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Abstract: The concept of a digital twin is increasingly appearing in industrial applications, including
the field of predictive maintenance. A digital twin is a virtual representation of a physical system
containing all data available on site. This paper presents condition monitoring of ventilation systems
through the digital twin approach. A literature review regarding the most popular system faults is
covered. The motor current signature analysis is used in this research to detect system faults. The
physical system is further described. Then, based on the free body diagram concept and Newton’s
second law, the equations of motion are obtained. Matlab/Simulink software is used to build the
digital twin. The Concordia method and the Fast Fourier Transform analysis are used to process the
current signal, and physical and numerical system current measurements are obtained and compared.
In the final step of the modeling, specific frequencies were adjusted in the twin to achieve the best
simulation. In addition, a statistical approach is used to create a complete diagnostic protocol.

Keywords: condition monitoring; motor current signature analysis; fan/motor system; digital twin;
dynamic modeling; statistical approach

1. Introduction

In industrial installations, ventilation systems are numerous and increasingly require
continuous monitoring. Any sudden failure of these components can result in significant
damage. Condition Monitoring (CM) is a growing technology that enables the identification
of incipient defects. It can prevent unexpected failure of critical elements, increasing the life
of components while decreasing maintenance downtime and costs. These systems mainly
consist of an electric motor, a fan, ducts, bearings, transmission shafts, etc. [1]. In most
cases, the fan is not connected directly to the motor, mainly to achieve two objectives. The
first one is to protect the motor, since the fan is exposed to environmental disturbances and
withstands different operating conditions, while the second goal is to control the rotation
speed and torque of the fan by adjusting the diameter of gears or pulleys [2]. In summary,
it can be said that this type of system can be divided into two main parts. The first is the
electric motor, which we will consider in this article as an Induction Motor (IM) since it is
the most commonly used in industrial sectors, including ventilation and suction systems [3].
The second part is the purely mechanical system that includes the rest of the components.
So, in this article, we will deal with these systems as fan/motor systems.

The IM is subjected to several defects, and the majority of them can be classified as
shown in Table 1, where each malfunction and its type are listed, along with the work
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environment of each motor. As for the fan part, it can be affected by various faults, like any
rotating system, but the most significant are: fan imbalance [4], shafts misalignment [3],
belt defects [5], and last but not least, bearing faults [6].

Table 1. Common IM defects and work environments.

Fault Fault Type Motors Phases Motors Power (KW) References

Stator faults Electrical Three-phases 1.48; 2.2 [7,8]
Unbalanced voltage Electrical Three-phases 0.75; 4 [9,10]

Broken rotor bar Mechanical Three-phases 1.1; 7.5 [11,12]
Eccentricity Mechanical Three-phases 1.1; 2.2 [13,14]
Bent shaft Mechanical Three-phases 0.8; 0.373 [15,16]
Bearing Mechanical Three-phases 3; 0.425 [17,18]

These faults need to be predicted at an early stage, and appropriate actions must be
taken to ensure the smooth running of the system. There are several methods to achieve
this goal, but vibration analysis is the most popular method for condition monitoring.
Acoustic monitoring is a viable option because vibrations create acoustic noise. However,
as these methods are expensive due to the additional transducers required, they are only
appropriate for large machinery or highly critical applications such as wind turbines [19],
milling and grinding processes [20]. All system malfunctions affect the IM, either directly
or indirectly, so Motor Current Signature Analysis (MCSA) can be employed for CM. This
method is part of the general topic called Electrical Analysis, which has proven to be a very
efficient and practical approach since the current and voltage signals are easy to monitor.
This type of signal reduces the number of transducers installed since current and voltage
transducers are already installed for control, safety, energy, and other reasons. Electrical
signals have been used to detect and locate not only electrical faults but also mechanical
faults in the system components [21]. MCSA has undergone significant development in the
last 30 years [22]. Numerous studies and works have been reported, such as the book by
Saad et al. [23] and the one by Thomson [24], that discuss CM using electrical signature
analysis. All these advantages and the effectiveness of the MCSA prompted us to adopt
this approach in this research. Based on the above, and the fact that this article takes
into account the evolution of industrial sectors—in particular today’s fourth industrial
revolution (industry 4.0), which does not require human beings—production can be done
with cyber-physical links with much less error and high reliability. With this revolution,
products are becoming capable of sensing their own condition and that of their environment,
coupled with the ability to process and communicate this data, enabling the development
of digital twins that can simulate physical system operation, track energy consumption
(monitoring electrical signatures), detect system faults (electrical, mechanical, vibratory),
and allow experimentation that is hard to carry out with actual installations [25].

