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Abstract: AbstractDue to the requirement of significant manpower and material resources for the
crashworthiness tests, various modelling approaches are utilized to reduce these costs. Despite
being informative, finite element models still have the disadvantage of being time-consuming. A
data-driven model has recently demonstrated potential in terms of computational efficiency, but it is
also accompanied by challenges in collecting an amount of data. Few-shot learning is a perspective
approach in addressing the problem of insufficient data in engineering. In this paper, using a novel
hybrid data augmentation method, we investigate a deep-learning-based few-shot learning approach
to evaluate and optimize the crashworthiness of multi-cell structures. Innovatively, we employ
wide and deep neural networks to develop a surrogate model for multi-objective optimization. In
comparison with the original results, the optimized result of the multi-cell structure demonstrates
that the mean crushing force (Fm) and specific energy absorption (SEA) are increased by 17.1% and
30.1%, respectively, the mass decreases by 4.0%, and the optimized structure offers a significant
improvement in design space. Overall, this proposed method exhibits great potential in relation to
the crashworthiness analysis and optimization for multi-cell structures of the high-speed train.

Keywords: crashworthiness; few-shot learning; multi-cell structures; high-speed train

1. Introduction

Due to the severe casualties and property losses in railway collision accidents, crash-
worthiness analysis and optimization have received great attention. Researchers have
investigated collision dynamic performance mainly through three methods: (i) Crash
test [1]—while the tests have the advantage of being reliable, the cost and labor associ-
ated with them is significant; (ii) Finite element (FE) simulation [2,3]—the FE simulation
could reduce human labor and costs by simulating the geometry, material properties, and
connections of each component; however, they are still faced with complicated models
and time-consuming calculations; (iii) Theoretical approach [4]—this approach is devel-
oped using simplified super folding element (SAFE) theory, which generally requires rich
experience, and professional knowledge of mechanics and mathematics.

Recently, Machine Learning, as a novel developed data-driven approach, has yielded
significant improvement in terms of efficiency, and has been extensively used in the en-
gineering area to simulate highly nonlinear interactions between inputs and outputs of
crash dynamics. For instance, the stable behavior prediction of a thin-walled box [5], the
force–displacement characteristics analysis of train crashes [6,7], the integrated dynamic
response prediction of automobile crashes [8], and the crash process estimation of vehicle-
barrier frontal crashes [9] were all analyzed by Karimi et al. [10]. These approaches could
directly analyze and predict crash dynamics characteristics using the trained model, which
has significantly increased computing efficiency. However, these approaches generally
required an amount of data for training the data-driven model, leading to the relatively
high cost of collecting data.
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In order to address these issues, a few-shot learning algorithm based on prior knowl-
edge has been proposed, which can rapidly generalize new tasks with only a few samples
of supervised information. Currently, these studies of few-shot learning algorithms can
be mainly categorized into three perspectives: (i) data, which enhances the supervised
experience with prior knowledge; (ii) model, which reduces the size of the hypothesis
space based on prior knowledge; and (iii) algorithm, which searches for the best hypothesis
in a given hypothesis space based on prior experience [11]. With the development of the
few-shot learning algorithm, there are many applications in engineering, such as disease
classification [12], fault diagnosis [13], and image interpretation [14]. Thus, the few-shot
learning method would have a better perspective when applied in crashworthiness analysis
and optimization.

Multi-cell structures, with the advantage of being lightweight, could dissipate more
crash energy and could reduce the impact pressures of the passengers during the collision
process than single-cell structures [15,16]. Researchers have gradually adopted multi-cell
structures instead of single-cell structures to protect the passengers against impact caused
by railway collision accidents. For decades, the energy absorption behavior of thin-walled
structures has been investigated under different loading conditions, including axial [17–19],
lateral [20–22], oblique [23–25], and bending [26–28]. Among them, the axial crushing
mode is the most efficient for energy absorption since the majority of the structure is
plastic material [29]. Therefore, it is essential to study the collision dynamic performance of
multi-cell structures under axial impact.

In the present study, we propose a few-shot learning-based approach to analyze
and optimize the crashworthiness for the multi-cell structure of a high-speed train (refer
to Figure 1) under the axial impact. The framework of our study involved the follow-
ing: (i) data augmentation—the generalized data generation from three crashworthiness
analysis methods of Simplified Super Folding Element (SSFE) theory, finite element (FE)
simulation, and tests; (ii) modelling—the deep learning model of a wide and deep neural
network is trained to accurately estimate the nonlinear relationship between the structure
parameters (e.g., wall thickness and cell length) and the crashworthiness performance (e.g.,
mean crushing force and specific energy absorption); (iii) multi-objective optimization—a
multi-objective optimization based on the deep learning-based few-shot learning model is
carried out using the Non-dominated Sorting Genetic Algorithm-III (NSGA-III) to seek the
optimum design space.
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Figure 1. Multi-cell structure of the high-speed train. Figure 1. Multi-cell structure of the high-speed train.

