
Citation: Huang, H.; Luo, X. A

Holistic Approach to IGBT Board

Surface Fractal Object Detection

Based on the Multi-Head Model.

Machines 2022, 10, 713. https://

doi.org/10.3390/machines10080713

Academic Editors: Dimitrios

Manolakos and Marko Stojadinov

Received: 28 June 2022

Accepted: 17 August 2022

Published: 20 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

A Holistic Approach to IGBT Board Surface Fractal Object
Detection Based on the Multi-Head Model
Haoran Huang and Xiaochuan Luo *

College of Information Science and Engineering, Northeastern University, No.11 Heping Region Wenhua Street,
Shenyang 110819, China
* Correspondence: luoxch@mail.neu.edu.cn

Abstract: In industrial visual inspection, foreign matters are mostly fractal objects. Detailed detection
of fractal objects is difficult but necessary because better decision-making relies on more detailed
and more comprehensive detection information. This presents a challenge for industrial applications.
To solve this problem, we proposed a holistic approach to fractal object detection based on a multi-
head model. We proposed the IWS (Information Watch and Study) module to provide enhancement
learning capabilities for object information. It increases the detection dimension of the object and
can perform more detailed detection. In order to realize the portability of the IWS module, it can be
easily and quickly deployed to the existing advanced object detection model to achieve end-to-end
detection. We proposed the FGI (Fine-Grained Information) Head, which is used to extract more
comprehensive feature vectors from the original base model. We proposed the WST (Watch and
Study Tactic) Learner for object information processing and adaptive learning of class cluster centers.
Using the MRD (Multi-task Result Determination) strategy to combine the classification results
and IWS results, the final detection results are derived. In the experiment, the IWS and MRD
were mounted on three different models of the YOLO series. The experimental results show that
YOLO+IWS has good foreign object detection capabilities to meet the needs of industrial visual
inspection. Moreover, for the detailed detection ability of fractal objects, YOLO+IWS is better than
the other 11 competing methods. We designed a new evaluation index and an adjustment mechanism
of class learning weights to make better judgments and more balanced learning. Not only that, we
applied YOLO+IWS to form a brand new object detection system.

Keywords: fractal object detection; enhancement learning; fine-grained information; IGBT board

1. Introduction

Since the introduction of Industry 4.0, the traditional manufacturing industry is cur-
rently undergoing a transformation towards a digital, networked, and intelligent model.
Intelligent manufacturing meets the demands of the personalized production market.
This promotes the reorganization of production lines and the up-scaling of the process,
which puts forward higher requirements for real-time performance, energy efficiency,
and reliability of computing systems [1].

The detection of parts [2] and defects [3] is a crucial task in industrial visual inspection.
In fields that require delicate work, it is indispensable to manually set the work area, shape,
and posture for the target device. Furthermore, there is labor cost and inconvenience as
the configuration has to be manually updated every time a new class of objects is detected.
To automate these complex operations, real-time and efficient object detection methods are
essential [4]. Object detection based on deep learning has made a lot of contributions to
this requirement.

A complete automated fault detection usually consists of two main steps: key de-
vice detection and failure mode identification [5]. The purpose of key device detection
is to locate and extract objects from images with complex backgrounds. After narrowing
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the search, the next step is to identify failure types and locate their exact location within
the key device [6]. The more detailed the data detected by the industrial vision inspec-
tion, the more comprehensive the information obtained, and the better decisions made.
Imagine the following scenarios. If the detection of defects or foreign objects can only deter-
mine whether there are or not in industrial vision inspection, it does not make much sense.
This kind of two-class object detection cannot locate the failure cause at all. To locate the
specific cause of the fault, it is necessary to conduct a secondary investigation manually.
If there are some very similar objects in industrial visual inspection, the similarities and
differences between them are hard to distinguish. Some false detections are bound to occur,
which will lead to the wrong location of the problem. Decision-makers may make wrong
decisions based on these conditions. Both of these situations are to be avoided in industrial
visual inspection.

However, there were few more detailed detection methods for objects. Such studies
in the industrial setting were even rarer. This put forward new requirements for existing
industrial visual inspection tasks. Regarding the more detailed detection of the fractal
object, there are two ways according to the current technology. The first way is to expand
the fine-grained recognition, and add the regression task of object positioning on this
basis. Fine-grained object detection is an extension of fine-grained image recognition that
is more meaningful for industrial applications [6] (refer to Figure 1). It is difficult for
general detectors to accurately localize and classify fine-grained objects because the feature
reuse in them amplifies the conflict between “classification” and “localization” in object
detection [7]. The accuracy of object localization for fine-grained detection directly affects
the fine-grained classification of objects. So far, there were very few studies on fine-grained
object detection tasks that require both fine-grained object localization and classification. It
can be seen that the research on this part is very difficult. The second way is to optimize the
object detection method to strengthen the processing of fine-grained information. In this
part of the research, how to extract and process fine-grained information is difficult.

Figure 1. Objects in industrial vision inspection. (a) is the image data of the magnetic tile. (b) is the
image data of the rail surface. (c) is the image data of the IGBT board surface. The characteristics of
detection objects are very similar. It is necessary to carry out a more detailed detection of the object.

According to our experience, there are many uncertain factors in the first way. The first
way is to face the following two problems. First, existing methods for fine-grained image
recognition rely heavily on key local features. They are not suitable for scenes where the
object cannot be split and the background feature has obvious rules (refer to Figure 2).



Machines 2022, 10, 713 3 of 27

In the scenario where the object cannot be split, it is easy to scramble the reorganized
graph to turn a single object into multiple small objects. It does not achieve the purpose
of local feature extraction. On the contrary, it increases the difficulty of detection. In the
scene with obvious regular background characteristics, the negative sample (background)
area becomes more concentrated and the object becomes more sparse after being split into
sub-areas. In particular, this phenomenon is more obvious when the object (such as hair)
occupies a smaller area in the candidate box. Among classical methods of fine-grained
image recognition, CAP [8], TransFG [9], PMG [10] and WS -DAN [11] are not suitable
for the above two scenarios. DCL [12] and LIO [13] are more serious. Second, publicly
natural datasets used to train models for fine-grained image recognition do not require
separate object localization (refer to Figure 2). However, in practical industrial applications,
it is difficult to extract sample data similar to public natural datasets. If we desire to make
a dataset similar to publicly available natural datasets, there are two ways. The first is
to use the preprocessing network model to regress the sample data of multiple objects
into the sample data of multiple individual objects. This is very difficult. There are many
uncertainties in this way. With this approach, it is difficult to achieve end-to-end detection,
and it is not suitable for training or incremental learning. The second is to artificially collect
a large number of sample data of individual objects, which is obviously not smart enough,
and is not suitable for incremental learning. The method of the second way is more widely
used in the industry than the first way, so the second way is relatively more meaningful.

Figure 2. Fine-grained Image Recognition (a) and Fractal Object Detection (b).

In industrial visual inspection, foreign matters are mostly fractal objects. Fractal objects
have a rough or fragmented geometric shape. It can be divided into several parts, and each
part is a reduced shape of the whole. Because of these properties of fractal objects, it
becomes difficult for multi-class detection [14]. It can be detected but is harder to subdivide.
If you want to obtain detailed detection information, the detailed detection of fractal objects
is indispensable in industrial visual inspection tasks.

