradually comes near
to the latch locking pin, eventually pushing it releasing the capture bar; at that point, the
decompression of the linkage starts. The length of the trigger establishes the initial value of
θ. From the previous discussion of the phase portrait of the trajectories of the DM, the length
of the trigger must ensure that θ > 0 or if the system is highly damped, that the mechanism
reaches sufficient thrust force as to overcome frictional forces in joints. The main advantages
of the latching mechanism developed for the analysis presented herein is its simplicity and
null friction losses after undocking. Nonetheless this solution enables untethered operation,
it is impractical for autonomous application because it requires manual re-docking. For the
analysis at hand, i.e., linkage system energy conversion efficiency, this approach is valid.
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4. Assessment of Laboratory Demonstrator

The first task in this section is to analyse the theoretical characteristic evolution of the
distension force Fl and thrust force Fy. For this purpose, the CLOVER robot design param-
eters are presented in Table 2 for the evaluation of the dynamical model. An important
characteristic of the design is that Fy starts at a value different from zero. The laboratory
demonstrator has been designed with this characteristic to prompt and ease decompression
since the squat position is located near an equilibrium point as explained by the dynamical
model governing equation response, Equation (16). The phase portrait of the trajectories of
the dynamical model within the region of interest, 0 ≤ θ ≤ π/2, exhibit a saddle point at
the origin of the axis and a stable point approximately at 1.3 rad corresponding to the leg
angle θ in the standing position.

Table 2. Laboratory demonstrator parameters for each element in Figure 4. The total mass of the
CLOVER robot is 75.3× 10−3 kg.

Value Units

a 6.82× 10−2 m
c 5.50× 10−2 m
g 9.81 m s−2

I1 6.28× 10−7 kg m2

I2 6.28× 10−7 kg m2

l0 8.50× 10−2 m
m1 * 2.70× 10−3 kg
m2 1.60× 10−3 kg
m3 3.10× 10−3 kg
m4 1.60× 10−3 kg
m5 * 16.10× 10−3 kg
p 0.70× 10−2 m
q 0.50× 10−2 m

* One third of the actual part.

All parameters and known initial conditions of the laboratory demonstrator design
allow us to make estimations of its theoretical conversion efficiency in Equation (24),
using the theory developed in Section 2.3. The theoretical undamped energy conversion
efficiency sensitivity to the laboratory demonstrator with parameters in Table 2, is shown
in Figure 9. The figure shows the theoretical sensitivity of the demonstrator to single
parameter variations. With the exception of θ0, each parameter is changed proportionally
from 0 to 100% of their original value. In Figure 9 is observed that the nominal characteristic
undamped efficiency of the laboratory demonstrator, i.e., proportions at 100% and θ0 →
0, is 73%, which represents the maximum attainable value for the mass and geometric
proportions of the demonstrator.

In the first instance, efficiency is mostly influenced by the value of gravity acting
against the linear vertical acceleration, ḧ; a reduction in g value prompts an increase in η.
From the body masses, the foot mass m1 and the upper mass m5 are the most influential; a
value increase reduces η. Less detrimental variation on η is observed for knee mass (m3)
increment, which supports the CLOVER knee design approach.
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Figure 9. Undamped energy conversion efficiency sensitivity to laboratory demonstrator parameters.
Proportions with respect to the values in Table 2.

The initial leg angle, θ0, also affects the conversion efficiency as shown in Figure 9.
Theoretical efficiency peaks at θ0 = 0 as this creates maximum Theraband extension which
in turn represents the highest potential energy for a given geometry and mass configuration.
For the sake of practical implementation, the value of θ0 = 0 in the CLOVER laboratory
demonstrator is 0.066 rad, equivalent to 3.8◦. This empirical value prevented linkage
blockage near the saddle point due to lax tolerances in the manufacturing process. With
this initial leg angle and the parameters reported in Table 2, the value of EP is estimated in
0.17 J, and new maximum energy conversion efficiency of 72.5%.