2. Materials and Methods
2.1. Materials

In the present study, a honeycomb composite structure with five holes using an
octagonal tube will be utilized as an energy absorber structure for the high-speed train. As
depicted in Figure 2, the cell wall length a, wall-length b, cell wall length c, and thickness
t of the multi-cell thin-walled structure are 56, 56, 51, and 5 mm, respectively, and the angle
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of the beveled edge to the side is 150◦, the cross-section dimension H ×W of the multi-cell
structure is 280 × 245 mm and the length L of the multi-cell-structure is 500 mm [30,31].
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2.1.1. Theoretical Analysis

For multi-cell structures under axial crushing load, the mean crushing force (Fm) and
the specific energy absorption (SEA) can be calculated using the simplified super folding
element theory (SSFE) [4]. According to the principle of conservation of energy, the energy
absorption equation for the multi-cell structure of the high-speed train could be expressed
as follows:

FmL =
1
η
(Eb + Em), (1)

where F, L, Eb, Em and η are the mean crushing force, folding wavelength, bending deforma-
tion energy, film deformation energy, and the effective impact distance coefficient, respectively.

• Film deformation energy: The film deformation energy Em of each flange plate can be
calculated by integrating the triangular cells of a folded wavelength.

Em =
∫

s
σ0tds =

1
8

σ0tL2 =
1
2

M0
L2

t
, (2)

where M0 = σ0t2

4 . An energy equivalent stress σ0 can be used to approximate the flow
stress for power-law hardening materials

σ0 =

√
σyσu

1 + n
, (3)

where σy, σu and n denote the yield strength, the ultimate strength of the material, and
the exponent of the power-law, respectively. Given that a plate’s function is similar to
that of a rectangular thin-film unit, the deformation energy of a thin-film unit is twice
that of a plate.

E90◦
m = 2Em = M0

L2

t
, (4)

Then the deformation energy of the V-shaped film (Figure 2a) can be determined.

EV
m =

E90◦
m

cos γ
= M0

L2

t cos15◦
, (5)
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As shown in Figure 2, the Y-I unit can be regarded as a combination of the V-shaped
unit (Figure 2c) and an additional plate. A Y-II unit can be viewed as a unit composed of a
right-angle unit and an additional plate, and its deformation energy can be determined.

Eadd
m = 2M0

L2

t
tan
( ϕ

2

)
, (6)

Accordingly, the film deformation energy of Y-I and Y-II units can be divided as follows:

EY−I
m = M0

L2

t

(
1

cos 15◦
+ 2 tan 60◦

)
, (7)

EY−II
m = M0

L2

t
(1 + 2 tan 60◦), (8)

• Bending deformation energy: Using the SSFE theory, where buckling wavelength L and
wall thickness t are assumed to be constant, we can divide the energy absorption region
of each corner unit into a thin film deformation zone and a bending deformation zone.
For each of the flange plates, bending deformation energy is calculated as follows:

Eb = ∑3
i=1 M0θic = 2πM0B0, (9)

where c, B0 and M0 is the side length, the sum lengths of the corner cell wall and the
plastic bending moment of the flange plate, respectively; the four rotation angle values
θi at the bent strand are π/2.

• Mean crushing forces: Five-cell structures with the cross-section configuration honey-
comb tubes consist of 16 V-shaped elements, 4 Y-I-shaped elements, and 4 Y-II-shaped
elements. We can then substitute Equations (5) and (7)–(9) into Equation (1) to obtain
Equation (10).

FmLη = Eb3 + 16EV
m + 4EY−I

m + 4EY−II
m , (10)

A mean crushing force can be calculated using Equation (11).

Fm =
πM0B3

ηH
+

M0H
ηt

(
4 +

20
cos 15◦

+ 16 tan 60◦
)
= 7.24π0.5B0.5t1.5σ0, (11)

A thin-walled structure might experience an axial impact load that is affected by its
dynamic impact velocity. According to the literature [32], dynamic impact loads are usually
bigger than equivalent quasi-static loads, and the dynamic increase coefficient λ is 1.2~1.5,
which is proportional to the dynamic impact velocity (although other factors may affect the
coefficient’s value, which is not considered in this study). Specifically, the initial velocity in
this study is 10 m/s and the dynamic increase coefficient λ is set to 1.2. Accordingly, the
revised mean crushing force of the multi-cell structure can be obtained as Equation (12).