Since the concept was first coined by John Vickers and Michael Grieves [26], many
authors have attempted to define the term digital twin, beginning with the aerospace
industry [27], focusing on the structural mechanics, materials science, and long-term
performance prediction of air- and spacecraft [28]. With the growth of Industry 4.0, the
focus has shifted to manufacturing and smart products [27]. In this context, the digital
twin can contribute to information continuity throughout the product life cycle [29,30],
the virtual commissioning of (manufacturing) systems [31], and decision support and
predictions of system behavior in the product development phase and in all subsequent
phases of the life cycle on the basis of computer-aided implementations [32]. The digital
twin as a concept contains three major parts, which are the physical objects in the real space,
the virtual objects in the virtual space, and the data and information connections that link
the virtual and real products [33]. The concept of the numerical model has been adopted
in many previous kinds of research, and it has given satisfactory results in achieving its
objectives; for example, to study the dynamics of a belt-pulley-shaft system, a numerical
model was developed by [34]. The investigation of the accelerating transient vibrations of
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a rotor system was done by [35]. The numerical model was utilized by [36] to monitor an
aero-engine dual-rotor system with a fan blade out. The digital twin has many uses, even
simulating the operation of cars on the road [37] or CNC machine tool [38], etc.

The uses of the digital twin have been mentioned generally in the above. Now we
will switch to what is related to the topic of this research and discuss some of the previous
research that has used this approach in the area of fault diagnosis. The concept was used
by [39] to monitor an electric submersible pump towards a mechanical seal failure, and
they obtained good results. The paper published by [40] proposes an intelligent fault
diagnosis method for a triplex pump based on digital twin and deep transfer learning. The
proposed method has been experimentally validated and gives satisfactory results. Another
study [41], was inspired by the fact that transfer diagnosis scenarios are limited to the
experimental domain, the inter-domain marginal distribution and conditional distribution
are difficult to simultaneously align, and each source–domain sample is assigned equal
importance during the domain adaptation process; thus, the study proposed a new joint
transfer network for unsupervised bearing fault diagnosis from the simulation domain
to the operational field. The digital twin approach was used by [42] in the intelligent
manufacturing area to monitor the health of a rotating machine. The main challenge of this
study was the nonlinear dynamics and uncertainty involved in the machine degradation
process. It successfully overcame this challenge and achieved the desired goal, as evidenced
by the results.

After reviewing some of applications of the digital twin, we move on to the content of
this paper, where we use this concept for the condition monitoring of a ventilation system.
The most common types of faults have been examined and considered in the proposed
approach, in order to create an alarm that can warn maintenance managers in the industry
of the severity of each malfunction, based on a statistical study of a specific type of fault,
and apply it to the other defects; thus, there is now a reference that takes into account the
state that the physical system should be in, whether looking at fault signatures or power
consumption. In general, we created a software version of the actual system that allows
users to experience what they cannot do in reality. Experimental and simulations results
prove the effectiveness of this developed technique. The use of this approach has been
limited in this article to a specific type of industrial system (ventilation systems), but with
some modifications, it can be used with a different framework.

This article is organized into four main sections. Section 2 describes the physical
system, and then deals with the development of the digital twin. The conditional mainte-
nance technique used in this research is also outlined. After that, the re-sampled signal is
exploited by a statistical diagnostic procedure. The obtained experimental and simulation
results are presented in Section 3 and discussed. The last section is the conclusion of this
paper, with a discussion of possible future work.

2. Materials and Methods
2.1. Description of the Physical System

The Municipal Technical Center (MTC) of Poitiers, France, is a state-owned structure
that participates in the implementation of projects for the city via different means. It is
divided into several departments and contains several workshops. Among its workshops,
the most prominent is carpentry. The current installation in the MTC has 11 machines, 4 of
which work simultaneously (panel saw, combi-sander, planer, and long belt sander). The
3D visual of the wood dust-extraction system is shown in Figure 1.
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Figure 1. The 3D visual of the wood dust-extraction installation at the MTC.

