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Abstract: Rail surface defects will not only bring wheel rail noise during train operation, but also
cause corresponding accidents. Most of the existing detection methods are manual detection, which is
time-consuming, laborious, inefficient, and subjective. With the development of technology, automatic
detection replaces manual detection, which reduces manual labor, improves efficiency, and objectively
evaluates the surface state of rails, which is in line with the purpose of modern intelligent production.
The automatic detection of a single sensor is usually not enough to complete the recognition, but
multiple sensors need to be additionally installed and refitted on the service vehicle, which creates
difficulty for on-site test conditions. Therefore, in order to overcome these shortages and to adapt to
the actual vibration characteristics of service vehicles, a rail surface defect recognition method based
on optimized VMD gray image coding and DCNN is proposed in this paper. Firstly, the optimization
method of VMD mode number based on the maximum envelope kurtosis is proposed. The VMD
after parameter optimization is used to decompose the four-channel axle box vibration signal, and
the component with the largest correlation coefficient between each order eigenmode component
and the original signal is extracted. Secondly, the filtered IMF components are arranged in sequence
and encoded into grayscale images. Finally, the DCNN structure is designed, and the training set
is input into the network for training, and the test set verifies the effectiveness of the network and
realizes the recognition of rail surface defects. The test accuracy of railway data set measured on the
serviced vehicle is 99.75%, and the results show that this method can accurately identify the category
of rail surface defects. After adding Gaussian noise to the original signal, the test accuracy reaches
99.20%, which proves that the method has good generalization ability and anti-noise performance.
Additionally, this method can ensure the safe operation of vehicles without adding new equipment,
which reduces operation costs and improves the intelligent operation and maintenance of rails.

Keywords: rail surface defects recognition; intelligent algorithm; variational mode decomposition (VMD);
deep convolutional neural network (DCNN)

1. Introduction

With the improvement of railway speed, the safety of high-speed railway has become
a hot research topic, and the defects recognition of rail is the most essential aspect. Surface
defects associated with rolling contact fatigue (RCF) damage, such as squats [1], studs [2],
and head check valves [3]. The existence of rail surface defects also increases the vertical
dynamic load of wheel set on the rail and aggravates the deterioration of track and some
vehicle components. If the rail surface defect is not treated, it may lead to complete rail
failure [4,5].

Several manual and automatic methods have been applied in rail surface inspection
during engineering project. Traditional railway surface inspection adopts manual inspec-
tion [6], e.g., via hammering and shocking [7], which is inefficient and highly relies on the
experience and ability of personnel, and it is difficult to ensure the accuracy of detection
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results. Since with the development of technology, the automatic inspection based on
vibration and acoustic have been introduced to deal with the rail fault [8]. Moreover, with
the concept proposal of intelligence operation and maintenance algorithm, ultrasonic detec-
tion [9], ultrasonic guided wave detection [10], eddy current detection [11], and magnetic
flux leakage detection [12] have been progressed into the rail inspection.

As mentioned above, rail surface defects contain different types, such as rolling contact
fatigue of turnout, rail squats, void zones, and unsupported sleepers/bears. Therefore,
several sources of research have attempted to deal with these problems, and some of them
have integrated with ESAH-M, ESAH-F systems. Most of them analyze the parameters
of rolling contact fatigue [13] and the dynamic phenomena of turnout [14], dynamic
response [15], impact and residual settlements accumulation [16], wheel load reduction [17],
and stress state [18] under unsupported sleepers, rail squat characteristics [19] via dynamitic
and finite element modelings. According to these sources, the causes, variation, and effects
of the rail surfaces defects can be analyzed and monitored. The targets being inspected
here are the rail surfaces for high-speed trains. The tracks used for high-speed trains are
ballastless tracks, and several analyses mentioned above focus on ballasted tracks. Thus,
the calculated parameters may not be suitable for this simulation, but the methods can
still be referred. In reference [19], they have done the rail squat characteristics under train
axle box acceleration frequency (ABA) by using wavelet scattering, which is similar to the
inspection requirements. However, the types of the tracks and operating conditions in [19]
do not match with those for high-speed trains.

After the principle of intelligent maintenance introduced, operators will more often
use the track inspection vehicle to carry out daily automatic detection of rail defects [20].

However, these diagnostic devices on track inspection vehicles cannot be installed on
the service vehicle, once a serious rail defect occurs during running conditions, an accident
cannot be avoided. The present automatic inspection also needs to install or apply auxiliary
sensors or instruments to achieve the target of rail surface defects inspection [21]. Therefore,
it is necessary to come out a systematic rail surface defects inspection method without
installing any extra devices and be suitable for service vehicles.

The rail surface inspection base on vision inspections has recently been applied in
railway condition monitoring research. Model-based approaches and data-driven ap-
proaches are two categories of techniques heavily discussed in the literature of inspecting
rail defects. In the model-based approaches, explicit models including thresholding and
texture models were applied to handle the image segmentation and analysis [8,22]. In
the category of data-driven approaches, image processing methods are widely used in
rail surface defects [23,24], such as image level detection [1], image position detection [2],
and pixel-level segmentation detection [3], which has been proposed because of its fast
and intuitive. With the continuous development of artificial intelligence technology, BP
neural network [25], PNN [26], support vector machine (SVM) [27], deep convolutional
neural network (DCNN) [28], and machine vision [29,30] have been widely used in the
field of defects recognition. Among them, the use of deep learning realizes the automatic
recognition of rail surface defects [29,30]. As one of the main methods, convolutional
neural network (CNN) [31,32] is widely used in the field of rail image recognition and has
achieved excellent results.