Fm = λPm3 = 1.2× 7.24π0.5B0.5t1.5σ0 = 8.688π0.5B0.5t1.5, (12)

In addition, a lightweight mass and efficient energy absorption determine the energy
absorption capacity of the multi-cell structure per mass unit. Thus, a multi-cell structure can
be designed to improve crashworthiness by taking into account the energy that is absorbed
per unit mass of the thin-walled component. This can be represented by Equation (13).
According to the study by Abramowicz [33,34], there is a crush distance of around 70–75%
of the wavelength L, so we can assume the value of 0.62 in the following derivation
considering the engineering noise.

Fm = λPm3 = 1.2× 7.24π0.5B0.5t1.5σ0 = 8.688π0.5B0.5t1.5, (13)
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2.1.2. Finite Element Model

The crashworthiness performance of a multi-cell structure can be investigated using an
explicit nonlinear finite element program. To simulate the deformation of energy-absorbing
structures on the LS-DYNA platform, the multi-cell structure is modeled using quadrilateral
shell elements of 2× 2 mm, which are four-node shell elements with three integration points
across the thickness and one integration point in the element plane. The ‘AUTOMATIC
SINGLE SURFACE’ contact algorithm is used for the energy-absorbing structure’s self-
contact, and the ‘AUTOMATIC SURFACE_ TO SURFACE’ contact algorithms are used to
contact the rigid wall with the energy-absorbing structure, as well as the impactor with
the energy-absorbing structure. There is a static coefficient of friction of 0.3 and a dynamic
coefficient of friction of 0.1. During the impact, the impactor with an initial velocity of
10 m/s impacted the multi-cell structure in the X axes, while the endplates were limited in
the Y and Z axes, meaning they could not move dynamically. An FE model of the multi-cell
structure is shown in Figure 3a.
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2.1.3. Test Set-Up

Aluminum alloy 6082-T6 is the material used in the multi-cell structure [35]. The
stress–strain behavior of aluminum alloy 6082-T6 was investigated by performing quasi-
static tensile tests at room temperature with strain rates of 3 × 10−4 s−1 using an RGM-
4300 testing machine, whose specimens were cut from a portion of a multi-cell structure.
According to the linear relationship between stress and strain in the elastic phase, the test
is loaded at a constant rate of 1 mm/min in the elastic phase and at a constant rate of
10 mm/min in the plasticity phase, and then the stress–strain curve of the aluminum alloy
6082-T6 can be obtained, as shown in Figure 4.

The material parameters of the aluminum alloy 6082-T6 are summarized in Table 1.
Then, the multi-cell structure material of the finite element model can be defined using
Mat.024 according to the material library of the LS-DYNA platform.

Table 1. Material parameters of multi-cell structure.

Property Units Value

Density kg/m3 2700
Young’s modulus MPa 71,000

Poisson’s ratio - 0.33
Yield stress MPa 121

Ultimate tensile strength MPa 183
Fracture strain % 7.71
Fracture stress MPa 175
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Furthermore, the crashworthiness performance of the multi-cell structure can be eval-
uated using an experimental dynamic impactor. In order to minimize sample movement,
the multi-cell structure is securely attached to the rigid wall with four bolts M30, and an
initial impact velocity of 10 m/s was applied to this system. Force sensors were placed on
the force homogenizing plate to measure immediate impact force, and high-speed cameras
recorded the process of crushing the multi-cell structure. The deformation modes, temporal
history of displacement, velocity, and crushing force can all be determined from photos
taken by a high-speed digital camera through a dynamic impact experiment (Figure 2b).
The crashworthiness data collected during a collision can be used to evaluate a structure’s
dynamic performance, such as its deformation modes, SEA, Fm, etc.

2.1.4. Crashworthiness Analysis

To assess the crashworthiness performance of the multi-cell structure, the FE simula-
tion results were compared to dynamic impact experiment results (for the same boundary
conditions), as shown in Figure 5.
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Figure 5 illustrates that the simulated and test results curves are closely related, and
the results from simulation and tests of the multi-cell structure have a good agreement
regarding the deformation mode. In the aftermath of a collision, the crushing force reaches
a peak, then declines rapidly before fluctuating. The mean crushing force continues for
some time, until eventually it breaks the collapse. Table 2 provides the overall comparison
of the experimental results, the simulation results, and the theoretical results.