Laboratory Demonstrator Experimental Jumping Performance

Section 3 introduced the concept of energy conversion efficiency to evaluate jumping
ability. In this section the fundamental jumping ability of the laboratory demonstrator
is evaluated through the analysis of vertical jump tests. To this aim, the CLOVER robot
demonstrator, a Bluetooth dongle, a computer with MATLAB software, and a video camera
were used in the experiments.

In order to reduce energy damping losses between the ground and the robot to
approximate the theoretical behaviour discussed above, jump tests are carried out on a flat
solid horizontal surface. The robot foot sat flat on the horizontal surface before each jump
experiment. Serial port communication was established between the MATLAB and dongle
to read streaming data from the robot. The camera was set up to capture a perspective view
of the robot jump.

The research protocol started with the wireless connection between the robot and the
dongle. The locking mechanism was manually assembled with the robot in idle stand
position as shown in Figure 10A. Commands were sent through MATLAB to the robot
to test successful communication. With the connection stablished and test commands
executed by the robot, a wind command actuated the reel and compression of the linkage
started for an experiment. Latch release happened eventually by the self-compression of
the linkage ultimately yielding a jump, Figure 10B. With the robot fully decompressed
after a jump, manual re-docking prepared the robot for a subsequent jump. An illustration
summarising this process is presented in Figure 10C.
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A B

C

Figure 10. (A) Physical laboratory demonstrator in stand (idle) and squat position, (B) jump develop-
ment example (video available as supplementary material), and (C) operation sequence and robot
network architecture.

The experimental evolution of the dynamics of the laboratory demonstrator was
registered externally by the video camera, and onboard by the 9DOF absolute orientation
sensor. The camera captured 240 video frames per second and 44,100 audio samples per
second, while the orientation sensor captured 150 samples per second during the jump
tests. The time-of-flight characteristic to the vertical jump is a conspicuous phenomenon
(Figure 11A–C), which was effectively captured by media (Video available as on-line
supplementary material) as well as the onboard orientation sensor as shown in Figure 11D,E
respectively. Notwithstanding, higher sampling of the acoustic data provided the best
resource for the analysis. This data captured acoustic signatures related to well-known
sequential stages in the experiment. In the recorded sequence shown in Figure 11D, the
first sound spike as seen from left to right, was caused by the latch release marking the
start of the jump development. The next major sound transition in the sequence captured
the foot engage marking the start of the aerial phase. Subsequently, a high amplitude
sound spike produced by the leg-stopper contact (diagram in Figure 7), was followed by a
decreasing muffled sound evincing the transient dynamical response of the CLOVER robot.
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The final recorded sound spike demarcated the end of the aerial phase at robot-floor contact.
Therefore, the characteristic time of the take-off phase of the vertical jump was 95 ms, and
the characteristic time lapse between foot engagement and landing floor contact, i.e., the
time-of-flight, was 592 ms with standard deviation of 59.7 ms from ten observations.

The take-off velocity was inferred (From v0 = gtaer
2 ) from the time-of-flight taer as