In real engineering projects and daily operations, most operating defects of railways
would be collected and recorded via mounted and pre-installed sensors and all the data
measured would be transferred and imported into a vehicle diagnostic system [33]. Due
to the convenience and reliability of vibration inspection, it has been widely used in
vehicle fault recognition [4], which also provides the possibility and reference for analyzing
track defects by using the obtained vibration data. Usually, the collected vibration signal
contains background noise, and the vibration signal has non-stationary and nonlinear
characteristics. How to extract effective features from the vibration signal is the key to rail
surface defects recognition. Several signal processing methods, such as empirical mode
decomposition (EMD) [5], time-frequency analysis [33], singular value decomposition
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(SVD) [34], etc., decompose different signals into different components through signal
characteristics, and analyze the signals in each component. However, these algorithms
also have some problems. EMD is limited by endpoint effect and mode aliasing [35].
Dragomiretskiy et al. [36] proposed a non-stationary signal processing method: variational
mode decomposition (VMD), which overcomes the above problems in EMD method [37,38].

So far, several strategies have been processed on rail inspection via sensors. The
mechanical wear contact between wheel and rail on a turnout has been studied [39].
Railroad turnout diagnostics has been made based on mounted rail tracks acceleration
sensors [40]. With the development of simulation, the conditions of crossing geometry
of rail are also analyzed based on track responses [41]. Moreover, due to the rise of
neural networks, deep learning networks are applied on the measurement and analysis of
segmentation surface of railway tracks [42]. However, these measurements are collected
at the rail trackside, or inspecting vehicles. There is bound to be a difference between the
measured value under above ways and the actual operating state of the service vehicle.

Therefore, how to maximize the use of vehicle pre-installed multi-sensor monitoring
or measuring data and use processing and analysis methods adapted to actual operating
data to obtain track surface status or defect characteristics is a problem worthy of further
in-depth study. Aiming at the problem that the information reflected by a single sensor is
not comprehensive, multi-sensor information fusion is used to provide more information
for target detection [43–46].

To sum up, theoretically, this paper proposes a method to construct a DCNN rail
surface defect recognition model by using multi-channel vibration signals to gray-scale
coding after optimized VMD processing. The method realizes denoising and interference
elimination of multi-channel vibration data fusion and rail surface defect detection. In
engineering, this method can apply rail defects recognition without pre-installing and
modifying any auxiliary devices on service vehicles.

The chapters of this paper are arranged as follows: after the introduction, Section 2
studies the proposed optimized VMD and DCNN methods. In Section 3, the four classifica-
tion and two classification tests are verified and the results are analyzed through the field
measured data. Finally, the anti-noise performance and stability of the proposed method are
verified through the anti-noise performance test. Section 4 is the conclusion of the full text.

2. The Proposed Optimized VMD and DCNN Methods

From the foregoing, the goal of this paper is to design a method suitable for the
following situations, using the multi-channel vibration sensor pre-installed on the service
vehicle to collect the signal data under the actual operating state, carry out effective
analysis, obtain the characteristics of the track surface and then establish a rail surface
defect identification model. So, considering that it is difficult to extract the features of
rail surface defects and the information reflected by a single sensor is not comprehensive,
a multi-sensor fusion rail surface defects recognition method based on optimized VMD
grayscale image coding and DCNN is proposed to realize rail surface defects recognition.

2.1. General Procedures of the Proposed Method

Based on the construction of “2.4” section grayscale image coding based on VMD-
multi-sensor fusion and “2.5” section construction of convolutional neural network, this
paper proposes a multi-sensor fusion rail surface defects recognition method based on
VMD grayscale image coding and DCNN. Figure 1 is the overall algorithm flow chart.
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The specific data processing steps are as follows:

(1) Divide the original vibration signal data collected by the axle box four channel sensor
at equal intervals, and make the sample data set;

(2) Select K ε [2, 15] as the search domain of the VMD mode number and calculate the
maximum value of envelope kurtosis under each mode number for each sample so as
to determine the optimal mode number of VMD under this sample;

(3) VMD decomposition is carried out for each sample, and the IMF component after
decomposition is screened by using the correlation coefficient;

(4) The IMF components with the largest correlation coefficient between the eigenmode
components of each order and the original signal are extracted and normalized, and
the IMF components screened by multiple sensors are arranged in turn to form a
numerical matrix;

(5) Convert the numerical matrix in step 4 into a grayscale image and generate several
grayscale images from the time series data of the four rail surface defects according to
the above steps, as the data set for DCNN training and testing;

(6) Randomly divide the training set and the test set, use the training set to train the
convolutional neural network, and at the same time optimize and adjust the net-
work structure and network parameters according to the training results during the
training process;

(7) The test set is used to verify the effectiveness of convolutional neural network and
predict the image classification results so as to obtain the defects recognition of rail
vibration signal, output the recognition results and analyze the conclusions.

2.2. Determination of the Mode Number of VMD

Several vibration signal processing methods have been introduced and mentioned
in literature review, but only VMD can be adapted and is suitable for rail inspection. The
core of the denoising progress is to extract the feature or useful information and devote the
noise into different parts or layers [47–49]. Therefore, VMD is based on Wiener filtering
theory, which can be used here. VMD is a completely non recursive variational mode
decomposition model. In this algorithm, the intrinsic mode function (IMF) is defined as
a bandwidth limited AM-FM function. VMD algorithm decomposes the original signal
into a specified number of IMF components by constructing and solving the constrained
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variational problem. Before VMD decomposition of the signal, the parameters of VMD
need to be determined, that is, the mode number and penalty factor need to be determined
in advance. After determining the influence parameters, the signal is decomposed by VMD
to obtain a series of intrinsic mode functions (IMFs) [47,48].

This paper presents a novel method to calculate the kurtosis value from the Hilbert
transform (HT) to effectively optimize and determine the mode number of VMD. The
default values of the penalty factor and bandwidth, α = 2000, s = 0 [43], the initial mode
number is set as k = 2. In order to determine the search range and step size of the mode
number K, the paper draws on the discussion range of the mode number K derived from
reference [44]. If K is too large, the efficiency is low, and the calculation load is heavy. If K
is too small, it is easy to introduce noise. So, choose K ε [2, 15] is used as its search domain,
the step size is set to 1.