Table 2. Comparison of experimental results, FE simulation results, and theoretical results.

Methods Fm
(kN)

Displacement
(mm)

EA
(KJ)

SEA
(KJ/kg)

Experimental 874.0 278 243.0 26.9
Simulation 905.7 269 243.6 25.75
Theorical 903.3 279 252.0 26.6

Simulation Error (%) 3.6 3.2 0.2 4.2
Theorical Error (%) 3.4 3.5 3.3 3.1

In Table 2, Fm is 874.0 kN for test results, 905.7 kN for FE simulations, and 903.3 kN
for theoretical calculations, with the errors of simulation and theoretical calculations being
3.6% and 3.4%, respectively. There is a 278 mm displacement of test results, 269 mm
displacement of FE simulation results and a 279 mm displacement of theoretical results,
as well as a simulation error of 3.2% and a theatrical error of 3.5%, respectively. The
energy absorption (EA) of test results, FE simulation results and theoretical results are
243.0, 243.6, and 252.0 kJ, respectively, and the simulation error and theatrical error are
0.2% and 3.3%, respectively. Based on the experimental results, FE simulation results, and
theoretical results, the SEA is 26.9, 25.75, and 26.66, respectively, while the simulation error
and theatrical error are 4.2% and 3.1, respectively. Thus, the maximum errors in simulation
results and theoretical results are no more than 4.2% and 3.5%, respectively. Besides, the
comparison table showed that theoretical results and simulation results closely matched
experimental results, proving that the theoretical and simulation formulas for evaluating
crashworthiness are accurate.

2.2. Few-Shot Learning
2.2.1. Data Augmentation

In crashworthiness analysis, tests and FE simulation, calculations are expensive and
time-consuming, making it challenging to collect enough data; then, fewer data samples
could be analyzed. The MLPRegressor is used in this paper to investigate the relationship
between structural parameters and crashworthiness characteristics in order to address the
limitations in sample size in engineering; then, the output of the MLPRegressor could be
calculated in Equation (14).

y = ak = g(hk) = g
(
∑M

i=0 wikxik

)
, (14)

where y is the output of MLPRegressor, which is the final result; hk is the input weighted
sum of neurons k in the output layer. The sum-of-squares error function is:

E =
1
2 ∑N

k=1 (y− yt)
2, (15)

where yt is the target value for the output of the network.
As seen in Figure 6, an MLPRegressor that incorporates both theoretical and FE

simulation results, as well as experimental results, is proposed to ensure that this approach
is correct. As a specific example of data augmentation, here are the steps:

(i) We conducted a dynamic impact experiment on multi-cell structures in the first
step. FEA and theoretical results were then validated against experimental results under
similar conditions.
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(ii) A series of 40 FEA simulations were conducted for t = 3.5, 4.0, 4.5, 5.0 mm, and
a = 45, 50, 55, 60 mm, respectively. Thus, we collected 41 samples for initial training data
for MLPRegressor, which included the 40 FEA simulation and an experiment;

(iii) The three variables t ∈ [3, 6], a ∈ [20, 70], and b ∈ [14, 88] yield 4800 different
combinations, which can be randomly divided into four groups, each of which has a total
of 1200 combinations.

(iv) The MLPRegressor is fed with more than 1200 combinations of the first group, its
output is obtained, and its validity is verified by comparing it to the theoretical results.

(v) After that, a new MLPRegressor is trained using a set of new training data, which
includes an experimental sample, 40 FEA simulation samples, 1200 theoretical samples,
and 1200 initial MLPRegressor samples, totaling 2441 samples.

(vi) Similar to (iv), the second dataset of 1200 combinations is fed into the latest ML-
PRegressor, and the output results are compared with theoretical results to ensure validity.

(vii) It is recommended that steps (v) and (vi) be repeated until all combinations of
four groups have been trained and that 96041 valid sample data have been obtained.
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Furthermore, not only can we obtain high-precision and representative data, but we
can also increase the sample size by using a four-time hybrid technique, which gives us the
foundation for training deep learning algorithm of wide and deep neural network models.

Due to the neural network’s sensitivity to input, we have to normalize the sample
data after dealing with the issue of insufficient data. Specifically, in this case, we apply the
MAX–MIN scaling approach in order to normalize the data according to Equation (16).

f (xi) =
xi −min(x)

max(x)−min(x)
, (16)

In this equation, min(x) is the minimum, and max(x) is the maximum value in x.