In this application, we are mainly interested in the control of the operating state of the
fan/motor part. The system to be monitored is shown in Figure 2. It is composed of an
asynchronous IM, where its characteristics are presented in Table 2, and the mechanical
system including all other components. Figure 3 provides a detailed illustration of this
system, while the labels for each component are listed in Appendix A, at the end of
the paper.

Figure 2. The fan/motor system (a) fan side (b) transmission side.

Table 2. The motor characteristics.

Supply Voltage
(V)

Frequency
(Hz)

Current
(A)

Power
(KW) Cos (φ) Speed

(rpm)

Three-Phase 400 Delta 50 51.6 30 0.9 2950

Figure 3. The physical system with label.
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We had previously indicated that the system being dealt with is divided into two
parts, the electric motor (IM) and the mechanical part (the fan and the transmission system).
This system mainly consists of Pulley 1 (marked “a”) connected directly to the motor. The
power is transmitted from the motor to Pulley 2 (marked “b”) by three belts (marked “c”),
where each belt has a length (L) equal to 2300 mm type SPB Vbelt. The fan (marked “f”) is
connected to Pulley 2 by a transmission shaft (marked “e”), and has a diameter of 45 mm
and length of 80 mm. The diameter of Pulleys 1 (Rp1) and 2 (Rp2) are 160 and 225 mm,
respectively. The two bearings (marked “d”) that support this shaft are type 22210 EK.
The fan has eight blades that are made of steel 60A, like the rest components. Other parts
(labeled from “1” to “12”) have little effect on the basic function of the system, so we
ignored their influence during the modeling process. The label of each part is given in
Appendix A at the end of the paper.

After identifying the system concerned and its components, we now move on to the
modeling stage, which takes place in the following section.

2.2. Developing of the Digital Twin
2.2.1. Mathematical Model

The mechanical part of the ventilation (suction) system is composed of three basic
masses, which are pulley 1, pulley 2, and the fan, so it is considered to have three degrees of
freedom. Using Newton’s second law of motion and the concept of the free-body diagram,
Figure 4 can be drawn, and the motion equations have been obtained and presented in
Equations (1)–(3) for each mass:

• Pulley 1:
J1θ̈1 = Te − 2Kb(Rp1θ1 − Rp2θ2) (1)

• Pulley 2:
J2θ̈2 = 2Kb(Rp1θ1 − Rp2θ2)− Ks(θ2 − θF)− Br(θ̇2 − θ̇F) (2)

• The fan:
JF θ̈F = Ks(θ2 − θF) + Br(θ̇2 − θ̇F) + Ta (3)

where θ1, θ2, and θF are the rotation angle of pulley 1, pulley 2, and the fan respectively,
while J1, J2 and JF are the polar moments of inertia of the three masses, respectively, as
the rotation angle. Te is the electromagnetic torque resulting from the motor and Ta is the
load torque, described in the next section. The three belts have been modeled as flexible
components with equivalent linear stiffness Kb, and the shaft has a torsional stiffness Ks.
The two bearings have an overall friction coefficient of Br.

Figure 4. Free-body diagram of the fan/motor system.
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2.2.2. System Defects

This system is subject to several defects, which have been combined in the model as
torques and their value has been added to Ta, so that the value of Ta has evolved as shown
in Equation (4).

Ta = (Q× ∆P/w) + Td (4)

Where Q, ∆P, and w are the flow rate, pressure difference, and the rotation speed of
the fan, while Td is the torque resulting from the presence of a defect in the system, that
has been implanted as a sinusoidal, shown in Equation (5), and varies with time (t), has
amplitude A, and frequency fd:

Td = A× cos(2π fdt) (5)

In this article, we deal with the most popular system faults, where each one has a
particular frequency proportional to the rotation speed. Table 3 presents these defects with
their frequencies in the torque reference. Note that fr is the rotational frequency of the rotor,
fe is the fundamental frequency of the power supply, nb = 10 is the number of balls in each
bearing, Nn = 28 is the number of notches in the stator, Nb is the number of fan blades, and
p = 1 is the pole pairs number.

Table 3. Types and defects frequencies.