Therefore, based on the existing advanced object detection models, we proposed
a holistic approach to fractal object detection based on a multi-head model with object
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information enhancement learning (refer to Figure 3). The main contributions of this paper
are as follows:

1. The IWS (Information Watch and Study module) module (Section 3.1) was proposed
by us to increase the detection dimension of object information;

2. We designed the FGI (Fine-Grained Information) Head (Section 3.1.1) to extract more
comprehensive feature vectors. For object information calculation and class cluster
center learning, we proposed a WST (Watch and Study Tactic) Learner (Section 3.1.2);

3. The MRD (Multi-task Result Determination) strategy (Section 3.1.3) that combines
classification information and fine-grained information to give detection results
were designed. We proposed an adjustment mechanism of class learning weights
(Section 3.3). Its goal is to force the network model to fully learn the characteris-
tics of each class. A new evaluation index (Section 3.2) was designed to facilitate
better judgment.

This method can play a good role in the multi-head model. Under the edge-side image
anomaly detection data, the new detection method formed by IWS on 3 different models
of the YOLO series was compared with the advanced object detection models. The new
detection method with IWS shows good results (refer to Figure 4).

Figure 3. A holistic approach to fractal object detection based on a multi-head model with object
information enhancement learning.

Figure 4. Our models have better effect than other competitive methods.
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2. Related Work

Commonly known detection objects in the industry include fiber, hairs, packaging
shavings, metal shavings, and scratches. It can be seen that most of these foreign objects
have fractal characteristics. In the past, only a two-class detection method for detecting the
presence or absence of foreign objects was required. However, this only meets basic needs;
it can not provide instructive information. Industrial production lines in digital, networked,
and intelligent modes need to know more and obtain more detailed inspection information.
Then, it is necessary for the detailed detection of these fractal objects. However, fractal
objects are difficult to be subdivided due to their nature, so the detailed detection of fractal
objects is a challenging task.

2.1. Object Detection

In industrial visual inspection, traditional inspection methods were usually used.
As time goes on, computing performance has been greatly improved. Deep learning
methods are gradually replacing traditional object detection methods in the field of object
detection. Deep learning methods have been widely used in various fields [15–20].

Different from traditional object detection algorithms, deep learning object detection
algorithms are based on CNN (Convolutional Neural Network). CNN can automatically
learn the features of objects through existing data. It can adapt to diverse backgrounds and
object classes [21]. CNN-based object detection algorithms can be divided into two series
from the perspective of network architecture. One was the object detection algorithm based
on candidate regions represented by Fast-RCNN (Region-based Convolutional Neural
Network) [22], Faster R-CNN [23], Mask R-CNN [24], etc. This type of algorithm usually
had outstanding detection accuracy, but it had high requirements for the quality of the
candidate box and the short slab of the detection speed. The other type was the regression-
based object detection algorithm represented by YOLO (You Only Look Once) [25], SSD
(Single Shot Multi-box Detector) [26], YOLO9000 [27], YOLOv3 [28], YOLOv4 [29], etc.
The advantage of this kind of algorithm was a pleasurable real-time performance.

In addition, there were some excellent object detection models. Some object detection
models were constructed around the Focal Loss function with the ability to mine hard
examples. Representative networks were RetinaNet [30], Grid R-CNN [31], ATSS [32],
Dynamic R-CNN [33], Sparse R-CNN [34] and VarifocalNet [35]. The other part of object
detection models optimized around anchor free, e.g., Cascade R-CNN [36], FreeAnch-
hor [37] and TOOD [38]. These excellent object detection models performed quite well
under natural datasets. However, they might not be applicable in industrial application
scenarios, especially for fractal object detection tasks.

Product inspection based on computer vision has been widely researched and applied.
Yun et al. [39] proposed a conditional convolutional variational autoencoder (CCVAE) to
generate images of different classes of metal defects, and designed a classifier using a deep
convolutional neural network (DCNN) with high generalization. This method yielded
excellent results for defect detection in actual metal production lines. However, the afore-
mentioned cases could only be used for one class of object problems [40]. Chen et al. [41]
proposed a YOLOv3-dense network by replacing Darknet-53 with DenseNet-121. It was
used to detect the misplacement, missing wires, and surface defects of surface-mounted
device light-emitting diodes (SMD LEDs). Zheng et al. [42] proposed an improved YOLOv3
network model that contains four submodels: the bottleneck attention network (BNA-Net),
the attention prediction subnet model, the defect localization subnet model, and the large-
size output feature branch. The network model could improve the recognition accuracy
of large and medium defect objects on the bearing cover. Duan et al. [43] proposed a
method that incorporates dual-density convolutional layers into YOLOv3 and expanded
three feature maps of different scales in YOLOv3 to four. Yu et al. [44] proposed a separable
residual module based on deep separable convolutions and residual networks. A network
with shallower layers and fewer channels was designed for quick detection and recognition
of commutator surface defects. It was applied to commutator surface defect detection
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and recognition. Yao et al. [45] combined the proposed overlapping pooling spatial at-
tention module and the dilated convolution module and applied it to high-precision and
real-time inspection for the online defect detection of PAD (portable Android device) LGPs
(Light guide plates). Tzab et al. [46] first used improved Yolov3-tiny to extract the object’s
cutting edge region. Then, the traditional image processing method was used to detect
and evaluate defects. Obviously, YOLOv3 was widely used in industrial visual inspection
applications. It was a favorable object detection model. However, it is still necessary to
provide targeted optimization schemes for the characteristics of different detection objects.
In particular, classes of objects were not included in natural datasets and the object has
insignificant features.

2.2. Fractal Object Recognition

Refs. [47–50] conducted an applied study on the detailed detection of fine-grained
fractal objects. However, these methods only solved the problem of recognition, not the
problem of detection. While these methods do an extension on detection, no end-to-end
optimization was given. In industrial scenarios, it was difficult for the two-stage object
detection method to meet the industrial detection time requirements.

We needed to solve this problem and made an end-to-end enhancement learning
detection method that can detect objects in more detail. Therefore, we proposed a holistic
approach to fractal object detection with object information enhancement learning.

3. Methodology

The network structure of YOLOv3 mainly includes three parts: a Darknet-53 network,
a functional Neck, and a YOLO Head layer. Darknet-53, as a backbone network, is mainly
used to extract image features. Darknet-53 is a fully convolutional network that contains
53 convolutional layers and introduces a residual structure. When the input image size
is 416 × 416, the Darknet-53 feature extraction network outputs feature maps of three
scales. Their sizes are 13 × 13, 26 × 26, and 52 × 52. Three feature maps of different
scales are processed by the functional Neck. Additionally, multiscale strategies are used
to help the network model learn different levels of feature information at the same time.
Finally, fused features are the input to the YOLO Head layer for class prediction and
bounding box regression.

3.1. YOLO with IWS

In order to achieve end-to-end detection methods that can perform more detailed
detection of fractal objects. We proposed an easy-to-deploy IWS module that provides
enhancement learning capabilities on object information. It adds a detection dimension
to the object and can perform more detailed detection. The explanation was based on
YOLOv3 as the base model. Use it to carry our method, which we call YOLOv3+IWS below
(refer to Figure 5).