VMD analysis is performed on the collected vibration signal, calculating the envelope
kurtosis value of each modal signal under the set mode number K and obtaining the
maximum value of the envelope kurtosis under the mode number through comparison,
then K = K+ 1 to continue the above analysis until K = 15, and finally obtain the maximum
value of the envelope kurtosis under each mode number.

Assuming that the mode number of the VMD is K, Kε [2, 15], the envelope of each
mode can be calculated, i.e.,

xti
K =

∣∣∣∣ 1
πt
·xi

K(t)
∣∣∣∣, i = 1, 2, . . . , K (1)

where i represents the i− th mode of K, xti
K is the absolute value (the result of HT of the

i − th mode of K), xi
K(t) represents the i − th mode generated by VMD when the mode

number is K (i = 1, 2, . . . , K).
Further, the envelope kurtosis of the i− th mode of K is calculated as follow:

ek(i) =
E(xti

K − µ(xti
K))

4

σ(xti
K)

4 , i = 1, 2, . . . , K (2)

where µ
(

xti
K
)

denotes the mean of xti
K, and σ

(
xti

K
)

denotes the standard deviation of xti
K,

the numerator E(xti
K − µ(xti

K))
4 of Formula (2) is the fourth-order central moment of xti

K.
Then, a local maximum ekmax

K can be obtained,

ekmax
K = max(ek1, ek2, ek3, . . . , ekK) (3)

Since the search interval of K is set to [2, 15] and the search step is set to 1, 14 local
maximum can be obtained in the entire search interval. Then, the global maximum ekmax

g
can be obtained:

ekmax
g = max(ekmax

2 , ekmax
3 , ekmax

4 , . . . , ekmax
15 ) (4)

Thus, the mode number K (K ∈ [2, 15]) selected based on the maximum ekmax
g

(K = 2, 3, 4, . . . , 15), and it is expressed as K′, K′ can be obtained from the formula (4):

K′ = argmax
(

ekmax
g

)
(5)

2.3. The Selection of the Sensitive IMF of VMD

The IMF components obtained by VMD method include the local characteristics of
the original signal at different time scales [45,46]. The first few IMF components reflect
the main characteristics of the original signal. In order to ensure that the constructed
grayscale image can effectively retain the state characteristics of the original signal and
avoid the interference of noise and other components, the correlation coefficient method is
used to screen the decomposed IMF components, and the IMF component with the largest
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correlation coefficient is used as the data to generate the grayscale image. The calculation
formula of correlation coefficient is as follows [36]:

ρ(i) =
∑L

j=1 x(j)IMFi(j)√
∑L

j=1 x2(j)∑L
j=1 IMF2

i (j)
(6)

where L is the signal length; ρ(i) is the correlation coefficient between the i − th IMF
component and the original signal x(t).

2.4. GRAYSCALE Image Coding Based on VMD

Rail vehicles contain strong background noise in actual work, which makes it difficult
to obtain comprehensive state characteristics by analyzing the signal measured by a single
sensor, which affects the accuracy of state recognition, and the selection of better sensor
location depends on the practical test experience of experimenters. Therefore, at the feature
level, this paper arranges the filtered IMF components in turn and converts them into
grayscale images. The grayscale image coding is shown in Figure 2.

Machines 2022, 10, 796 6 of 24 
 

 

2.3. The Selection of the Sensitive IMF of VMD 
The IMF components obtained by VMD method include the local characteristics of 

the original signal at different time scales [45,46]. The first few IMF components reflect the 
main characteristics of the original signal. In order to ensure that the constructed grayscale 
image can effectively retain the state characteristics of the original signal and avoid the 
interference of noise and other components, the correlation coefficient method is used to 
screen the decomposed IMF components, and the IMF component with the largest corre-
lation coefficient is used as the data to generate the grayscale image. The calculation for-
mula of correlation coefficient is as follows [36]: ( ) = ∑ ( ) ( )∑ ( ) ∑ ( )  (6)

where  is the signal length; ( ) is the correlation coefficient between the − ℎ IMF com-
ponent and the original signal ( ). 

2.4. GRAYSCALE Image Coding Based on VMD 
Rail vehicles contain strong background noise in actual work, which makes it diffi-

cult to obtain comprehensive state characteristics by analyzing the signal measured by a 
single sensor, which affects the accuracy of state recognition, and the selection of better 
sensor location depends on the practical test experience of experimenters. Therefore, at 
the feature level, this paper arranges the filtered IMF components in turn and converts 
them into grayscale images. The grayscale image coding is shown in Figure 2. 

 
Figure 2. Grayscale image encoding process. 

The main steps of grayscale image coding based on VMD are as follows: 
(1) The original vibration signals , ,  and  measured by the four channel sensors 

are divided into equidistant segments with a distance of ; 
(2) VMD the segmented signal; 
(3) Screened the IMF component with the largest correlation coefficient; 
(4) Assuming the size of the grayscale image to be constructed as ×  (generally 32 × 32, 64 × 64, 96 × 96, 128 × 128 etc.), divide the width  into 4 equal parts, con-

struct 4 regions of × 4⁄ , and fill the IMF components filtered by each sensor signal 
in turn according to the size of the region; 

(5) Encode the numeric matrix into a grayscale image. 
In order to better compare the grayscale images, the filtered IMF components are 

normalized. The normalization formula is as follows: = −−  (7)

Figure 2. Grayscale image encoding process.

The main steps of grayscale image coding based on VMD are as follows:

(1) The original vibration signals x1, x2, x3 and x4 measured by the four channel sensors
are divided into equidistant segments with a distance of n;

(2) VMD the segmented signal;
(3) Screened the IMF component with the largest correlation coefficient;
(4) Assuming the size of the grayscale image to be constructed as n× n (generally 32× 32,

64× 64, 96× 96, 128× 128 etc.), divide the width n into 4 equal parts, construct 4
regions of n× n/4, and fill the IMF components filtered by each sensor signal in turn
according to the size of the region;

(5) Encode the numeric matrix into a grayscale image.