2.2.2. Model Framework

The deep learning framework of the wide and deep neural network model [36] is
composed of three main components: the wide component, the deep component, and the
joint training component.

1. Wide component

In Figure 7, the wide component (which is contained in the red dashed box) is a layer
of neural networks that are fully connected and that derives global knowledge from data.
Due to this, we selected the wide component based on the multi-cell structure data (i.e.,
thickness and length of the cell wall) to study the co-occurrence of characteristics. Each
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neuron in the fully connected layer calculates its score by incorporating the multi-cell
structure data into Equation (17).

yj := ∑n
i=1 wi,jxi + b1, (17)

where yj is the output of the fully connected layer in the jth neuron, n is the length of input
data (x), wi,j stands for the neuron weight between the ith input value and jth neuron, and
b1 is the bias.
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The activation function of this unit will convey this number to the higher-layer con-
nected units in order to evaluate to what extent it contributes to the prediction of the next
step. The activation function is given by Equation (18).

uj := f
(
yj
)
= max

(
0, yj

)
, (18)

where uj is the output after activation calculation; f (·) represents the activation function.
In this study, we use a rectified linear unit as the activation function, which will only

activate the positive value.

2. Deep component

As seen in Figure 7, the deep component consists of a feed-forward neural network
(enclosed in the green dash box). The multi-cell structural characteristics (thickness, cell
wall lengths, etc.) are used as inputs to the model, and these low-dimensional vectors are
fed into the hidden layers of the neural network through the forward pass. Specifically,
each hidden layer conducts the following calculations according to Equation (19).

a(l+1) = f
(

W(l)a(l) + b(l)
)

, (19)

where l is the layer number; f is the activation function, generally rectified linear units (ReLUs);
a(l), b(l), and W(l) are the activations, bias, and model weights at the l-th layer, respectively.

3. Joint training

Using the weighted sum of a wide component’s outputs and a deep component’s
outputs, we combine the two predictions into one and use that to input a single common
logistic loss function on a joint training dataset. Ensembles of models are trained indepen-
dently from one another, and predictions are integrated once they have been trained. Joint
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training, on the other hand, optimizes all variables simultaneously, taking into account
both the wide and deep components of each parameter, as well as the weights associated
with their combined effect during the training process. Typically, due to the discontinuous
nature of training, it is necessary that each model be larger (e.g., have more features and
transformations) for the ensemble to perform correctly. In contrast, during joint training,
the wide part requires just a modest number of cross-product feature transformations to
compensate for the deep part’s shortcomings, rather than a full-size wide model.

Using mini-batch stochastic optimization, the wide component and deep component
of the deep learning model are trained simultaneously using the gradients from the output.
In the test, we used RMSprop as the optimizer for the wide component of the model, and
AdaGrad for the deep component. In Figure 7, the combined model is illustrated, and a
logistic regression model’s prediction is given by Equation (20).

P(Y = 1 | x) = σ
(

wT
wide[x, φ(x)] + wT

deepa(l f ) + b
)

, (20)

where Y is the binary class label; σ(·) is the sigmoid function; ϕ(x) is the cross-product
transformations of the original features x; b is the bias term; wwide is the vector of all wide
components weights; wdeep are the weights applied on the final activations a(lf ).

The pseudo code used for the few-shot learning combined with data augmentation
and wide and deep neural networks is shown in Algorithm 1.

Algorithm 1. Few-shot learning pseudo code.

Few-Shot Learning in This Study

hybrid data augmentation to obtain dataset
initialize all variables by the random value
for loop from 1 to num_epoch

choose xi from X data as the wide model input
choose xj from X data as the deep model input
compute the yj of the wide model output

yj := ∑n
i=1 wi,jxi + b1

compute the output of the deep model output-layer a(l+1)

for l = L to 5:
compute the a(l + 1) based on a(l) and W(l) and b(l)

a(l+1) = f
(

W(l)a(l) + b(l)
)

concatenate the wide output and deep output, and compute the model output

(Y = 1 | x) = σ
(

wT
wide[x, φ(x)] + wT

deepa(l f ) + b
)

2.3. Problem Set-Up
2.3.1. Optimization Problem

Multi-cell structures are characteristic of high-speed trains that absorb a great deal of
energy during a collision. These energy-absorbing structures must prevent uncontrolled
collapse and protect the occupied volume from being damaged during the collapse pro-
cess, as well as ensure the proper functioning of the energy-absorbing components at
each end of the train. Multi-cell structures, as important energy-absorbing components,
should be optimized to obtain higher energy-absorbing efficiency and lighter mass. To
achieve crashworthiness standards, a powerful optimization tool is introduced into the
design of multi-cell energy-absorbing structures. There would be an improvement in
the crashworthiness of the energy-absorbing structures on the high-speed train if the
multi-cell energy-absorbing structure had a higher Fm and SEA. Meanwhile, multi-cell
structures have the advantage of absorbing more energy while being lighter in mass, which
provides high efficiency of energy absorption, thereby increasing the crashworthiness of
energy-absorbing components.