We can deploy the target information enhancement learning module without changing
the basic model structure and algorithm. We solved 3 difficulties. They were how to extract
more comprehensive object information, how to process object information to achieve
the purpose of enhancing the detection dimension, and how to balance the enhancement
learning detection results of object information and the original basic network detection
results. To this end, we proposed FGI Head to extract more comprehensive feature vectors
and obtain more detailed object information. We proposed WST Learner to analyze the fine-
grained information of the object and used prior knowledge to continuously accumulate
learning. Combining the two parts of FGI Head and WST Learner, we proposed an object
information enhancement learning module, which is called the IWS Module. In order
to make the IWS Module easy to deploy, we proposed a multi-task result determination
strategy, which is convenient for the model to integrate the multi-task results, so as to give
better judgment results.
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Figure 5. Core strategy of YOLO+IWS.

3.1.1. FGI Head

To perform a more detailed analysis of the fractal object, it was not enough to rely
only on the feature vectors extracted by the classifier. The purpose of the classifier was
to extract key features. The classifier used them to provide attribution probability about
the class [28]. This treatment would only magnify the most critical feature and magnify
the differences between classes. It might be difficult to do a more fine-grained analysis.
Therefore, we needed to extract the invariant information of the fractal object, the more
comprehensive the information, the better. For easy deployment, we also needed to extract
this information without changing the structure of the original base model.

It was difficult to determine which node to extract from and how. Our analysis found
that the branch where YOLOv3 does upsample (point P in Figure 6) is a functional node,
and the CBL (blue box) in front of this node (P) is used to refine the upsampling information
and object features of this branch. The CBL (blue box in Figure 6) after the node (P) is
focused on refining and analyzing object features of this branch. Judging from these, we
thought that the node behind the CML (green box in Figure 6) was the comprehensive
extraction node of the object feature of this branch, which contains more comprehensive
information. So we set up FGI Head at this node and added a 3 × 1 Conv (yellow box in
Figure 6) which is used to extract the invariant information of object features for comparison.
Therefore, we finally set up a new FGI Head without changing the original YOLO Head
structure. It can well extract more comprehensive fractal object invariant information and
was easy to insert.

Figure 6. YOLOv3 with FGI Head module.

3.1.2. WST Learner

By deepening and widening the network, the high-dimensional feature vector was
reduced in dimension to obtain a limited-dimensional feature vector. These feature vectors
were compared item by item. The similarities and differences between the feature vectors
were counted according to the difference of each feature item, and then the classification



Machines 2022, 10, 713 8 of 27

result was obtained. This was the general idea for a more detailed detection of objects.
We did not deal with it that way. Since the basic network has already done effective
classification training, it was not meaningful to do a similar operation on the fractal object
one more time. Although more comprehensive object feature invariant information was
used as input, doing one more routine classification training by widening and deepening
the network would only increase the difficulty of training.

It made sense to analyze the same object from different dimensions. Our approach
was to map more comprehensive object feature invariant information into a fine-grained
space. In this space, we did not need to do an item-by-item comparison of feature vectors,
but to perform a watch and study tactic. WST Learner should not only make the feature
vectors of the same class as close as possible, but also keep them as far away as possible
from different classes. In addition, WST Learner can continue to learn along with the task
and improve the detection ability.

Conventional classifiers consisted of multiple logical classifiers upon which to deter-
mine classification results. That is to say, the classifier could only distinguish the object
class, and did not pay attention to the distribution of the feature vector in the feature
space. If two objects were fine-grained fractal objects, their respective feature vectors
were far away from other classes in the feature space, but most likely they were very close.
This probability was higher especially when using Euclidean distance as a metric.
We needed to avoid this in order to achieve a more detailed detection of the fractal object.
Therefore, we made each YOLO Head branch correspond to its own FGI Head, and cluster
the feature vectors of the same class label to obtain the feature vector of the class cluster
center. Using this cluster center feature vector as the class calibration of the WST learner.
The feature vector obtained by FGI Head was compared with all class cluster centers.
The metric function is as follows:

d(i)pre =

I(i)c(k) ·CE
(

Fc(k), x(i)
)

, if d(i)y = 0, i ∈ (0, N)(
1− I(i)c(j)

)
·CE

(
Fc(j), x(i)

)
− I(i)c(k) ·CE

(
Fc(k), x(i)

)
, if d(i)y = 1, i ∈ (0, N), k 6= j.

(1)

I(i)c(k) represents the decision regarding whether or not x(i) belongs to class k.

When d(i)y is 0, the calculation is the metric of the feature vector x(i) and the cluster center

of the belonging class. When d(i)y is 1, the difference between the measure of the feature
vector x(i) in the cluster and the measure of the distance from the cluster center of other
classes is calculated separately.

Cosine distance was concerned with the overall distribution over all dimensions.
It can better reflect the spatial distribution of high-dimensional features. It could very well
reflect the degree of similarities and differences between the directions of the vectors [51]
(Sim(a, b) = a·b

||a||·||b|| ). It could provide a new dimension to analyze object information.
However, cosine distance was somewhat insufficient. A vector in the same direction could
not reflect the distance relationship (as shown in Figure A2). We needed a method that
can focus on both the overall spatial distribution and the distance differences between
vectors under the same distribution. So we optimized it. It was used in metric calculation.
The formula is as follows:

CE(a, b) = (a− b)L2 · (1− Sim(a, b)). (2)

It was not difficult to imagine that the determination of class cluster centers would
directly affect the classification effect. If the class cluster center was fixed, it was required
to be accurate enough, which is obviously difficult. Then, we desired to make the dynamic
class cluster center. It could be less accurate at first but evolved as it learned. It is a class
cluster that keeps gaining experience. Inspired by the momentum gradient optimization
method, we designed an evolutionary learning algorithm of the class cluster center.
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During the training process, the class cluster center of each class would be continuously
modified along with batches. The correction function is as follows. The class cluster center
counted by the current batch refers to the prior knowledge of the class cluster center that has
been accumulated and learned before obtaining the class cluster center used for contrastive
learning in the current batch. α represents the degree of contribution. In the reasoning
process, β is greater than α in terms of contribution. Fb(l)

c(k) represents the feature vector of
the cluster center belonging to class k under batch l. αc(k) represents the contribution degree
of cluster centers inheritance belonging to class k in the training phase. βc(k) represents
the inheritance contribution degree of cluster centers belonging to class k in the inference
stage. fc(k) indicates that the feature vector of the cluster center belonging to class k is
counted under the current batch. Watching and analyzing the relationship between the
feature vector of each batch of objects and cluster centers of classes provided a basis for
the class judgement of the object. Based on prior knowledge, learning and optimizing the
expression for cluster centers of classes. This idea is our watch and study tactic. Based on
this, the WST Learner was formed (refer to Figure 7) (see Algorithm 1). The formulas are
as follows:

Fb(l)
c(k) = αc(k) · F

b(l−1)
c(k) +

(
1− αc(k)

)
· fc(k), if training (3)

Fc(k) = βc(k) · F
b(L)
c(k) +

(
1− βc(k)

)
· fc(k), if inference. (4)

Figure 7. WST Learner calculation module.