Defect Frequency (Hz) Reference

Bearing inner ring 0.6 × nb × fr [43]
Ball bearings 0.4 × nb × fr [43]

Belts 2π × Rp1 × fr/L [44]
Broken rotor 2× ( fe − fr) [45]

Notch harmonics Nn × fr/p [46]
Eccentricity fr [47]

Fan imbalance Nb × fr [47]
Misalignment 2× fr [39]

Since we are dealing with a system functioning in the industry, the possibility of
creating defects is actually not possible, so we will use simulation to achieve this goal.
Equation (5) indicates that the frequency of the defect changes according to its type as
shown in Table 3. As for the severity of this defect, it is related to the variable, A. Therefore,
in order to change the severity of the defects we will create, we will use a random variable
that will represent the value of A, where we will set its mean value and the degree of
change about it.

2.2.3. Modeling

After obtaining the necessary mathematical equations, it became possible to model
the ventilation system, or more precisely, the fan/motor system in our case. The Mat-
lab/Simulink software R2021b was used to perform this task. Let us start with the three
equations of motion, Equations (1)–(3), and build their Simulink model shown in Figure 5,
while Figure 6 shows the overall diagram. The mechanical torque is the sum of all moments
on the fan that has a value equal to JF θ̈F. This torque is used as feedback to the induction
motor as the load torque in a realistic situation. The IM is powered by a three-phase AC
source, and some noise has been added to the stator current, to make it closer to reality.

Once the modeling is done, a pilot digital twin model of the fan/motor system is
constructed as shown in Figure 7.
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Figure 5. Similink model of the three equations of motions.

Figure 6. The overall Simulink model.

Figure 7. Illustration of the developed digital twin model of the fan/motor system.
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Figure 7 shows, under the title “Digital Twin” in the blue part, the stages of building
the digital twin, which begins with understanding and studying the physical system, its
components and geometries, and then moving to the modeling stage by creating the free
body diagram, then the use of the Newton’s second law of motion to obtain the system
equations. The digital twin provides condition monitoring administration in light of
Simulink models created by real systems and information acquired in the real world. To
develop a computerized model to accurately and continuously monitor the state of the
real framework, it is important to examine a methodology for constant updating between
the computerized model and the real system. The current system collects information in a
bottom-up manner. It first acquires different information about the subsystem boundaries
and then collects information about the perception at the frame level. Finally, it combines
this information from the subsystems to the framework as a mark of the well-being of
the entire framework. This granular perspective works with the resulting foundation
of the Digital Twin model in light of the actual components. In addition, the physical
world needs to transfer many kinds of information to the digital environment, such as
operating conditions, working situations, sensor records, and more. The physical system
needs standard data communication schemes to accomplish a uniform conversion of the
various communication protocols or interfaces and a standard packaging of the information.
Through these data communication features, the multi-type and multi-scale information is
standardized, cleaned and packaged by the physical system, and then loaded to the Digital
Twin model in the virtual world. This significantly improves the performance of the twin.

In our case, we only used current and voltage sensors, since we use MCSA technology.
These sensors provide us with the real voltage and current signals. By analyzing any of
these signals using the methods that will be explained later, we notice that they contain
certain frequencies, and each one belongs to a specific part of the system. These frequencies
are our target, we monitor them and update the signal received from the digital twin to
contain the same frequencies and values, so as to obtain an iterative convergence between
the measured and the calculated response, as illustrated in Figure 7, and demonstrated in
the results achieved in this study.

Let us move on to the next step: the CM. As mentioned in the introduction, the
technique that will be used in this article to perform this task is the MCSA. The following
section will address this point.

2.3. Electrical Analysis
2.3.1. Motor Current Signature Analysis (MCSA)

The MCSA method is generally considered to be a popular fault diagnosis technique
for identifying the common malfunction of electric rotating equipment. This method is part
of the general topic known as electrical analysis. Defects happening in the components
of the system can cause fluctuations in torque and eccentricity due to the current and
voltage variations [48,49]. These fluctuations cause phase modulations (PM) of the current
in the event of torque variation, and amplitude modulations (AM) in the case of dynamic
eccentricity variations [50]. The general form of the stator current can be given as shown in
Equation (6):

I(t) = A(t)cos(θ(t)) (6)

where A(t) and θ(t) represent, respectively, the instantaneous amplitude and the instan-
taneous phase. In the case of sinusoidal perturbations, the expressions of the modulated
current are given as Equations (7) and (8):

A(t) = I.[1 + αcos(2π fAMt + ΦAM)] (7)

θ(t) = 2π fet + βcos(2π fPMt + ΦPM) + ΦI (8)

where α, fAM, and ΦAM represent, respectively, the modulation index, the frequency of the
modulating signal, and the initial phase for AM modulation, as well as β, fPM, and ΦI for
PM modulation.
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The separation of the fault elements in the currents is much more difficult than in
vibration measurement as the signal-to-noise ratio is much lower and the fundamental
electrical element has a large amplitude and masks the desired frequencies. One way is
to suppress this fundamental in order to amplify the defect frequencies [51]. The simplest
solution, however, is to demodulate currents in amplitude or in phase. Since a long time
ago, numerous demodulation techniques have been suggested. They can generally be
categorized based on two factors: mono or multi-dimensional approaches, and online or
offline methods. Table 4 lists the methods respecting this classification.