In order to better compare the grayscale images, the filtered IMF components are
normalized. The normalization formula is as follows:

y =
x−Vmin

Vmax −Vmin
(7)

where x, y represents the values before and after normalization, respectively; Vmax, Vmin are
the maximum value and the minimum value of the original grayscale image, respectively.

2.5. Convolutional Neural Network Construction

In order to effectively identify the gray images of various rail surface defects, it
is necessary to design a reasonable DCNN. DCNN is tested by controlling variables to
determine the structure and parameters of the final network. The experimental grouping is
shown in Table 1 below.
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Table 1. Experiment grouping situation.

Group Number Number of Convolutional
Layers Activation Function Convolution Kernel

1 2/3/4/5/6 Tanh 3 × 3
2 2/3/4/5/6 Tanh 5 × 5
3 2/3/4/5/6 ReLU 3 × 3
4 2/3/4/5/6 ReLU 5 × 5

Through the data set, each group of networks designed in Table 1 are trained, tested,
and compared one by one, and the network structure is finally determined. The convolu-
tional neural network has a total of 15 layers, including 5 convolutional layers, 4 pooling
layers, 4 random deactivation layers, 1 global average pooling layer, 1 softmax layer for
classification, that is, the output layer, use 3 × 3 convolution kernel, the last convolutional
layer adopts a 1 × 1 convolution kernel and uses ReLU as the activation function to adjust
the classification output results after the global average pooling layer to 4 categories. The
structure diagram of deep convolutional neural network is shown in Figure 3, and the
parameters of each layer are shown in Table 2.
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Table 2. The structure and parameters of the DCNN networks.

Network Layer Type Parameter s Output Feature Size

Input grayscale image 64× 64×3
Conv1 64 3 × 3 convolution kernels with stride 1 62× 62× 64

Max_pool1 2 × 2 pooling kernel with stride 1 31× 31× 64
Dropout1 Neurons are randomly deactivated by 20%

Conv2 32 3 × 3 convolution kernels with stride 1 29× 29× 32
Max_pool2 2 × 2 pooling kernel with stride 1 14× 14× 32
Dropout2 Neurons are randomly deactivated by 20%

Conv3 32 3 × 3 convolution kernels with stride 1 12× 12× 32
Max_pool3 2 × 2 pooling kernel with stride 1 6× 6× 32
Dropout3 Neurons are randomly deactivated by 20%

Conv4 16 3 × 3 convolution kernels with stride 1 4× 4× 16
Max_pool4
Dropout4

2 × 2 pooling kernel with stride 1
Neurons are randomly deactivated by 20% 2× 2× 16

Conv5 16 1 × 1 convolution kernels with stride 1 2× 2× 16
Global_average_pool2d

Dense2 4 neurons 4× 1
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3. Validation and Discussion
3.1. Measured Data Set Result Analysis (Four Categories)
3.1.1. Experimental Data

The data in this paper comes from the measured data of axle box vibration acceleration
of high-speed trains on Shanghai Nanjing intercity uplink and downlink lines. The test time
is from 23 to 24 December 2020, the sampling frequency is 12,800 hz, and the data was saved
every 1 h. The data range is 19:00:00–23:59:59 on 23 December 2020 and 19:00:00–23:59:59
on 24 December 2020. The test equipment adopts four vibration acceleration sensors and
one visual sensor. All the parameters of sensors during measurements have been indicated
in Table 3. According to those characteristics of the sensors, the installation position of
the test equipment and sensors is shown in Figure 4. The vibration acceleration sensor
simulates the pre-installed vibration sensor on the axle box of the service vehicle, and the
vision sensor can simultaneously collect the rail image, which is convenient to provide a
label reference for the vibration data during the production of the data set. The final rail
defect identification model still only uses the vibration signal data of pre-installed and
in-service vehicles.

Table 3. The parameters of the sensors using in test measurements.

Acceleration sensor
(CTC AC220)

Sensitivity 10 mV/g
Frequency response (±3 dB) 1.0–25,000 Hz
Frequency response (±10%) 1.5–7000 Hz
Frequency response (±5%) 3.0–3000 Hz

Range ±500 g
Voltage supply (IEPE) 18–30 VDC

Constant current source 2–10 mA

Vision sensor
(Linear array camera)

Resolution 8192 × (128 + 64)
Line frequency (kHz) 280

Sensor type CMOS
Spectrum Black and white

Dynamic range 70 dB
Power supply requirements 17 W (12~24 VDC)

Dimension 1D
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The uncertainty would be a problem for vibration and vision images measurement. All
of the budgets of uncertainties [49] are shown in Table 4. It can be seen that the repeatability
(Random) uncertainty is the biggest influence factor of measurements.

Table 4. The uncertainties budgets in the test.

Number Component of Uncertainty Uncertainty U (xi) Distribution Units of U (xi)

1 Equipment uncertainties 0.304 Normal mV/g
2 Operator bias uncertainty 0.1520 Normal mV/g
3 Calibration uncertainty 0.1225 Triangle mV/g
4 Acoustical/Environmental uncertainty 0.4864 Normal mV/g
5 Repeatability (Random) uncertainty 11.394 / mV/g

Combined uncertainty, UN = 11.0560 mV/g
Coverage factor, k = 2

Expanded uncertainty, U = 22.1120 mV/g
Expanded uncertainty rounded up to 2 significant figures, U = 22.1 mV/g

The images of special rail sections, such as switch, seaming, and damage are extracted
by image recognition software, and the acquisition time corresponding to the image is
obtained. According to the collected passing time of special section, extract the axle box
vibration acceleration data corresponding to the image, and obtain four defect samples of
rail surface, i.e., switch, seaming, damage, and normal. The four defect images of the rail
surface are shown in Figure 5a, and the vibration signal waveforms of the four states are
shown in Figure 5b.
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For vibration signals, in order to find out the characteristics of rail surface defects,
several features have been introduced and processed in rail surface inspections. Moreover,
as a feature, it is necessary to have good sensitivity and stability during the evaluation.
Therefore, the calculation formula and comparison of features sensitivity and stability are
made and shown in Table 5. The envelope kurtosis has the best sensitivity and stability,
compared with other features. Moreover, the identification accuracy of turnout, joint,
or damage among different features are also processed in this Table. It can be seen that
envelope kurtosis has the best identification accuracy performance compared with other
existing features in turnout, joint, or damage conditions. Therefore, the envelope kurtosis
here would be an appropriate feature for inspection of rail surface defects.