2.9 m s−1, yielding an estimated maximum jump height (From v0 =
√

2ghmax) of 0.566 m
verified by observations. The inferred take-off velocity was then used to estimate the
characteristic mechanical system damping of the laboratory demonstrator, embodied by the
Coulomb coefficient µC in the DM (Section 2.3). The value of µC = 16.811× 10−3 yielding
the experimentally inferred value of v0 was identified through its numerical iteration in the
DM. The definition of µC different from zero defined in turn the new kinematic curves for
the resulting damped DM shown in Figure 11A–C. This also set a take-off time difference
∆toff between the damped and undamped DMs curves of 33 ms, Figure 11C. Interestingly,
by matching the experimental take-off times to the damped DM as reported in Figure 11D,E,
the experimental decompression time (from latch release to take-off) is clearly shorter than
in the DM curves (from time zero to take-off). This observed discrepancy of 40 ms is
originated by the operation of the docking mechanism (Figure 7). When the trigger pushed
the latch locking pin at the end of the linkage compression, a small amount of energy was
stored in the helical compression spring that kept it in place. Just after latch release, i.e.,
when the capture bar-stopper geometric constrain is finally removed by the trigger action,
part of the potential energy stored in the helical spring was transformed directly into kinetic
energy of m5 by the upward pressure exerted on the trigger by the latch locking pin. Finally,
the estimated energy conversion efficiency of the laboratory demonstrator was computed
with the potential energy EP value from Equation (25) with coefficients from Table 1, and
the inferred kinetic energy at take-off from Equation (26) with the experimental take-off
velocity value; the estimated energy conversion efficiency of the laboratory demonstrator
was 63.1%, that is 9.4 percentage point decrease with respect to the maximum undamped
theoretical case. Reference experiments carried out by [26] on a 1.5 kg two-leg spring
driven gear synchronised jumping robot realised a 70% energy conversion efficiency. From
friction in joints, parasitic vibrations, structural damping, to heat generation mostly from
component collisions, various energy dissipation mechanisms contribute in detriment of
η. However, joint friction losses quantified by µC in the leg design of the CLOVER robot
demonstrator clearly dominate.



Machines 2022, 10, 640 19 of 24

Version July 27, 2022 submitted to Machines 17 of 22

directly into kinetic energy of m5 by the upward pressure exerted on the trigger by the latch locking 487

pin. Finally, the estimated energy conversion efficiency of the laboratory demonstrator was computed 488

with the potential energy EP value from Eq. 25 with coefficients from Table 1, and the inferred kinetic 489

energy at take-off from Eq. 26 with the experimental take-off velocity value; the estimated energy 490

conversion efficiency of the laboratory demonstrator was 63.1%, that is 9.4 percentage point decrease 491

with respect to the maximum undamped theoretical case. Reference experiments carried out by [26] 492

on a 1.5kg two-leg spring driven gear synchronised jumping robot realised a 70% energy conversion 493

efficiency. From friction in joints, parasitic vibrations, structural damping, to heat generation mostly 494

from component collisions, various energy dissipation mechanisms contribute in detriment of η. 495

However, joint friction losses quantified by µC in the leg design of the CLOVER robot demonstrator 496

clearly dominate. 497

0.0

0.2

0.4

0.6

Datum hmax = 56.62 [cm]

Ground

TheoreticalA

ḣh
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Figure 11. A–C kinematic curves for the CLOVER robot laboratory demonstrator. After take-off, a transient
response in the linkage is observed in E. Ground contact (landing phase) is observed as a sudden signal transition
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Figure 11. (A–C) kinematic curves for the CLOVER robot laboratory demonstrator. After take-off, a
transient response in the linkage is observed in (E). Ground contact (landing phase) is observed as a
sudden signal transition in (D,E). The onboard acceleration readings are bound by the accelerometer
capability to approximately ±4 g.

5. Conclusions and Future Work

This paper described the theoretical development and practical demonstration of
a jumping robot. The study drew inspiration from the JPL planetary exploration robot,
which utilised a nonlinear spring in order to increase elastic-to-kinetic energy transfer in
comparison to a linear spring.

The present study extends this approach using a Sarrus-style linkage to constrain
the system to a single translation degree of freedom without the use of gears, while still
retaining the favourable nonlinear force profile. This offers a route for feasible integration
into future planetary robots, where the risk of dust ingress into gears is prohibitively high.
Linkage flexion direction yielding symmetric (mirrored) tension on the elastic material
in the practical demonstration was assisted by a pulley-lever system, which provided
compression capability while enabling redundant least effort paths of compression. The
configuration of pulley-lever system is designed to convey the dynamical system from the
vicinity of a singular point of the saddle type when in linkage compression, to a stable one
in linkage extension through a mechanically suitable path. These mechanical elements were
realised as a functional hopping robot laboratory demonstrator. The robot demonstrates
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63% potential-to-kinetic energy conversion efficiency, with a theoretical maximum of 73%
for this particular spring and linkage system with no dissipative losses.