Algorithm 1 WST Learner in training phase.

Input: batch number l ∈ (0, L), class number k ∈ (0, K), the number of feature vectors
belonging to class k is Nc(k), class cluster centre feature vector F =

{
Fc(0) · · · Fc(K)

}
,

feature number i ∈ (0, Nc(k) − 1), feature vector x
Output: WST Loss LossWST

1: if l == 0 then
2: Initialize Fb(l)

c(k) ← {0...0}
3: else
4: if Nb(l)

c(k) == 1 then

5: Fb(l+1)
c(k) ← Fb(l)

c(k)
6: else
7: Fb(l+1)

c(k) ← Compute using Fb(l)
c(k) , f b(l)

c(k) and Equation (3)
8: end if
9: end if

10: d(i)pre ← Compute using F, x(i) and Equation (1)

11: LossWST ← Compute using d(i)pre and Equation (5)
12: return LWST
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Based on the metric algorithm and the evolutionary learning algorithm for the class
cluster center, the loss function was finally designed as follows:

LossWST = −(1/N)
N

∑
i=1

(
d(i)y log

(
D(i)

pre

)
+
(

1− d(i)y

)
log
(

1− D(i)
pre

))
. (5)

D(i)
pre =

At
(

λ1 · Bn(d(i)pre)
)

, if d(i)y = 1

At
(

λ0 · (Bn(d(i)pre)− 1)
)

, if d(i)y = 0.
(6)

When d(i)y is 0, d(i)pre is a value greater than 0. The smaller the value is, the better.

When d(i)y is 1, d(i)pre is any value. The larger the value, the better. When a negative value
appears, it means that the current sample is mixed into a class that it does not belong
in, and a serious penalty is required. At(.) is the activation function. We were using
Sigmoid here.

3.1.3. Multi-Task Result Discriminant Strategy

The classifier that came with the YOLO series model produced the classification
judgment result. The IWS module we proposed also produced a judgment result. The model
needed to weigh two outcomes. The results of two analyses of different dimensions
could be viewed as two independent tasks. Accordingly, we designed a multi-task result
discriminant strategy to help the model give an accurate final conclusion (see Algorithm 2).
This also helped the model accumulate data samples for incremental learning. It provided
a basis for the model to discover new classes of objects (or unknown classes).

If the result of the classifier is inconsistent with the IWS result and the object’s low
score from the classifier, it can basically be determined as an unknown class object. Rc(k) is
the cluster radius of class k. It is obtained by accumulating learning through model training.
O(i)

c(k) represents the metric from the current object i to the cluster center of class k. O(i) is
the set of metrics from the current object i to the cluster centers of each class. Suppose c(i)
and c(j) are the smallest metric difference and the next smallest metric difference in O(i),
respectively.

O(i)
c(k) = CE

(
Fc(k), x(i)

)
− Rc(k). (7)

3.2. WST Accuracy (WAcc)

To better observe and evaluate our optimization utility, we set an evaluation index.
WAcc (WST Accuracy) represents the probability of correct distribution in the feature vector
space and the correct final classification, reflecting the ability to distinguish similarities and
differences between the feature vector space and various class cluster centers. M represents
an extremely large number. The purpose of this is to make its value result tend to 0 or 1. ξ
is the threshold for judging similarities and differences. For all classes, WAcc counts the
ability to distinguish similarities and differences of all classes.

WAcc = (1/N)
N

∑
i=1

d(i)y +
(

1− d(i)y

)
exp−M

(
d(i)pre−ξ

)

1 + exp−M
(

d(i)pre−ξ
) . (8)

The WAcc indicator was different from the Acc (Accuracy) indicator. Acc reflected
the accuracy of network model detection based on two classifications. The two-class
judgement that decides yes or no could be used to determine the effect of contrastive
learning. However, Acc was somewhat general. Contrastive learning results in the case
of multiple classifications could not be reflected under Acc. Therefore, we optimized Acc.
Combined with the design idea of IWS module, the IWS learning effect was combined
with the classification effect to form WAcc. Such a design could not only reflect the
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effect of contrastive learning but also reflected the effect of accurate classification under
contrastive learning.

Algorithm 2 Multi-Task Result Discriminant strategy.

Input: candidate results of the IWS module for object i are J(i)c(i) and J(i)c(j), O(i)
c(i) and O(i)

c(j) ∈

O(i), result of the YOLO classier is Y(i)
c(k)

Output: result of the model classier is Cls(i)

1: if O(i)
c(i) 6= O(i)

c(j) then

2: if O(i)
c(i) ≥ 0 then

3: if Y(i)
c(k) 6= J(i)c(i) then

4: Cls(i) ← new or unkonw class. Classify i as novelty samples
5: else
6: Cls(i) ← Y(i)

c(k)
7: end if
8: else
9: if Y(i)

c(k) 6= J(i)c(i) then
10: Classify i as hard samples
11: end if
12: Cls(i) ← Y(i)

c(k)
13: end if
14: else
15: if O(i)

c(i) ≥ 0 then

16: if Y(i)
c(k) 6= J(i)c(i) and Y(i)

c(k) 6= J(i)c(j) then

17: Cls(i) ← new or unkonw class. Classify i as novelty samples
18: else
19: Cls(i) ← Y(i)

c(k). Classify i as hard samples
20: end if
21: else
22: if Y(i)

c(k) 6= J(i)c(i) and Y(i)
c(k) 6= J(i)c(j) then. Classify i as hard samples

23: end if
24: Cls(i) ← Y(i)

c(k)
25: end if
26: end if
27: return Cls(i)

3.3. Adjustment Mechanism of Class Learning Weights

Through observation, we found that the network model was more inclined to learn
classes that are easy to learn because it was easier to obtain high-quality evaluation
indicators. However, those difficult classes will be ignored and even tend to overfit.
This phenomenon occurred in the vast majority of network models. In the practical appli-
cation of industrial visual inspection, the collected sample data were very likely to have an
unbalanced number of classes. This situation increased the probability of the occurrence of
the above phenomenon. Therefore, some optimizations in this area were needed to avoid
this phenomenon. To allow the network model to fully learn the characteristics of each
class, we designed the adjustment mechanism of class learning weights. The situation
where a network model learns only easy-to-learn classes and abandons difficult-to-learn
classes is avoided.

For multiple classes of objects, different classes were given their own learning weights.
After each full batch of data (epoch) training, a statistical analysis of the effect of each class
of training was performed. The network model refers to the learning effect of this time and
gives learning weights for each class of objects to the next epoch training (see Algorithm 3).
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In this way, targeted adaptive learning can be achieved, thereby improving the effect of
network model training.

Algorithm 3 Adjustment mechanism.