Our goal is to minimize crash damage loss by optimizing the maximum Fm, maximum
SEA, and minimum mass (M) of the multi-cell structure. A multi-objective optimization
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model of multi-cell structures, with the main objective of maximizing Fm, SEA and min-
imizing M, can be analyzed in this study. Furthermore, the geometry of the high-speed
train’s front end constrains the cross-sectional area of the energy absorption structure, the
scale of the total energy absorption is also constrained as a result of the tight design space,
and then the amount of the design space is used as a constraint in the optimization problem.
Following that, the optimization function is described with respect to the design variables
of t, a, b, and c. In summary, the multi-objective optimization problem can be expressed as
Equation (21). 

Max[Fm(t, a, b, c), SEA(t, a, b, c), 1/M(t, a, b, c)]
s.t. 3 mm ≤ t ≤ 6 mm

40 mm ≤ a ≤ 70 mm
0 mm ≤ b ≤ 122 mm
0 mm ≤ c ≤ 123 mm
max

(
4(a + t) + c, 2

√
3(a + t) + b

)
≤ 300 mm

min
(

4(a + t) + c, 2
√

3(a + t) + b
)
≤ 265 mm

, (21)

2.3.2. Optimization Algorithm

Non-dominated Sorting Genetic Algorithm-III (NSGA-III) is an adaptation of a genetic
algorithm for solving problems involving multi-objective optimization [37]. Multi-objective
optimization is concerned with the minimization or maximization of more than one ob-
jective function simultaneously, and the objective is not just to determine an optimum
but also to identify the Pareto front. Figure 8 shows a flow chart of the multi-objective
optimization process.
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3. Results and Discussion
3.1. Model Training

By applying wide and deep neural networks to the few-shot learning approach, we
evaluate every structural parameter, such as wall thickness t, cell length a, cell length b,
and cell length c in the deep component, and thickness and unit wall length in the broad
component. To achieve the best performance, k-fold cross-validation, which divides the
training data and verification data by 0.75 and 0.25, resulting in 7231 tests for training and
2410 for validation. Then, the hyperparameters (hidden layers = 5, layer size 1 = 1024, layer
size 2 = 512, layer size 3 = 256, layer size 4 = 128 and layer size 5 = 64, optimizer = RMSprop,
learning rate = 0.0001) are defined through a coarse grid search. Concatenating these dense
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features results in a dense vector of approximately 19285 dimensions. Afterward, the
concatenated vector is fed into five ReLU layers and then into the logistic output unit, from
which dense and sparse features are generated during training.

As a result of 1000 training sessions, the mean absolute error (MAE) of the loss,
representing the value of the training set’s loss, and the val_loss, representing the value
of the test set’s loss, both remain essentially stable, as shown in Figure 9a. In addition, in
order to further validate the accuracy of the prediction, both the few-shot learning and the
Radial Basis Function (RBF) models [38] are evaluated by examining its goodness-of-fit R2
(the closer the value is to 1, the better the fitting), and the results are shown in Figure 9b.
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Figure 9. Training procedure: (a) loss curves on epochs; (b) fitting goodness R2.