Table 4. Current demodulation techniques.

Method Dimension Type Reference

Recursive identification Mono-dimensional Online [52]
Teager–Kaiser Energy Mono-dimensional Online [53]
Concordia Transform Multi-dimensional Online [54]

Hilbert transform Mono-dimensional Offline [55]
Principal Component Analysis Multi-dimensional Offline [56]

In this article we choose to use the Concordia transform, because the three phase
currents are available and this method can be achieve the online detection of system faults.
The following section provides a brief description about this method.

2.3.2. Concordia Transform

When the three currents are available, the simplest approach to highlight the AM and
PM modulations is to combine them by applying the Concordia transform. This group
of methods is known as the Park Vector Approach (PVA). The three-phase currents are
projected in a fixed orthornormal reference frame with respect to the rotating field of the
machine. This results in two quadrature currents iα(t) and iβ(t), which are sinusoidal and
of the same frequency as the measured currents. The Concordia transform is defined by
the following matrix relation:

iαβo(t) =

√
2
3



1 −1
2

−1
2

0

√
3

2
−
√

3
2

1√
2

1√
2

1√
2




ia(t)

ib(t)

ic(t)

 (9)

This transformation allows us to define a rotating vector characterized by its instanta-
neous amplitude and phase, respectively IA(t), IP(t):

IA(t) =
√

I2
α(t) + I2

β(t) (10)

IP(t) = atan(
Iβ(t)
Iα(t)

) (11)

We can also define the instantaneous pulsation and the frequency IW(t) and IF(t)
respectively:

IF(t) =
IW(t)

2π
=

1
2π

˙IP(t) (12)

The main limitation of the Concordia transform is that the three-phase currents must
be balanced. The first alternative is to use the Fortescu transform. It allows, from an
unbalanced three-phase system, the generation of three balanced direct, inverse, and
homo-polar systems. A second alternative is principal component analysis (PCA) [57].
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In this paper, the motor has been considered to have a constant speed and run ac-
cording to the operating characteristics mentioned in Table 2. On this basis, the signal
processing technique used to analyze the current was the Fast Fourier Transform (FFT).
The FFT served as a bridge between the temporal domain and the frequency domain, and
it is the most widely used signal processing method when treating stationary signals [58].
In the event of a system malfunction, this results in the creation of certain frequencies ( fs)
that appear in the analysis of the spectrum of IA or IF as shown in Equation (13), where
each frequency represents a specific defect. Note that fd is the defect frequency as indicated
in Table 3, and K = 1, 2, . . . n. In the next section, a statistical-based approach is used for
defect detection.

fs = K ∗ fd (13)

After knowing the effect of the faults on the electric current, we move on to the next
step, which is to determine the severity of each one.

2.4. Diagnostic Protocol: Statistical Method

To set up a diagnostic protocol, an alarm must be triggered automatically when a
defect occurs. Then, a specific signature threshold must be defined. To accomplish this
in a noisy situation, the statistical approach is a robust solution. A statistical diagnostic
approach is proposed by [59,60] for the conditions of speed variation. This approach
proposes two stages: a learning stage and a diagnostic stage. The chosen defect signature is
the amplitude of the frequency corresponding to the defect in the rotational speed signal:

Sde f ect =| f̂m( fd) | (14)

In the learning phase, a statistical reference of the health status is generated. For this
purpose, Nre f registrations are recorded. Then, the fault signature Sde f ect(k) of each record
is determined. The mean µ and standard deviation σ statistical characteristics are calculated
as follows:

µ̂re f =
1

Nre f

Nre f

∑
k=1

Sde f ect(k) (15)

σ̂re f =

√√√√ 1
Nre f − 1

Nre f

∑
k=1

(Sde f ect(k)− µ̂re f )2 (16)