Input: class weights W =
{

ωc(0) · · ·ωc(K)

}
, class Loss Loss =

{
lossc(0) · · · lossc(K)

}
,

epoch size T, epoch number t ∈ (0, T), momentum parameter of class learning is
η

Output: W
1: if t == 0 then
2: Initialize ωt

c(k) ← 1 and η ← 0.9
3: end if
4: if t > 0 then
5: mt

c(k) ← losst
c(k)/ ∑i∈(0,K) losst

c(i)

6: ωt+1
c(k) ← ηωt

c(k) + (1− η)mt
c(k)

7: Losscls ← ∑i∈(0,K) ωt+1
c(i) losst+1

c(i)
8: end if
9: return W

In the test phase of epoch t, each class object calculates its own loss function. Based on
these losses, we can obtain the momentum offset mt

c(k) of each class object. The larger the

learning deviation at epoch t is, the larger mt
c(k) is. Then, the class weight ωt+1

c(k) (shown in
step 6 in Algorithm 3) assigned to the training stage of epoch t + 1 will be adjusted more.
This means that the network model needs more learning about the class c(k) in epoch t + 1
than epoch t. We use η to control the range of weight change and avoid the sudden change
of weight in the whole process.

4. Approach
4.1. Experimental Dataset

To verify the effectiveness of YOLO+IWS, we chose edge-side image anomaly detection
equipment as the application project. We conducted purposeful data collection in the IGBT
automatic gluing operation line of Beijing Zongheng Electromechanical Co., Ltd.

Foreign object detection of the IGBT board needs to be performed twice under working
conditions of a clean board and a coated board. We defined the collected dataset as the
IGBT board surface object detection dataset (referred to as IGBT_DF). The sample we
collected will be planned into seven classes of objects (corresponding objects shown in
Figure 8), considering three perspectives:

Figure 8. Seven classes of fractal objects in the IGBT Dataset.
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1. Common foreign object collection, including hair, fiber, packaging crumbs (foreign),
and object crumbs (spot) are used for learning characteristics of common fractal objects.
The main learning sample of the fractal object detectability for the dust-free future
provides information support for the management and control of bacteria in the
workspace (shown as 1© in Figure 8). The purpose of doing this is not only to detect
whether it is a foreign object, but also what kind of foreign object it is. So we need a
multi-class classification dataset, not a binary classification dataset.

2. Glue application collection, including uneven glue application (shown as 2© in
Figure 8). Since foreign and spot are similar, fiber and uneven are also difficult
to distinguish (due to low contrast). We used foreign and spot, fiber and uneven as
the main fractal object detection groups;

3. The collection of complex objects, including cross hairs and fibers, is used to learn
the characteristics of objects and enhance the model detectability (shown as 3© in
Figure 8). Whether the detection network can effectively detect when the number of
fractal objects changes in complex situations is investigated.

To ensure that the dataset built for the IGBT board surface object detection problem
is useful and effective, our dataset borrows several designs from the natural dataset, MS-
COCO [52]. Compared with the object distribution and proportion of the natural dataset,
MS-COCO, some uncertain factors in our dataset that affect the training of the network
model are eliminated. Such a processing method enables the network model to learn the
characteristics of foreign objects more effectively and perform foreign object detection tasks
better. Proportions of large-sized, medium-sized, and small-sized objects in our dataset
IGBT_DF are similar to those in the natural dataset, MS-COCO, as shown in Table 1.

Table 1. Object distribution of the IGBT dataset.

Data Set At Lt Mt St

MS-COCO 3.5–7.7 25% 34% 41%
IGBT_DF (ours) 4–8 27% 27% 46%

At: Average number of objects in each sample. Lt: Proportion of the large size object (resolution > 96 × 96) in the
dataset. Mt: Proportion of the medium size object (32 × 32 < resolution ≤ 96 × 96) in the dataset. St: Proportion
of the small size object (32 × 32 ≥ resolution) in the dataset.

There is a definition here to clarify. There are two ways to define small objects. One
is by the relative size. According to the definition of the small-sized object by the interna-
tional organization SPIE, it is the object in the image with a relative size of 0.12% in the
image [53]. The other way is by absolute size. According to the definition of the MS-
COCO dataset, an object with a size smaller than 32 × 32 pixels can be regarded as a small
object [52,54]. Based on the definition of relative size, the captured image resolution is
2432 × 2040, and then the small-sized object should not be larger than 5953 pixels. In terms
of foreign object characteristics in the IGBT board surface object detection problem, this ob-
viously does not meet the problem scenario of this article. Therefore, our dataset IGBT_DF
adopts absolute size as the defining standard for small objects.

All images are randomly shuffled, 80% of which are divided into the train subset,
and the rest are classified as test subset (as shown in Table 2). Figure 9 shows the fractal
object distribution of the IGBT_DF dataset. The position of the fractal object in the image is
evenly distributed. We used the classic LabelImg software to label the IGBT_DF dataset.

4.2. Evaluation Metrics

The evaluation criteria used in the COCO dataset are P (Precision), R (Recall), and AP
(Average Precision). The larger the value of P is, the smaller the false detection rate.
The larger the value of R is, the smaller the missed detection rate. AP is the area under
the PR curve. P, R, and AP are for a single class. mAP (Mean Average Precision) is for all
classes. The larger the value of mAP is, the better the overall performance of the learner for
all classes of objects. Similarly, we used mP and mR to represent the mean of P and R of



Machines 2022, 10, 713 14 of 27

multiple classes. In practical applications, Acc (Accuracy) is used as a reference indicator
for the basic needs of the detection task which is used to evaluate the quality of samples in
IGBT automatic glue coating operation. For IGBT board surface object detection, first of all,
it is necessary to ensure that the basic requirement index (Acc) of object detection meets
the standard to ensure the normal operation of the IGBT board surface object detection
task. Then, the detailed detection capability of the fractal object in the IGBT board surface
object detection task is investigated. The mAP index, specific indicators of missed detection,
and false detection should be considered. Missed detection will result in missed warnings
for foreign objects in the data analysis and statistics stage. False detection will result in
false alarms for foreign objects. When mAP shows well, it is also indispensable to observe
the conditions of the indicators mR and mP. As long as there is a foreign object, the sample
must be recovered and reprocessed. WAcc (Section 3.2) reflects the ability of the detection
model to discriminate between similarities and differences of objects. The larger the value
of WAcc is, the stronger the discrimination ability, as follows (the meanings of Tp, Fp, Tn,
and Fn can be found in Table 3):

P = Tp/(Tp + Fn) (9)

R = Tp/(Tp + Fp) (10)

AP =
∫

P(R)dR (11)

Acc = (Tp + Tn)/(Tp + Fn + Tn + Fp). (12)

Table 2. The specific information of IGBT_DF dataset.

IGBT_DF Image Object
Specific Information (Objects)

Hair Hairs Fiber Fibers Spot Foreign Uneven

Train
subset 717 3018 739 58 395 84 722 883 137

Test
subset 180 840 253 14 102 22 152 256 41

Figure 9. Fractal object distribution of the IGBT_DF: the number of various fractal objects (left 1),
the position of the fractal object in the picture (right 2), and the size of the fractal object (right 1).

Table 3. Basic indicators for evaluation.

Positive Negative

True Tp Tn

False Fp Fn
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4.3. Experimental Apparatus

Our network model finally needs to be mounted on the device server, configured with
a CPU (Intel@ Xeon(R) CPU E5-262- v4 @2.10 GHz ×4), 16 GB RAM (random access memory,
RAM) and GPU (NVIDIA Tesla P100 with 8 GB). Each IGBT board produces 20–25 sample
pictures, and there is a small cross between samples. The resolution of each sample is
2432 × 2040. According to requirements of working conditions, the detection capability
should be at least 30 fps and the object detection accuracy rate is not less than 88%.