The theoretical maximum is limited by the inertial component of the mechanism-
ground interface, i.e., robot foot mass, and by the characteristic spring force-strain curve.
Transformation of potential energy from the spring into kinetic energy of the linkage,
is inherently related to the state of the mass configuration of the system at any specific
time; this observation implies the existence of an optimum spring force-strain curve for
maximum mechanical conversion efficiency for the masses and geometry of the linkage.
These observations will be subject of future research.
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Appendix A. The n-Sided Sarrus Linkage

Screws defined by screw theory are used to express the instantaneous velocity and
forces acting on a rigid body. Therefore the allowed free motions of a rigid body by its
constraints can be represented by screws. A line vector S and a couple S0 can be combined
to form a screw S, a dual vector in the so called Plücker homogeneous coordinates consisting
of six elements. A screw is represented by four factors in Equation (A1) namely position
r, direction axis and magnitude of the screw S, and pitch (h = S·S0

S·S ) of the screw h. For
the special case when S 6= 0, S · S0 = 0, and h = 0 (S and S0 are orthogonal) the screw
expresses the Plücker homogeneous coordinates of a line; for S 6= 0, h = ∞, S represents a
couple. These two special cases are relevant for following descriptions. The relationship
between the motions and the constraints of a screw is obtained from reciprocal screw theory
and will be discussed later in this section.

S =
[
S S0

]T
=
[
S r× S + hS

]T (A1)

In the analysis at hand, the degree of freedom of the terminal connector of the i-th
kinematic chains is analysed first. Figure 2 shows the the schematics of the conceptual
mechanism. For geometric convenience, the unit vector ei denotes the direction of the
πi plane, while the unit vector eC represents the direction of the intersecting line among
planes that can be computed with Equation (A2). Note that any other nonparallel two
planes may also be used to define eC.

eC =
e1 × e2

|e1 × e2|
(A2)

www.mdpi.com/xxx/s1
www.mdpi.com/xxx/s1
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The screws of the first kinematic chain are obtained with the cartesian coordinates
in three-dimensional physical space of the revolute joints rA1 , rB1 , and rC1 at the fixed
coordinate frame. It is important to bear in mind that the screw matrix denotes a six
dimensional Euclidean space.

SA1 =
[
e1 rA1 × e1

]T

SB1 =
[
e1 rB1 × e1

]T

SC1 =
[
e1 rC1 × e1

]T

The screw of the first kinematic chain can be expressed as the assembly of these three
screws of the revolute joints as in Equation (A3). The screw of the i-th kinematic chain can
be expressed similarly to Equation (A3).

SA1B1C1 =
[
SA1 SB1 SC1

]
(A3)

The constraints of the i-th kinematic chain can be obtained with reciprocal screw
theory as mentioned before. Since the physical meaning of the reciprocal product of two
screws, S1 ◦ S2 = S1 · S0,2 + S2 · S0,1, is the instantaneous work of the force to the motion of
the body, the reciprocal product of a screw and its constraint screw must be zero. In other
words, no work is produced by a pair of reciprocal screws. Furthermore, the constraint
matrix of a fully restricted rigid body is expressed in a six-dimensional Euclidean space,
just as the base space of the screw. The reciprocal product SA1B1C1 ◦ Sr

A1B1C1
= 0, uses

SA1B1C1 denoting the motion of the i-th kinematic chain, and Sr
A1B1C1

is the constraint of the
mechanical system acting on it. The reciprocal screw of the i-th kinematic chain is given in
Equation (A4)

Sr
Ai BiCi

=
[
Sr1

i Sr2
i Sr3

i
]