Figure 9 clearly indicates that both the few-shot learning model and the RBF model
are well-trained. The few-shot learning model of Fm and SEA has a goodness-of-fit of 0.94
and 0.8, respectively, while the traditional RBF model has a goodness-of-fit of 0.92 and 0.74,
namely, the few-shot learning model’s goodness-of-fit is higher than the traditional RBF
model’s. Additionally, to estimate the mean force and SEA of this approach, the response
surface comparison results and the contour line comparison results of the mean force and
SEA are derived from the traditional RBF model and the few-shot learning model, as shown
in Figure 10.
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As shown in Figure 10, the fluctuation of four critical factors can be accurately assessed
by comparing the response surface and contours of the RBF model and the few-shot learning
model. For the combination of parameters t = 7.1 mm, a = 81 mm, b = 98 mm, and c = 82 mm,
the maximum force calculated by the few-shot learning model is 2013.75 kN, while the
maximum force calculated by the traditional RBF met hod is 1858.84 kN, producing an error
of 7.6%. With parameters t = 7.1 mm, a = 11 mm, b = 4 mm, and c = 2.5 mm, the few-shot
learning model calculates a maximum SEA of 81.233, whereas the traditional RBF model
calculates a maximum SEA of 83.616, which yields a 2.7% error. Comparison results show
that the errors are all within the acceptable range and that the few-shot learning model can
accurately predict the outcome in terms of accuracy. Finally, we obtain the response results
from twelve arrays generated randomly based on the data points, and they are used to test
the validity of the few-shot learning model. In Table 3, we summarize the response results
for various control parameter combinations.

Table 3. Comparison response results.

Test
t

(mm)
a

(mm)
b

(mm)
c

(mm)
Fm (kN) SEA

Actual Predicted Eror Actual Predicted Error

1 4.2 57 67 44 761.11 749.03 0.015 26.078 28.034 −0.07
2 5.7 69 41 46 1116.38 1114.536 0.002 28.729 31.34 −0.09
3 4.7 70 67 68 931.48 952.34 −0.025 29.2 32.456 −0.111
4 5.7 47 48 69 1006.12 1007.639 −0.001 33.272 36.299 −0.09
5 3.6 61 69 63 629.65 651.34 −0.034 23.16 28.67 −0.237
6 5.9 69 63 64 1231.12 1218.28 0.01 32.29 34.85 −0.08
7 5.4 69 98 67 1140.87 1134.53 0.006 35.88 36.5 −0.017
8 3.6 70 67 68 668.87 700.87 −0.047 21.8 28.82 −0.322
9 4.2 42 58 48 666.69 668.17 −0.002 29.77 29.16 0.02

10 3.8 79 31 63 749.89 776.08 −0.03 21.67 28.35 −0.30
11 4.3 47 68 70.5 741.17 756.45 −0.02 28.07 32.37 −0.15
12 1.33 11 4 82 71.022 131.23 −0.84 28.02 30.23 −0.07

As shown in Table 3, the largest difference in Fm between the actual and the few-shot
learning model predicted is 0.84, and the largest difference in SEA between the actual and
the few-shot learning model predicted is 0.322. Overall, the few-shot learning model is
more accurate and performs better in terms of generalization. After this introduction, it is
possible to conduct a parametric study and an optimization analysis based on the surrogate
model in the following sections.

3.2. Parametric Study

According to [39], the structure parameters can influence crashworthiness, so it is
important to investigate the parametric sensitivity analysis of crashworthiness. For a
deeper understanding of the influence of each parameter on the Fm, the total sensitivity
indices (ST) at 95% confidence levels considered the mutual influence, and the second-order
sensitivity indices (S2) at 95% confidence levels also include the mutual influence, as shown
in Figure 11.

According to Figure 11, the cell wall length b is the most important structural factor
affecting mean crushing force, followed by the thickness t, and cell wall length a is the
least crucial factor. The most significant effect on the mean force is the interaction between
cell wall length a and cell wall length c, followed by the interaction between the thickness
t and the cell wall length c. The interaction between cell wall length a and cell wall
length b of the cell wall has the least effect. Additionally, to analyze the influence of each
parameter on SEA, we calculate the total sensitivity indices (ST) at a 95% confidence level,
including the influences between each parameter, and we also calculate the second-order
sensitivity indices (S2) at a 95% confidence level incorporating the mutual influence, as
shown in Figure 12.
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Figure 12 shows that thickness t and cell wall length a had the greatest impact on
the SEA of all structural factors, followed by cell wall length b and cell wall length c. The
interaction between thickness t and cell wall length a, and also the interaction between
cell wall length b and cell wall length c, has the greatest influence on SEA. The interaction
between thickness t and cell wall length c has the next greatest effect on SEA, while the
interaction between cell wall length a and cell wall length b has the least influence on
SEA. Considering all the structural parameters, the parametric analysis shows that both
thickness t, cell wall lengths a, b, and c, and their interactions have a significant impact on
Fm and SEA and, consequently, provide a basis for further optimization of the multi-cell
structure’s crashworthiness index.
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3.3. Optimisation Results

A specified description of the parameter definitions for the NSGA-III algorithm may
be given: the population size, maximum iteration, generation gap, crossover rate, and
mutation rate are 1000, 500, 0.8, 0.9, and 0.1, respectively. The NSGA-III algorithm generates
a well-distributed Pareto front throughout the design space, and Figure 13 shows the Pareto
front generated from the optimization function in this study, with the “star” indicating the
parameters that were selected as optimal.