4.4. Implementation Details

Depending on the edge-side device configuration, we used the Adam optimizer with a
momentum of 0.9 and a learning rate of 0.001. GPU memory is 8 GB. The training strategy
with the epoch of 300 was used to verify the optimization effect. This setting is more
suitable for the actual use of field edge devices.

5. Results and Discussion
5.1. Experimental Analysis with Industrial Visual Inspection Data
5.1.1. Compared with State-of-the-Art Approaches

The problem we desire to solve is the fractal object detection problem. The object
detection model required more detailed detection of the object. The object that needs to be
detected is the fine-grained object. Consequently, we decided to compare YOLOv3+IWS
with excellent network models in the field of object detection. Looking at Table 4, under the
same computing resources, through the IGBT_DF dataset, compared with an army of
network models, YOLOv3+IWS has the best mAP and Precision. It is not difficult to see
from FPS (frames per second) that YOLOv3 is more suitable for practical applications
than other network models. Under the premise of ensuring that the detection capability
is not lower than the 30fps working condition, YOLOv3+IWS is superior to YOLOv3
in all evaluation indicators. YOLOv3+IWS had a 2.14% improvement in mAP, and a
6.39% improvement in the similarities and differences identification indicator (WAcc).
There is a 1.62% improvement in the reference indicator (Acc). In Recall, YOLOv3+IWS
does not perform as well as Sparse R-CNN. However, other metrics of Sparse R-CNN are
not so perfect. YOLOv3+IWS is more comprehensive. The basic object detection ability
(Acc) of Sparse R-CNN is not as good as that of YOLOv3+IWS. Especially Precision, Sparse
R-CNN has serious false detections. This will bring a lot of trouble to the IGBT gluing
system. The experimental results show that the IWS module has indeed improved the
detection ability of fractal objects more comprehensively by adding one more analysis
dimension to object information by enhancement learning.

Under the IGBT_DF dataset, multiple network models exhibit high Recall but par-
ticularly low Precision. We considered this has nothing to do with the network structure.
Through analysis and thinking, we found that network models with this phenomenon
all use Focal Loss. Focal Loss is used in the image field to solve the model performance
problem caused by data imbalance. Obviously, Focal Loss is not applicable to our dataset
for objects. This is an interesting finding, but it is not what this study intends to discuss.
It will not be discussed or extended here.

In addition, we separately listed models that meet the accuracy requirements of the
IGBT board surface object detection task and have mAP exceeding 40%. These mod-
els were compared against AP for each class (refer to Figure 10). It can be found that
YOLOv3+IWS improved on three pairs of objects, and is the best indicator on “hair”, “hairs”,
“fiber”, “spot” and “foreign”. YOLOv3+IWS does not focus more on easy-to-learn objects.
Avoid the phenomenon of brushing high mAP by using the object of learning easy to
learn. Compared with other models, each class indicator under YOLOv3+IWS will be more
uniform. YOLOv3+IWS can ensure that the overall performance improved, and each class
can be relatively fully learned.
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Table 4. Experimental results of IGBT_DF dataset.

Model Backbone Acc mAP mR mP FPS

Faster R-CNN Resnet-50 90.69% 39.11% 43.92% 49.39% 21.4
Resnet-101 90.74% 35.86% 42.38% 50.71% 15.6

RetinaNet Resnet-101 89.23% 24.28% 62.97% 4.93% 15

Cascade R-CNN Resnet-50 89.66% 39.17% 50.71% 50.59% 16.1
Resnet-101 90.09% 39.44% 55.11% 37.67% 13.5

Grid R-CNN

Resnet-50 90.75% 38.47% 50.11% 19.49% 15
Resnet-101 91.27% 37.15% 50.35% 27.44% 12.6

Resnext-101 91.33% 38.42% 50.36% 30.59% 10.8

FreeAnchor Resnet-50 91.34% 34.77% 75.11% 4.81% 18.4

ATSS

Resnet-50 90.92% 48.50% 76.90% 7.46% 19.7
Resnet-101 91.26% 43.14% 76.42% 8.07% 12.3

Resnext-101 91.34% 43.7% 76.41% 6.58% 11

Dynamic R-CNN Resnet-50 89.59% 40.84% 49.40% 44.24% 18.2

Sparse R-CNN

Resnet-50 89.33% 35.12% 82.26% 3.83% 22.5
Resnet-101 89.86% 38.93% 76.66% 3.57% 18.5

Resnext-101 89.92% 39.37% 80.92% 3.91% 17

TOOD

Resnet-50 90.04% 47.05% 76.90% 15.83% 19.3
Resnet-101 90.53% 44.40% 78.69% 9.66% 18.1

Resnext-101 90.12% 47.67% 78.96% 10.21% 17

VarifocalNet

Resnet-50 90.67% 47.01% 77.97% 7.49% 19.3
Resnet-101 90.56% 47.24% 75.47% 6.84% 15.6

Resnext-101 90.51% 47.67% 75.66% 7.29% 14

YOLOv3 Darknet-53 89.86% 50.98% 67.18% 45.16% 35
YOLOv3+IWS (ours) Darknet-53 91.48% 53.12% 70.73% 52.58% 34

Figure 10. Comparison of AP values for each class of models with mAP exceeding 40% (R-50:
Resnet-50, R-101: Resnet-101, Rx-101: Resnext-101).

With the increase in operation time, the data continue to accumulate. Edge-side
devices need to use the increasing data to improve their detection capabilities. It is worth
considering whether the detection model could steadily improve the ability. We designed
a larger dataset, which we defined as IGBT_DF_L (shown in Table 5 and the specific
information be found in Figure A3). Under the IGBT_DF_L dataset, we examined the
learning situation of the network model under large quantities of data and observed the
improvement effect of mAP. First, it can be seen that all network models will have a certain
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degree of improvement when the amount of data increases. This demonstrates that the
dataset we built is effective, and can be used for training and learning characteristics of
objects. YOLOv3+IWS consistently shows an excellent result, mAP has been improved
(shown in Table 6).

Table 5. Object distribution of IGBT_DF_L dataset (More experimental results can be found in
Table A1) for training.

IGBT_DF_L Train Images Test Images Train Objects Test Objects

3544 886 18,139 4512

Table 6. Experimental results of IGBT_DF_L dataset.

Model
FRC RN CRC GRC FA

R-50 R-101 R-101 R-50 R-101 R-50 R-101 Rx-101 R-50 R-101

mAP 44.09% 43.71% 43.25% 45.09% 44.98% 42.82% 42.70% 43.17% 52.50% 52.31%

Model
ATSS DRC SRC TOOD

R-50 R-101 Rx-101 R-50 R-50 R-101 Rx-101 R-50 R-101 Rx-101

mAP 52.80% 52.10% 52.34% 45.12% 44.84% 53.33% 54.11% 54.01% 52.15% 53.17%

Model
VN Y3 Y3-T

R-50 R-101 Rx-101 D53 D53

mAP 54.04% 52.85% 53.6% 57.89% 59.79%

FRC: Faster R-CNN, RN: RetinaNet, CRC: Cascade R-CNN, GRC: Grid R-CNN, FA: FreeAnchor, DRC: Dynamic
R-CNN, SRC: Sparse R-CNN, VN: VarifocalNet, Y3: YOLOv3, Y3-T: YOLOv3+IWS (ours). R-50: Resnet-50, R-101:
Resnet-101, D53: Darknet-53 Rx-101: Resnext-101.