Table 5. The comparison of features sensitivity, stability, calculation formula, and damage identifica-
tion accuracy in rail surface inspection.

Parameters Sensitivity Stability Formula Accuracy (%)

Waveform factor Bad Good
√

1
N ∑Ns

i=1 (x(i))2

1
Ns ∑Ns

i=1|x(i)|
60.82%

Peak factor Normal Normal max|x(i)|√
1
N ∑Ns

i=1 (x(i))2
61.75%

Impulse factor Normal Normal max|x(i)|
1

Ns ∑Ns
i=1|x(i)|

53.00%

Skewness Good Normal Ns

√
1
N ∑Ns

i=1 (x(i))2

∑Ns
n=1|x(i)|

60.75%
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Table 5. Cont.

Parameters Sensitivity Stability Formula Accuracy (%)

Envelope kurtosis Good Good ∑Ns
n=1[x(i)−x]

(Ns−1)
(√

1
Ns ∑Ns

i=1 (x(i)−x)2
)3

66.25%

Clearance factor Bad Good max|x(i)|(
1

Ns

√
∑Ns

i=1|x(i)|
)2 28.04%

3.1.2. Analysis of the Mode Number of VMD

In the search domain, the relationship between the four channels mode number K and
the maximum value of the envelope kurtosis is plotted in Figure 6. For the four defect
samples of the rail surface, the maximum value of the envelope kurtosis can be obtained
when each sample of the four channels takes the optimal mode number K′. The relationship
is shown in Table 6.
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Table 6. Relationship between 4-channel K’ and global maximum envelope kurtosis.

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

K′ 13 5 11 5 8 13 12 14 12 9 5 10 7 6 6 11
Kurtosis 77 32 103 30 55 63 88 89 142 73 210 105 77 65 62 63

It can be seen from Table 3 that the specific samples correspond to the optimal mode
number one to one, and give an example of VMD decomposition of a specific sample.
For example, for switch CH4 sample 4, when K’ = 5, the envelope kurtosis is the largest.
For sample 4, VMD with 5 modes is used to analyze the original signal. After VMD
decomposition, five eigenmode functions are generated. The time domain representation of
each IMF component in a channel is shown in Figure 7. In addition, due to the muti-sensors
fusion, the reliability of different channels should also be discussed. In this sub-section, the
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performance and reliability of those four channels are presented by calculating the signal
to noise ratio (SNR) and root mean square error (RMSE). All the calculated results have
been indicated in Table 7. It can be seen that the CH1 have the smallest SNR in collected
signals under the damage defect compared with other channels. Additionally, the CH4 is
the relatively stable channel compared with other channels. Among those three defects, the
SNRs under damage conditions are still the smallest compared with those in the switch
and the joint. Similar to the results calculated by RMSE, the RMSE in the damage condition
is the largest compared with other defect conditions.
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Table 7. The performance of different measurement channels under different defects.

Performance

SNR CH1 CH2 CH3 CH4
Switch 11.221 6.704 2.949 3.050
Joint 6.615 6.703 2.9877 3.006

Damage 0.772 1.481 2.718 3.098
RMSE CH1 CH2 CH3 CH4
Switch 0.426 0.665 0.668 0.612
Joint 0.724 0.746 0.668 0.609

Damage 1.418 1.213 0.673 0.615

For rail surface inspection, only SNR and RMSE may not show the practical perfor-
mance during inspections. Therefore, the maximum information coefficient (MIC) also
calculated and analyzed under different rail state. A total of 15 types of time domain
characteristic parameters for four channels and four states are applied, respectively, and
the correlations between CH1, CH2, CH3, and CH4 are calculated using the MIC. It can be
seen from Table 8 that the minimum MIC value is 0.75, which is the MIC value between the
switch states CH1 and CH4. According to the results, 0.75 is highly correlated. The four
states of the four channels are highly correlated.
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Table 8. The maximum information coefficient (MIC) of different channels under different rail states.

Maximum Information Coefficient Comparison

MIC CH1 CH2 CH3 CH4 MIC CH1 CH2 CH3
CH1 1 0.81 0.78 0.75 CH1 1 0.90 0.88

Switch CH2 0.81 1 0.85 0.85 Damage CH2 0.90 1 0.90
CH3 0.78 0.85 1 0.82 CH3 0.88 0.90 1
CH4 0.75 0.85 0.82 1 CH4 0.90 0.91 0.89

MIC CH1 CH2 CH3 CH4 MIC CH1 CH2 CH3
CH1 1 0.89 0.89 0.89 CH1 1 1 0.99

Joint CH2 0.89 1 0.86 0.88 Normal CH2 1 1 1
CH3 0.89 0.86 1 0.87 CH3 0.99 1 1
CH4 0.89 0.88 0.87 1 CH4 1 1 1