To make the signature independent of the machine type, a centered reduced signature
is defined as shown in Equation (17)

Sde f ect,RC(k) =
Sde f ect(k)− µ̂re f

σ̂re f
(17)

A threshold could be defined to automatically trigger a defective state alarm. A
probability of 1% is derived from the Gaussian distribution with Equations (18), while the
probability is calculated as Equation (19)

P(Sde f ect,RC(k) > t1%) = 0, 01 (18)

P(Sde f ect,RC(k) > t) = 1−Φ(t), (19)

The alarm threshold for a probability of 1% indicates that when the alarm is launched
to declare a faulty state, there is a 1% chance that it is a false alarm. This probability can be
modified according to the application used (0.1% for instance). The diagnostic phase can
now begin after defining the threshold of the alarm.

This is a simple approach when the rotating speed is fixed. It becomes more compli-
cated for variable-speed conditions. A solution is suggested by [60] based on dividing the
speed–torque into N zones. A standardized reference and an alarm threshold are generated
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for each zone in the learning phase. Then, when the diagnostic phase begins, the torque and
speed of the unit are computed to allow the determination of a particular operating zone of
the unit in the speed–torque plane. The decision is made based on this particular zone.

After completing the modeling and explaining the methodologies that will be used
in this paper, the experimental and simulation results are presented and discussed in the
next section.

3. Results and Discussions

First, the three-phases currents obtained from the physical and the Simulink model in
the ideal condition, without any system defects, are collected. The data acquisition device
utilized to collect currents from the physical fan/motor system, with its implementation
presented in Figure 8. This tool has a filter up to 2.5 KHz. Note that all measurements were
collected for 60 s when the current reached its steady state.

Figure 8. The data acquisition system.

One phase current of each case are shown in Figure 9. This image shows an almost
perfect match between the two currents with a slight difference in amplitudes. The simu-
lated current has a slightly higher value than the measured one. The RMS error between
these currents is demonstrated is equal to 4641.
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Figure 9. Simulated and measured one phase currents, from 55.5 to 56 s.

Then, and in order to dig deeper by analyzing these signals, we applied the concordia
analysis, and we presented the results in Figures 10 and 11.
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Figure 10. Simulated currents in the Concordia reference frame, from 55.5 to 56 s.
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Figure 11. Measured currents in the Concordia reference frame, from 55.5 to 56 s.

Figures 10 demonstrates that both currents IA and IF appear to be without any
disturbance, and this is the normal state, because the modeled system is an ideal system
free of defects, so the current is exempt from any frequency other than the main frequency
of the 50 Hz value. As for Figure 11, it is not the same, and the disturbances affect these
currents. Knowing that the signal taken from the actual system was picked when the system
operates in normal conditions without any defects, the RMS error between the meaured
and the simulated IA is equal to 10.1551. What we can conclude from this figure is that the
current contains other frequencies, unlike the simulated current, and these frequencies do
not necessarily mean that there are malfunctions in the system. Thus, we decided to take
this current and analyze it using the FFT analysis. Figure 12 shows the FFT for IA(t) and
IF(t) in the case of measured currents.
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Figure 12. FFT of IA and IF for the measured currents.

The spectrum analysis showed that the source of the disturbances affecting the modu-
lated current is the appearance of frequencies that were not found in the ideal case from
the Simulink model. When looking more carefully at the value of these frequencies, it can



Machines 2022, 10, 686 13 of 18

be seen that a specter appeared at 1.39 Hz, which, according to Table 3, represents the rotor
rod, while the one which appeared at 10.68 Hz represents the belts’ frequency. The specter
at 50 Hz represents the electrical supply frequency. In addition to these frequencies, the FFT
shows a set of frequencies that initially appeared at 100 Hz and then repeated according
to Equation (13), which indicates the existence of a level of misalignment, while the small
specter at 1450 represents the harmonics resulting from the stator notches, as indicated in
Table 3.

The appearance of these disturbances does not necessarily mean that the system is no
longer functioning or that the component causing this frequency must be replaced. The
fan/motor system of the MTC on which the measurements were made was working well.
Therefore, to make the Simulink model as close to reality as possible, these frequencies
were then added to it through the parameter Td obtained from Equation (5) and inserted
into Equation (4). Thus, the spectral analysis of the simulated IA becomes as shown in
Figure 13, which also shows the FFT of that obtained from the measured currents in order
to be able to compare them. It should be noted that the instantaneous amplitude was used,
as the frequencies are more apparent there than in IF, as demonstrated by Figure 12. The
other frequencies presented in the measured IA result from fault harmonics and noise in
the current. Due to their small amplitude relative to the other components, they are not
simulated in the model.
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Figure 13. FFT of the measured and simulated IA.