5.1.2. Portability

Among YOLO series models, YOLOv5l (version 2021) is currently the best performing
network model. Although YOLOv5l has not been published yet, it is still being updated
and open sourced. After YOLOv5l was equipped with our IWS module, it can indicate
that the IWS module is Portability and that the IWS module can indeed play a role if the
indicator has risen. We used YOLOv5l to learn under IGBT_DF dataset as a new baseline.
We found a problem here. The structure of YOLOv5l is different from that of YOLOv3 in
the Neck and Head. When configuring the IWS module, YOLOv5l needed to be optimized
and reconstructed, as is YOLOv5l-op. YOLOv5l-op can relatively and effectively maintain
various indicators of YOLOv5l. As a result, there is a certain degree of improvement.
After installing the IWS module on this basis, we found that all indicators improved.
mAP has been increased by 3.1%. In mAP [0.5, 0.95], which is the more comprehensive
indicator, there is still an increase of 2.87%. Under the IGBT_DF dataset, the IWS module is
effective and performed relatively well (shown in Table 7). Similarly, we have optimized
and added the IWS module in YOLOv3spp. It can be observed that under the premise of
ensuring the detection speed, YOLOv3spp+IWS still has excellent performance. Acc of the
IGBT board surface object detection task is up to the standard. In addition, with a 3.35%
improvement in key indicator and a 6.54% improvement in similarities and differences
identification indicator. In particular, mR has been significantly improved by 12.88%,
reducing the missed detection rate (shown in Table 7). Experiments show that the IWS
module can only be effective when it is mounted on a Head with multiple branches.
Therefore, we recommend deploying the IWS module on the detection network with multi-
head. Under the IGBT_DF_L dataset, the IWS module still performed well (shown in
Table 8).
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Table 7. Experimental results (more experimental results can be found in Table A1) of the IGBT_DF
dataset based on YOLO series.

Model Acc mP mR mAP mAP [0.5,
0.95] WAcc FPS

YOLOv3
(baseline) 89.86% 45.16% 67.18% 50.98% - 76.13% 35

YOLOv3+IWS
(ours)

91.48%
(+1.62%)

52.58%
(+7.42%)

70.73%
(+2.55%)

53.12%
(+2.14%) - 82.52%

(+6.39%) 34

YOLOv3-spp
(baseline) 90.07% 46.24% 56.60% 50.11% - 75.86% 20

YOLOv3-
spp+IWS

(ours)

91.55%
(+1.48%)

46.08%
(−0.16%)

69.48%
(+12.88%)

53.46%
(+3.35%) - 82.40%

(+6.54%) 31

YOLOv5l
(baseline) 90.85% 76.13% 63.73% 53.69% 32.36% - 140

YOLOv5l-op
(ours)

90.33%
(−0.52%)

79.89%
(+3.76%)

62.3%
(−1.43%)

54.67%
(+0.98%)

32.43%
(+0.07%) - 132

YOLOv5l+IWS
(ours)

91.71%
(+1.37%)

77.7%
(+1.57%)

65.1%
(+1.37%)

56.79%
(+3.1%)

35.23%
(+2.87%) - 126

The value (the color mark) can be observed to increase and decrease compared with the corresponding baseline model.

Table 8. Experimental results of the IGBT_DF_L dataset based on YOLO series.

Model Acc mP mR mAP mAP [0.5,
0.95] WAcc FPS

YOLOv3
(baseline) 91.71% 43.12% 74.8% 57.89% - 84.72% 35

YOLOv3+IWS
(ours)

92.89%
(+1.28%)

46.66%
(+3.54%)

76.06%
(+1.26%)

59.79%
(+1.9%) - 86.34%

(+1.62%) 34

YOLOv3-spp
(baseline) 92.08% 44.53% 75.49% 59.28% - 84.98% 20

YOLOv3-
spp+IWS

(ours)

93.10%
(+1.02%)

45.02%
(+0.49%)

75.85%
(+0.36%)

59.45%
(+0.17%) - 87.01%

(+2.03%) 31

YOLOv5l
(baseline) 93.63% 68.24% 67.18% 64.09% 42.66% - 140

YOLOv5l-op
(ours)

93.66%
(+0.03%)

67.17%
(−1.07%)

69.04%
(+1.86%)

64.08%
(−0.1%)

43.61%
(+0.95%) - 132

YOLOv5l+IWS
(ours)

93.89%
(+0.26%)

69.07%
(+0.83%)

69.76%
(+2.58%)

65.49%
(+1.4%)

44.46%
(+1.8%) - 126

The value (the color mark) can be observed to increase and decrease compared with the corresponding baseline model.

5.1.3. Experiment Details for Each Class of Fractal Objects

We calculated the error detection rate of each network model for each class under
the IGBT_DF_L dataset, which is the largest dataset. The result can be visualized in the
form of heatmaps. We dealt with this to facilitate the observation of the network model’s
learn-ability for each class and to observe which classes the network model is prone to
confusion. Figures 11 and 12 show that the error detection rate of network models equipped
with the IWS module has a certain degree of decline.

ed
c(i),c(j) = Wc(i),c(j)/Cc(i),c(j) (13)

es
c(i) = Wc(i)/C2

c(i). (14)
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Figure 11. Visualization of the false detection rate of the same class as different classes.

Figure 11 reflects the proportion of objects of the same class that are incorrectly detected
as different classes. This part is similar to recall, but it is more suitable for error detection
rate statistics than recall is. In Figure 11, we only care about the error detection rate ( es

c(i)
in Equation (14)) of each class, and do not focus on the specific class of error detection.
The statistical function is defined in Equation (14). Figure 12 reflects the proportion of
different classes of objects being wrongly detected as the same class. Figure 12 describes
the scene where the real class of detection object A and detection object B are different
(assuming the true class label of A is c(i) and the true class label of B is c(j)), but A is
incorrectly detected and regarded as c(j). In Figure 12, we focus on the error detection
rate ( ed

c(i),c(j) in Equation (13)) between classes, which reflects the degree of confusion
between various classes of the detection network model. The statistical function is outlined
as Equation (13). We used the contour surface map from the top view to show the contrast
effect. Combining the color change of the top view surface and the size of the area contained
in the contour line, the size change of the false detection rate is determined. The smaller
the contained area of the contour line under the same color, the smaller the error rate.
The lower the color index on the right side of Figure 12, the lower the error rate.

As an example, the coordinates (fibers, uneven) in Figure 12 represent the probability
that YOLOv5l+IWS is used as a detection network model to detect “fibers” as “uneven”.
Observing the part of the yellow circular dashed frame in Figure 12, the error detection
rate of the detection network model optimized with the IWS module is less than the error
detection rate of the baseline model. Our detection network model considerably reduces
the false detection rate of two pairs of easily confusing classes (refer to Figure 13). One pair
is “fibers” and “uneven”. The other pair is “spot” and ”foreign”.