The optimal parameters of the t, a, b, and c are calculated, and the results show
that the t is approximately 6 mm, the a is approximately 50 mm, and the b and c are
relatively flexible. In terms of an integrative argument, t, a, b, and c are 5.99, 48.68, 0.71,
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and 36.86 mm respectively, so we could take the integer parameters to mean that t, a, b,
and c are 6, 49, 0, and 37 mm, respectively. The optimal results and original results are
modeled on the platform of LS-DYNA based on an impact speed of 10m/s in order to
validate the effectiveness of the optimization algorithm and to evaluate the crashworthiness
performance of the multi-cell energy-absorbing structure. Figure 14 shows the force–
displacement curves associated with the optimal design and the initial design. Table 4
details the critical indexes of these two designs.
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Table 4. Comparison of the optimum design and the initial design.

Design t (mm) a (mm) b (mm) c (mm) Fm (kN) EA (kJ) SEA (kJ/kg) M (kg)

Initial 5 56 56 51 905.7 243.6 25.75 9.46
Optimal 6 49 0 37 1060.9 333.9 36.86 9.06
Change 0.20 −0.125 - −0.274 0.171 0.371 0.301 −0.040

The dynamic force curve of an optimum design is more constant with a greater
maximum force, as shown in Figure 14. According to Figure 14, in the event of an impact,
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dynamic crushing force peaks initially, then drops rapidly, and oscillates around the average
crushing force, eventually completing telescopic deformation. Furthermore, the optimized
multi-cellular structure displays a higher average crushing force than the original design,
meaning that when it compresses the same distance, it absorbs a greater amount of energy.
Consequently, the energy-absorbing structures of the high-speed train are improved in
terms of its crashworthiness.

As depicted in Table 4, compared with the original design, the crashworthiness index of
the optimal design has also been improved, and the SEA and Fm are increased by 30.1% and
17.1%, respectively, for the requirements of the Energy Absorption (EA). Meanwhile, the
structural mass of the optimized design is also reduced by 4% at the same time. Therefore,
the optimized structure is significant with great potential in crashworthiness applications
for multi-cell structures of high-speed trains.

4. Conclusions

In an effort to analyze and optimize the crashworthiness of multi-cell structures with
hexagonal cells, a deep learning-based few-shot learning model has been developed, and
its applications on multi-objective optimisation illustrate its significant potential.

In this study, we attempt to solve the problem of insufficient data in engineering via a
few-shot learning approach based on the hybrid augmentation technique that uses SSFE
theory and FE simulations to supplement existing data. A multi-cell structure of high-speed
trains under axial dynamic impact load is analyzed using a wide and deep neural network
model to explore the crashworthiness characteristics, especially Fm and SEA. This deep
learning could provide the memory capacity of the shallow network and the generalization
ability of the deep model. The deep learning model of wide and deep neural networks has
excellent results and is in agreement with actual results. Therefore, this deep learning-based
few-shot learning model provides a thorough and accurate description of the dynamic
behavior of collisions.

To develop design guidelines for multi-cell structures, parametric sensitivity analysis is
applied to determine the effects of design variables on collision responses, and multiobject
optimization is applied to multi-cell structures. Using the NSGA-III algorithm, the multi-
cell structure’s crashworthiness characteristics of Fm, SEA, and M are then optimized.
By adjusting the wall thickness and the cell side length, the optimal structure of the Fm,
SEA, and M achieved 1060.9 kN, 36.86 kJ/kg, and 9.06 kg, respectively, which effectively
improved the load-bearing capacity of the multi-cell structure.

Still, there is room for improvement here in the future. (i) There may be opportunities
to enhance the extrapolation capability of this proposed approach in the future. (ii) Consid-
ering that there are a variety of different approaches that can be utilized for this application,
it would be of interest to investigate the performance of another algorithm in the future.
(iii) Multi-cell structures should be pre-crushed to reduce the static/dynamic ratio and
to make them more uniform, and it is recommended that the dynamic crush coefficient
should consider additional factors, such as the material, shape, and size, in order to achieve
greater accuracy. (iv) Optimization of the multi-cell structure under more complex crash
conditions should be investigated and implemented in the future. Furthermore, we believe
that this study may be useful for optimizing other safety functions in the future.
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