3.1.3. Image Encoding Result

In the equidistant segmentation of the original vibration data, four cases with lengths of
32, 64, 96, and 128 are adopted. According to the grayscale image construction method, the
grayscale images with pixels of 32 × 32, 64 × 64, 96 × 96 and 128 × 128 can be constructed
from the signals with lengths of 32, 64, 96, and 128, respectively. The experiment is carried
out with the measured axle box vibration data of the serviced vehicle. The vibration signals
under four lengths are generated into grayscale images and input into the network for
training. Figure 8 is the accuracy change curve of test sets with different pixel sizes. Among
them, the grayscale image of 32 × 32 cannot distinguish the four types of rail surface
defects because there are too few pixels and the image features are not obvious. The test
accuracy of the grayscale image with 128 × 128 pixels is slightly higher than that of 96 × 96
and 64 × 64 pixels, and the convergence speed and stability of the test accuracy curve are
better than that of the grayscale image with 96 × 96 and 64 × 64 pixels, which can better
distinguish four types of defects. Considering comprehensively, the grayscale image with
128 × 128 pixels is finally used as the grayscale image pixel for DCNN training and testing.
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As can be seen from Figure 8, the grayscale image test accuracy curve with 128 × 128 pixels
have faster convergence speed, better stability and higher test accuracy than the test ac-
curacy curve with 32 × 32 pixels, 64 × 64 pixels and 96 × 96 pixels. Figure 9 shows the
grayscale image with 128 × 128 pixels. It can be seen from Figure 9 that the grayscale images
of four different defects constructed by the above method have significantly different feature.
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3.1.4. Experimental Result and Analysis

According to the axle box vibration data of the serviced vehicle, a total of 3200 grayscale
images are generated. The images are randomly assigned, and the assigned numbers of
training set and test set in each defect are 640 and 160, respectively.

Run the network five times, and Figure 10 shows the identification accuracy and loss
rate of the test set obtained from the five tests. Among them, the accuracy changes and
loss change curves of the training set and test set in the fourth test are shown in Figure 11.
In training, one iteration refers to the process that all data complete a forward calculation
and back propagation in the network. The accuracy rate reflects the proportion of images
correctly recognized by the model, and the loss rate is used to evaluate the inconsistency
between the predicted value and the real value of the model. The greater the accuracy, the
smaller the loss rate, the better the recognition ability and robustness of the model.
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By analyzing the data in Figure 10, the method proposed in this paper obtains good
results. The average recognition accuracy of the test set of five tests is 99.75%. It can be
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seen that using the multi-sensor fusion rail surface defects recognition method based on
VMD grayscale image coding and DCNN to analyze the rail vibration signal can effectively
realize the rail surface defects recognition with a high stability.

It can be seen from Figure 11 that the accuracy curve rises rapidly and tends to be
stable regardless of training or testing, and the loss curve decreases rapidly and tends to
be stable. After 100 iterations, the final test accuracy and loss values are 100% and 7.03%,
respectively.

In order to represent the specific classification of rail surface defects of different cate-
gories, the confusion matrix of classification results is given. Figure 12 shows the confusion
matrix of five test results. The horizontal axis represents the prediction category, the vertical
axis represents the actual category, the diagonal value represents the classification accuracy
of test samples in each category, and the value of non-diagonal position represents the
error rate of defects classification. It can be seen from the confusion matrix results that the
classification accuracy of the four defects categories is more than 97.00%.
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According to the characteristics of non-stationary, nonlinear, and vulnerable to noise in-
terference of rail vibration signal, a variable scale non-stationary signal processing method:
variational mode decomposition is used. This method can decompose the complex sig-
nal into a series of amplitude modulation frequency modulation (AM-FM) signals. The
adaptive decomposition of the original signal is realized by using the non-recursive vari-
ational mode decomposition model, which can avoid the endpoint effect and suppress
modal confusion and has good noise robustness and high decomposition efficiency. VMD
decomposition mainly includes under decomposition state and over decomposition state.
Under decomposition state refers to the main frequency signal contained in the signal
that is not completely decomposed, and over decomposition state refers to those false
components are generated in the decomposition process. It can be seen that selecting
the appropriate K value can well decompose the frequency components contained in the
original signal. In view of this situation, this paper proposes to use the maximum value
of envelope kurtosis to determine the optimal mode number of each rail surface defect
sample in four channels. Convolutional neural network is widely used in the field of image
recognition and has achieved excellent results. It can realize end-to-end learning of image
by using basic modules, such as convolutional layer, pooling layer and activation function,
avoiding the manual feature extraction of traditional methods.



Machines 2022, 10, 796 16 of 23

After VMD decomposition, the signal can reflect the distribution characteristics of the
original signal in different frequency bands, which is essentially an enhanced representa-
tion of the original signal. By calculating the correlation coefficient between each order
eigenmode function of the original signal obtained by variational mode decomposition
and the original signal itself, according to its variation law and combined with the filter-
ing characteristics of variational mode decomposition, the eigenmode function with low
noise pollution is selected to achieve the purpose of denoising. By encoding the screened
multi-sensor components into grayscale images, higher abstract features can be obtained.
At the same time, multi-sensor information fusion avoids the experience requirements of
experimental personnel for the selection of the optimal sensor position and obtains more
comprehensive state features. Thus, the intervention of human experience and knowledge
level is reduced, and the accuracy of defects recognition is guaranteed.

In order to verify the method proposed in this paper, that is, the multi-sensor fusion
rail surface defects recognition method based on optimized VMD grayscale image coding
and DCNN, which can effectively identify the four rail surface defects of switch, seaming,
damage and normal, the following methods are mainly used for comparative analysis: (1)
use the signals (four channels) measured by a single sensor to perform VMD to generate
grayscale images as the input of DCNN (the DCNN model is the same as that constructed
in this paper, only the input is changed), and four groups of comparison results are
obtained (the results take the average recognition accuracy of the test set tested for 5
times); (2) MOLO, a new railway surface defect detection method based on end-to-end
target detection and lightweight convolution network structure; (3) Rail surface defect
detection is realized based on a deep learning algorithm using YOLOv3. Table 9 describes
the comparison results of the proposed rail surface defects identification method with four
single-sensor as well as MOLO and YOLOv3 comparison methods. Figure 13 shows the
comparison between the rail surface defects recognition method proposed in this paper
and the results of four single sensors. It can be seen that the multi-sensor fusion rail surface
defects recognition method based on VMD grayscale image coding and DCNN proposed
in this paper has a higher accuracy.

Table 9. Performance of different fault diagnosis methods.