It is not difficult to see that “fiber” and “fibers” are the most easily misdetected group
of classes. The two are a pair of challenging confusion classes. This pair of fractal object
detection groups is much more difficult than the previous two groups. If observed in the
coordinate system of the same range, it is difficult to see the change. Consequently, we put
these more difficult fractal object detection groups separately for observation. As can be
seen from Figure 14, for the more difficult fractal object detection groups, the IWS module
can still play a role. Error detection rates are reduced to varying degrees. The experimental
results show that the IWS module does reduce the detection error rate of fractal objects
by adding one more analysis dimension to object information by enhancement learning.
Based on various laboratory data, YOLOv5l equipped with the IWS module performs
relatively well. Therefore, we referred to this version of the foreign object detection network
model as YOLO+IWS. Under the two scales of datasets, the performance of YOLO+IWS is
not only reflected in the improvement of overall indicators, but also in Recall of each class
(refer to Figure 15).
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Figure 12. Visualization of the false detection rate of different classes as the same class.

Figure 13. Two pairs of easily confusing classes.
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Figure 14. The hardest fractal object detection group (fiber and fibers) and the second-hardest fractal
object detection group (hair and hairs) in Figure 12 are presented in the form of histograms.

Figure 15. The comparative performance of each class under different scale datasets.

5.2. On-Site Detection

In the traditional method (computer vision detection method based on Open CV),
if the threshold is set too small, it will cause the detection to be too sensitive and easy to
false alarms. If the threshold is not small enough, it is easy to miss the detection. In addition,
the traditional method only performs binary classification operations, and cannot obtain
and collect object information. Choosing to use deep learning detection methods is to solve
these problems. What we have done is to solve difficulties encountered by deep learning
detection methods in the application of IGBT board surface object detection, which is our
research focus. We have provided optimization schemes.

As shown in Figure 16, YOLO+IWS (see Figure 16c) is more accurate than YOLOv5l
object detection algorithm (see Figure 16b) for the detection of fibers with relatively low
contrast in the detection of IGBT board surface objects. YOLOv5l’s missed detection
problem (see Figure 16e) has been effectively improved in YOLO+IWS (see Figure 16f).
For more on-site comparison of actual detection results, see Figure A1.

Figure 16. Visualization effect contrast.
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6. Application in Object Detection of Real-World IGBT Coating Operation

We mount our YOLO+IWS object detection network model in the IGBT automatic
glue detection and tightening production line server to complete the realization of the IGBT
board surface object detection function (refer to Figure 17). This forms a complete IGBT
board surface object detection system. This realizes the digital transformation of detection
equipment and provides strong support for the subsequent adjustment and optimization of
control decision-making. The network model is encapsulated, and the front-end interface
is formed through the Flask and Vue frameworks to realize interaction.

Figure 17. Software architecture.

The real IGBT automatic glue coating detection and tightening production line is
shown in Figure 18, which mainly includes IGBT automatic glue coating equipment,
IGBT board surface object detection equipment, and IGBT tightening links. On-site staff
can observe the operation status in real-time through the display. The production line
has an independent server to provide intelligent manufacturing requirements, such as
PLC control, algorithm model triggering, and data integration processing. As shown in
Figure 19, the real-time foreign object detection visualization results of images are in the
production line (see Figure 19 yellow box No. 4). Qualitative and quantitative information
about the detected foreign objects is displayed here (see Figure 19 yellow box No. 1).
There is a display of the cumulative amount of detection results for the foreign object class
(see Figure 19 yellow box No. 2), which provides a basis for the production control plan of
the production line. This also provides a basis for the learning strategy of the foreign object
class for the network model’s incremental learning. We display indicators after incremental
learning of the network model at each stage to reflect the performance status of the network
model (see Figure 19 yellow box No. 3).

Figure 18. IGBT automatic glue coating detection production line.
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Figure 19. IGBT board surface object detection visual interface.

7. Conclusions

We chose detection models of the YOLO series as the base model framework, which
is a more common detection model in industrial visual inspection. To improve the frac-
tal object detection capability in industrial vision detection, we proposed YOLO+IWS,
an end-to-end, easy-to-deploy, and easy-to-learn object detection model. It can collect more
detailed and comprehensive detection information, which is helpful for enterprises to make
better decisions.

Experimental results show that both the IWS module and optimization strategies
perform well. YOLO+IWS has improved the key indicator. Not only that, we applied the
IWS module and optimization strategies to form a holistic approach to object detection.
It allows decision-makers to observe the results of detection in real time and to revisit
historical data at any time as needed.

In the future, our research will focus on fractal object detection on few-shot learning
in industrial vision inspection tasks. It is still considered to ensure real-time and accurate
detection on the basis of existing detection capabilities and low resource costs.
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Abbreviations
The following abbreviations are used in this manuscript:

FGI Fine-Grained Information
WST Watch and Study Tactic
IWS Information Watch and Study
MRD Mutli-Task Result Discriminant
WAcc WST Accuracy

Appendix A

Figure A1. Visualization of detection results using YOLOv5l and YOLO+IWS in the field.
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Figure A2. Taking a two-dimensional space as an example, count the metrics from b1, b2, and b2 to a,
respectively. The Cosine metric cannot reflect the difference between b1 and b2 for a. The L2 metric
cannot reflect the difference between b1 and b3 for a.

Appendix B

Appendix B.1. More Experimental Results

Table A1. Experimental results of IGBT_DF dataset based on YOLOv7 and YOLOv7x.

Model Acc mP mR mAP mAP [0.5, 0.95]

YOLOv7 (baseline) 91.56% 73.74% 68.99% 54.02% 33.88%
YOLOv7+IWS

(ours) 92.84% 79.35% 68% 57.02% 35.97%

YOLOv7x
(baseline) 91.53% 69.34% 70.27% 53.86% 33.46%

YOLOv7x+IWS
(ours) 92.55% 69.79% 69.76% 58.89% 37.42%

Appendix B.2. Ablation Study

The Y point is the input node of the YOLO Head. The position of point P is shown in
Figure 6. Referring to Table A2, our theory in Section 3.1.1 is verified. FGI is a very suitable
extraction point. The experimental results under the comparison of different measurement
methods are as follows. Our theory in Section 3.1.2 is verified. CE is suitable and effective.
Referring to Table A2.

Table A2. Comparison of different extraction points and different the measure.

Model EP WM mP mR mAP

YOLOv3 Y - 43.12% 74.80% 57.89%

Ours

Y CE 44.88% 75.61% 58.55%
P CE 45.25% 75.11% 58.66%

FGI Sim 46.12% 75.12% 59.03%
FGI CE 46.66% 76.06% 59.79%

EP: extraction points for fine-grained information. WM: the measure of the WST learner.

Appendix B.3. The Specific Information of IGBT_DF_L Dataset

Table A3. The specific information of IGBT_DF_L dataset.

IGBT_DF_L Image Object
Specific Information (Objects)

Hair Hairs Fiber Fibers Spot Foreign Uneven

Train
subset 3544 18,139 4587 233 2321 467 4562 5022 947

Test
subset 886 4512 1146 145 478 126 1110 1274 233
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