Figure 14 shows how the simulated IA became after making the changes to the
digital twin. Some disturbances affected it that were not present in the ideal condition
(Figure 10). Additionally, Figure 14 demonstrates a comparison with the measured IA
and shows that the simulated one becomes close to reality. The RMS error between these
two currents is decreased from 10.1551 in to 5.232. Therefore, since these disturbances or
all these frequencies do not mean the presence of a malfunction, as we have mentioned,
it is necessary to develop a diagnostic approach that can trigger an alarm when faults
appear and reach a certain margin level. In this part, we test the procedure described in
the previous section. For that, the simulator of the motor/fan system of the MTC already
detailed in Section 2.1 is used.
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Figure 14. Simulated and measured IA(t), from 5 to 6 s.
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In this simulation, the test is performed on 30 recordings in a healthy operating state
at a fixed speed and steady state. Each recording is for a recording time of about 2 min.
In order to facilitate the simulation, we limit ourselves to only one type of fault. We will
consider in this part that the concerned fault is that of the transmission belt, because it
has the highest magnitude, as shown in Figures 12 and 13. For a complete simulation of
the monitoring by statistical analysis, the same approach can be done for the rest of the
possible defects defined in Table 3, by using Equation (17) to create a centered, reduced
signature that can be applied to all defect types. In particular, for the rotor bar defect there
is an approach that has been formulated by [57] based on many experiments and readings
to determine its severity, through which the margin level of the frequency magnitude can
be determined.

The recordings without defects were made on the real motor/fan system on the MTC
site at a fixed speed (Figure 8). With the impossibility of creating a fault in the existing
system, the recordings with fault were estimated by the simulation of the digital twin
presented in Section 2.2, by creating a fault on the transmission belts while taking into
account white noise, in order to reach as close as possible to reality.

In the training stage, Nre f = 30 registrations are gathered from the physical system.
Each registration represents a single measurement with a duration of 60 s. The fault
signatures Sde f ect are computed. The normalized reference is then generated. The threshold
for a 1% probability is calculated as 2.33. Then, a belt fault was generated using the Simulink
model, only because, in the real situation, we can not create a fault in the industrial system.
Then, this fault is compared with the threshold. Figure 15 shows the distribution of the
normalized signatures, while the comparison of the healthy and faulty condition of the
system compared to the threshold is shown in Figure 16.

Figure 15. Histogram distribution of fault signatures using 30 measures.

Figure 16. Fault signatures using 30 measures.
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4. Conclusions

This article discusses the topic of condition monitoring in ventilation systems based
on the digital twin approach. The most common defects in this type of system have been
reviewed. The method adopted in the diagnostic process is the MCSA, where the Concordia
method and the FFT analysis are used to process the current signal. An alarm has been
created to determine the severity of the defects. We now have a reference that allows for
the state that the real system should be in. Experimental and simulation results prove the
effectiveness of this developed technique. The use of this approach has been limited to
ventilation systems, but with some modifications, it can be used with different frameworks.

Finally, as a proposal of future works, the developed approach can be used with other
types of industrial systems and different kinds of defects. Other techniques can also be
adopted in processing the current signals. Another topic of research is the implementation
of the artificial intelligence, such as Artificial Neural Networks and Fuzzy and Neuro-
Fuzzy logic, to create the alarm that determines the severity of the defects instead of a
statistical study. This study deals with a system that operates at fixed speeds. In order
to improve the efficiency of the system to handle different operating environments, it is
possible to implement signal processing algorithms (such as adaptive notch filters and
adaptive observer approach) that can track and estimate transient frequencies to detect
faults in variable speed conditions.
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Appendix A

1 Turbine
2 Seat
3 Scroll
4 Entrance pavilion
5 Motor with sliders
6 Shaft connection
7 Transmission
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8 Shaft casing and baring
9 Transmission casing
10 Frame
11 Reinforced sealing system (option)
12 Rotation detector (option)
a Pulley 1
b Pulley 2
c Belts
d Bearings
e Shaft
f Fan
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