Method for Identifying the Surface Condition of Rails Average Recognition Accuracy

VMD + Grayscale image + DCNN (CH1 + CH2 + CH3 + CH4) 99.75%
VMD + Grayscale image + DCNN (CH1) 99.25%
VMD + Grayscale image + DCNN (CH2) 96.50%
VMD + Grayscale image + DCNN (CH3) 98.50%
VMD + Grayscale image + DCNN (CH4) 99.45%

Lightweight Convolutional Network Structure MOLO [50,51] 95.28%
YOLOv3 Deep Learning Algorithm [52] 97.00%

Machines 2022, 10, 796 17 of 24 
 

 

low noise pollution is selected to achieve the purpose of denoising. By encoding the 
screened multi-sensor components into grayscale images, higher abstract features can be 
obtained. At the same time, multi-sensor information fusion avoids the experience re-
quirements of experimental personnel for the selection of the optimal sensor position and 
obtains more comprehensive state features. Thus, the intervention of human experience 
and knowledge level is reduced, and the accuracy of defects recognition is guaranteed. 

In order to verify the method proposed in this paper, that is, the multi-sensor fusion 
rail surface defects recognition method based on optimized VMD grayscale image coding 
and DCNN, which can effectively identify the four rail surface defects of switch, seaming, 
damage and normal, the following methods are mainly used for comparative analysis: (1) 
use the signals (four channels) measured by a single sensor to perform VMD to generate 
grayscale images as the input of DCNN (the DCNN model is the same as that constructed 
in this paper, only the input is changed), and four groups of comparison results are ob-
tained (the results take the average recognition accuracy of the test set tested for 5 times); 
(2) MOLO, a new railway surface defect detection method based on end-to-end target de-
tection and lightweight convolution network structure; (3) Rail surface defect detection is 
realized based on a deep learning algorithm using YOLOv3. Table 9 describes the com-
parison results of the proposed rail surface defects identification method with four single-
sensor as well as MOLO and YOLOv3 comparison methods. Figure 13 shows the compar-
ison between the rail surface defects recognition method proposed in this paper and the 
results of four single sensors. It can be seen that the multi-sensor fusion rail surface defects 
recognition method based on VMD grayscale image coding and DCNN proposed in this 
paper has a higher accuracy. 

Table 9. Performance of different fault diagnosis methods. 

Method for Identifying the Surface Condition of Rails 
Average Recognition 

Accuracy 
VMD + Grayscale image + DCNN (CH1 + CH2 + CH3 + CH4) 99.75% 

VMD + Grayscale image + DCNN (CH1) 99.25% 
VMD + Grayscale image + DCNN (CH2) 96.50% 
VMD + Grayscale image + DCNN (CH3) 98.50% 
VMD + Grayscale image + DCNN (CH4) 99.45% 

Lightweight Convolutional Network Structure MOLO [50,51] 95.28% 
YOLOv3 Deep Learning Algorithm [52] 97.00% 

 
Figure 13. Comparison results of the first five methods on the same dataset. 

  

Figure 13. Comparison results of the first five methods on the same dataset.



Machines 2022, 10, 796 17 of 23

3.2. Measured Data Set Result Analysis (Two Categories)
3.2.1. Experimental Data

Using the same dataset from the previous section, the data of switch defects, seaming
defects, damage defects, and normal states are selected to generate two kinds of grayscale
images, normal state, and other state. According to the method proposed in this paper, the
measured axle box vibration data set is tested. Figure 14 shows the grayscale images with
128 × 128 pixels.
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3.2.2. Experimental Result and Analysis

Run the network five times, and Figure 15 shows the identification accuracy and loss
rate of the test set obtained from the five tests. Among them, the accuracy changes and loss
change curves of the training set and test set in the fourth test are shown in Figure 16.

Machines 2022, 10, 796 18 of 24 
 

 

3.2. Measured Data Set Result Analysis (Two Categories) 
3.2.1. Experimental Data 

Using the same dataset from the previous section, the data of switch defects, seaming 
defects, damage defects, and normal states are selected to generate two kinds of grayscale 
images, normal state, and other state. According to the method proposed in this paper, 
the measured axle box vibration data set is tested. Figure 14 shows the grayscale images 
with 128 × 128 pixels. 

  
(a) (b) 

Figure 14. Example of grayscale image. (a) Normal; (b) Other. 

3.2.2. Experimental Result and Analysis 
Run the network five times, and Figure 15 shows the identification accuracy and loss 

rate of the test set obtained from the five tests. Among them, the accuracy changes and 
loss change curves of the training set and test set in the fourth test are shown in Figure 16. 

 
Figure 15. Accuracy and loss rates for multiple tests. 

  
(a) (b) 

Figure 16. Accuracy changes and loss changes of training set and test set. (a) Accuracy changes. (b) 
Loss changes. 

Figure 15. Accuracy and loss rates for multiple tests.

Machines 2022, 10, 796 18 of 24 
 

 

3.2. Measured Data Set Result Analysis (Two Categories) 
3.2.1. Experimental Data 

Using the same dataset from the previous section, the data of switch defects, seaming 
defects, damage defects, and normal states are selected to generate two kinds of grayscale 
images, normal state, and other state. According to the method proposed in this paper, 
the measured axle box vibration data set is tested. Figure 14 shows the grayscale images 
with 128 × 128 pixels. 

  
(a) (b) 

Figure 14. Example of grayscale image. (a) Normal; (b) Other. 

3.2.2. Experimental Result and Analysis 
Run the network five times, and Figure 15 shows the identification accuracy and loss 

rate of the test set obtained from the five tests. Among them, the accuracy changes and 
loss change curves of the training set and test set in the fourth test are shown in Figure 16. 

 
Figure 15. Accuracy and loss rates for multiple tests. 

  
(a) (b) 

Figure 16. Accuracy changes and loss changes of training set and test set. (a) Accuracy changes. (b) 
Loss changes. 
Figure 16. Accuracy changes and loss changes of training set and test set. (a) Accuracy changes.
(b) Loss changes.