(A4)

with

Sr1
i =

[
ei rCi × ei

]T

Sr2
i =

[
01×3 eC

]T

Sr3
i =

[
01×3 eC × ei

]T

By comparing the form of these three constraint screws with Equation (A1), note that
the pitch of Sr1

i is zero, which implies a force vector passing through the coordinate rCi .
Similarly, Sr2

i and Sr3
i denote torques about their respective axes. In this way, the mechanical

system exerts three constraints to the upper platform through this kinematic chain. If there
exists a reciprocal screw that is reciprocal to all the screws, the reciprocal screw is defined
as a common constraint of the mechanism (Theorem 3.1 in [31]: a common constraint exists
if and only if every limb constraint of the system can provide an identical constraint screw
acting on the moving platform, and if these identical screws are constraint forces, they
must be coaxial; if these identical screws are couples, they must be parallel.). Thus, all
n kinematic chains exert on the upper platform the common screw Sr2

i . This represents
an over-constraint of a torque about eC, see Figure A1. The union of constraints of the
kinematic chain system on the upper platform can be concatenated as in Equation (A5).
Note that the resulting screw, contains only linearly independent screws, i.e., a i-th screw
represents a linear combination of linearly independent screws.

Sr
C1C2···Cn

=
[
Sr1

1 Sr2
1 Sr3

1 Sr1
2 Sr3

2
]

(A5)
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Figure A1. Constraints exerted on the upper platform by the n kinematic chains.

Just as the first reciprocal screw represents dynamic constraints, the second-time
reciprocal screw, i.e., the reciprocal screw of a constraint, indicates motion. Consequently
the free motion of the upper platform, as well as its constraints are tightly connected
by reciprocities. As the constraints of the upper platform are known, Equation (A5),
its free motions can be equivalently found through reciprocal screw theory. The screw
in Equation (A6) is obtained from solving Sr

C1C2···Cn
◦ SP

C1C2···Cn
= 0 for SP

C1C2···Cn
, which

denotes a translation along the vector eC and no rotation freedom in any axis; the same
characteristics observed in the classical Sarrus mechanism with two dyads as discussed
before. This result implies that the translational mobility remains unchanged independently
on the number of kinematic chains added to the mechanism system, as long as there is at
least a pair of chains laying in nonparallel π planes. Moreover, since all three revolute joints
are parallel to the plane normal of the kinematic chain at any configuration, i.e., the axis
directions of the three kinematic pairs are always parallel to its characteristic ei, the screw
expressions are unchangeable, which in turn yields unchangeable common constraints
and mobility. Therefore SP

C1C2···Cn
fully characterises the DOF of the upper platform at any

instant. The number of DOFs of the upper platform is simply Rank
(
SP

C1C2···Ci

)
= 1 and the

type and direction is expressed by the corresponding screw.

SP
C1C2···Cn

=
[
01×3 eC

]T (A6)

It is known that the general mobility of a mechanism, specially in parallel mechanisms,
sometimes gives no real meanings for both the DOF of the end effector and the actuations
required to drive the end effector [36]. Consequently, determining the number of actuations
needed to uniquely control the end effector is a complementary analysis to the DOF of the
end effector. For the sake of example, if an actuator were added to cancel the movement of
the kinematic pair B1, then the kinematic chain would produce only two screws, instead of
three as in the other n kinematic chains. The reciprocal screw of this actuated kinematic
chain will add a new pure force vector along eC × ei, i.e., a new linearly independent screw.
To understand the implications of this result consider the following. Because the Plücker
coordinates of a screw system have six components as discussed before, the maximum
number of linearly independent screws in a spatial mechanism is always six. A theorem in
screw theory states that the summation of the ranks of the screw system and its reciprocal
screw is six. This is acknowledged in the current analysis as the three constraints obtained in
Equation (A4) are a subspace of the basis Equation (A3), and equivalently for Equation (A5)
of rank five yields one DOF. The above implies that with the new independent screw
constraint in the actuated kinematic chain will increase the rank of the union of constraints
of the kinematic chain system on the upper platform (Equation (A5)), from five to six. In
such case the reciprocal equation has a unique zero solution, which means that the system
does not move under the assumed single actuation on B1. In conclusion from the arguments
above, only one independent actuation is required to uniquely control the upper platform
of the analysed mechanism consisting of n–kinematic chains.
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