Machines 2022, 10, 796 18 of 23

Comparing Figures 10 and 16, it can be seen that the proposed multi-sensor fusion rail
surface defects recognition method based on VMD grayscale image coding, and DCNN
can quickly converge and tend to be stable in both four-class and two-class applications, and
the accuracy is higher. It shows that this method has a certain robustness and generality. Five
repeated tests results of the classification accuracy of the two categories has reached 100%.

3.3. Anti-Noise Performance Test
3.3.1. Anti-Noise Performance Test Results (Four Categories)

In order to test the anti-noise performance of the method proposed in this paper, 200
noise-added grayscale images with Gaussian noise with variance of 0.01 are added to each
of the four rail categories. Figure 17 shows the grayscale images of the four rail categories
after adding noise.
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Run the network five times, and Figure 18 shows the recognition accuracy and loss
rate of the test set obtained after five cycles of noise adding. Among them, Figure 18 shows
the comparison of test set accuracy change curves of the first test results before and after
noise addition. It can be seen from Figure 19 that the overall change trend of the two curves
is very close. The average accuracy of the final recognition after noise-added is slightly
reduced, and the average test accuracy is 99.20%, which is slightly lower than the average
test accuracy of the original signal of 99.75%. It shows that the addition of noise image has
very little impact on the network, which proves that the DCNN network model proposed
in this paper has strong anti-noise ability.
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3.3.2. Anti-Noise Performance Test Results (Two Categories)

Similarly, in order to test the anti-noise performance of the method proposed in this
paper, 200 noise-added grayscale images with Gaussian noise with a variance of 0.01 are
added to each of the two rail categories.

The average accuracy of the five repeated tests after noise-added is 99.75%, which
is slightly lower than the original tests of 100.00%. It shows that the influence of adding
noise image on the network is very small, which proves that the DCNN network model
proposed in this paper has strong anti-noise ability.

3.3.3. Discussion

In this sub-section, the accuracy of the identification will be discussed under different
rail surface defects. The mixed damage state samples of turnout and damage are separated
and used as the fifth rail surface state for diagnosis. That is, the mixed state samples are
added to the original turnout, joint, damage and normal state samples, namely, the turnout,
joint, damage, turnout and crossing damage, and normal state samples. Only change the
sample data set and compare the classification accuracy of four states and five states. The
results are shown in the Table 10.

Table 10. Identification performance of mixed rail surface defects.

Rail Surface State Samples/Length Accuracy

Switch, Joint, damage, normal (four states) 240/3,072,000 99.75%
Switch, Joint, turnout + damage, normal (five states) 300/3,840,000 100.00%

It can be seen from the results in the Figure 20 and Table 10 that the classification model
trained by the proposed method in this paper can effectively diagnose mixed state samples
for the acquired test collection data. In addition, compared with the similar inspection
in [19], it only has 34 defect samples, with a prediction accuracy of 88.2%, and a false alarm
rate of 10.5%. The accuracy of our model trained by VMD + DCNN network still has the
satisfied results.
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However, for mixed state samples, the number and diversity of samples needs to be
further supplemented. Therefore, the construction of a rail defect identification model
based on multi-channel sensing vibration data under mixed state still needs to continue to
carry out experiments and in-depth research in future.

4. Conclusions

In order to maximize the use of multi-sensor vibration signals pre-installed in rail
vehicles, this paper studies a method to obtain rail surface features by analyzing multi-
channel sensor vibration data and construct an effective rail surface defect identification
model. Aiming at the characteristics of non-stationary, nonlinear, and easily disturbed by
noise of rail vibration signal, and the low recognition rate of some rail surface defects by a
single vibration signal, a multi-sensor fusion rail surface defects recognition method based on
optimized VMD grayscale image coding and DCNN is proposed. The multi-sensor vibration
signal is transformed into grayscale image with obvious characteristics, and the recognition
of different rail surface defects types is realized. The main conclusions are as follows:

(1) The parameter-optimized VMD is used to decompose the original vibration accel-
eration data measured by the four-channel sensors of the axle box, and the IMF component
with the largest correlation coefficient between the eigenmode components of each order
and the original signal is screened and converted into a grayscale image as the input
of DCNN; it avoids the selection of the optimal sensor layout position and reduces the
demand for the tester’s actual test experience;

(2) The designed convolution neural network has fast convergence speed and good
robustness. The average test accuracy of four classifications and two classifications on
the measured data set of on the serviced vehicle reaches 99.75% and 100% respectively,
showing good generalization ability. In the anti-noise ability test, the average test accuracy
of four classifications and two classifications on the measured data set of on the serviced
vehicle is 99.20% and 99.75%, respectively, which reflects the excellent anti-noise ability of
the method proposed in this paper;

(3) Under the same conditions, the accuracy of multi-sensor information fusion is
99.75%, which is 0.50%, 3.25%, 1.25%, and 0.30% higher than that of single sensor, indicating
that the accuracy of multi-sensor information fusion method is higher than that of single sensor.

Therefore, the proposed optimized VMD grayscale image coding and DCNN can be
used for the rail surface defects inspection. In practice, the vibration signals collected from
the axle box on the operating service trains can be applied to the proposed method, and the
rail surface conditions will be recognized by pre-trained DCNN network models.

In the future, more rail surface images under working conditions will be collected
to expand the vibration signal and image database of rail surface defects so as to provide
a more powerful guarantee for relevant research work. A variety of rail surface defects
are added to verify the universality of the algorithm proposed in this paper. Meanwhile,
considering the fusion of rail surface defects image information and vibration signal, a multi-
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information fusion method more suitable for this research work will be studied [27,28],
which gives the rail surface defects image and vibration feature fusion more powerful
feature expression ability. In the actual operation of rail transit vehicles, due to noise
pollution, such as fog and dust, the visual information will become more blurred and there
will be a reduction in the quality of visual information. Further, the efficiency of mounted
sensors and the optimized solution will be considered to maintain the multi-sensors fusion
to increase the accuracy with fewer sensors.
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