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Abstract: In recent years, the deterministic design optimization method has been widely used to
improve the output performance of brushless direct current (BLDC) motors. However, it does not
contribute to reducing the failure rate and performance variation of products because it cannot
determine the manufacturing uncertainty. In this study, we proposed reliability-based robust design
optimization to improve the output torque of a BLDC motor while reducing the failure rate and
performance variation. We calculated the output torque and vibration response of the BLDC motor
using the electromagnetic–structural coupled analysis. We selected the tooth thickness, slot opening
width, slot radius, slot depth, tooth width, magnet thickness, and magnet length as the design
variables related to the shape of the stator and rotor that affect the output torque. We considered
the distribution of design variables with manufacturing tolerances. We performed a reliability
analysis of the BLDC motor considering the distribution of design variables with manufacturing
tolerances. Using the reliability analysis results, we performed reliability-based robust design
optimization (RBRDO) to maximize the output torque; consequently, the output torque increased by
8.8% compared to the initial BLDC motor, the standard deviation in output performance decreased
by 46.9% with improved robustness, and the failure rate decreased by 99.2% with enhanced reliability.
The proposed reliability-based robust design optimization is considered to be useful in the actual
product design field because it can evaluate both the reliability and robustness of the product and
improve its performance in the design stage.

Keywords: brushless direct current motor; manufacturing uncertainty; reliability-based robust design
optimization; output torque; torque ripple; vibration analysis

1. Introduction

Electric motors are power-generating devices used in various industries, such as the
automobile, home appliance, and plant industries. With the recent strengthening of environ-
mental regulations worldwide, the application field of electric motors has expanded, and
accordingly, designs with high energy density (through high output and miniaturization)
and weight reduction have been developed. However, an increase in energy density causes
an increase in torque ripple, which is one of the primary causes of electric motor vibration.
Therefore, it is necessary to study the design of electric motors with high energy density
while considering torque ripple.

Many studies have been conducted using the finite element analysis (FEA) method to
analyze the vibration characteristics of electric motors and to reduce vibrations. R. Islam et al.
analyzed the torque waveform and cogging torque according to the permanent mag-
net shape of a permanent-magnet synchronous motor (PMSM) using a two-dimensional
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(2-D) electromagnetic (EM) FEA. They applied a step-skew type motor to reduce cogging
torque [1]. C. Studer et al. explained the principle of cogging torque generation in electric
motors using 2-D EM FEA and presented a method for reducing cogging torque using
design variables, such as stator tooth and permanent magnet shape [2]. M. Dai et al. calcu-
lated the torque ripple of a permanent-magnet brushless direct current (BLDC) motor using
2-D EM FEA. They reduced the torque ripple by adjusting the skew angle [3]. J. Hong et al.
analyzed the EM force using three-dimensional (3-D) EM FEA and proposed a design to
reduce the vibration caused by EM force by changing the stator pole and yoke shape of a
switched reluctance motor (SRM) [4].

With the improvement of analysis technology and computing power, several studies
have been conducted to improve the performance of electric motors by applying various
optimization methods. Previously, studies using the deterministic design optimization
(DDO) method were conducted to reduce torque ripple. Choi et al. conducted a DDO
study to minimize torque ripple using the air gap shape of an SRM as a design variable [5].
Kim et al. conducted a DDO study for maximizing the output torque using the permanent
magnet volume of the spoke-type BLDC motor as a design variable [6]. Vasilija conducted
a DDO study using the genetic algorithm with the rotor shape as a design variable to
minimize the cogging torque of the PMSM [7]. Lee et al. conducted a multi-objective
optimization study for maximizing output torque and minimizing torque ripple of SRM
using the stator and rotor shapes as design variables [8,9]. Kuci et al. conducted a topology
optimization study to minimize the torque ripple of the PMSM using the rotor shape [10].
Choi et al. conducted a DDO study to effectively obtain a sinusoidal distribution of the
air gap flux density of IPM using the permanent magnet shape [11]. Consequently, it was
possible to improve the output and vibration performance of the motor. However, since the
DDO method is designed by setting the design variable to a single fixed value, it cannot
consider the characteristics of fluctuations in product performance due to the uncertainty
that occurs in the manufacturing process.

Mass production often results in performance variations due to uncertainties arising
during the manufacturing process. Uncertainties are generally caused by production and
assembly tolerances, material properties, and the environments of use [12]. Variations
in performance due to uncertainty cause product failures. Considering the uncertainties
that occur during mass production, the need for research on probabilistic design opti-
mization (PDO) has emerged to achieve product performance and quality standards [13].
Depending on the purpose, PDO can be classified into robust design optimization (RDO)
and reliability-based design optimization (RBDO) methods. RDO is a method used to
minimize fluctuations in product performance and quality [14], and RBDO is a method
used to increase product reliability at a given probability level [15]. In recent years, many
studies have been conducted to design a motor using the above two methods.

Kim et al. performed an RDO study to improve the robustness of the cogging torque
of BLDC motors and to improve the vibration performance [16]. Lee et al. conducted an
RDO study using the stator and rotor shapes and rotor eccentricity as design variables to
reduce the back electromotive force of the interior permanent-magnet synchronous motor
(IPMSM) [17]. Lee et al. performed the design experiments to determine the design factors
affecting the cogging torque of a surface-mounted permanent-magnet synchronous motor
(SPMSM). They conducted an RDO study to reduce the cogging torque in consideration
of the uncertainty that occurs during the assembly process of the stator [18]. Kim et al.
conducted an RDO study to reduce the cogging torque of SPMSM by setting the uncertainty
through FEA and experiments [19]. Consequently, it was possible to design a motor
that simultaneously improves motor performance and minimizes quality fluctuations.
Ziyan et al. performed RBDO to reduce the cogging torque considering the magnetic
flux density of the stator [20]. Mun et al. performed RBDO to reduce the cogging torque
by considering the performance variation due to manufacturing tolerance and operating
temperature [21].
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Reliability-based robust design optimization (RBRDO), which integrates RDO and
RBDO, is the only way to consider both product quality and reliability in the design stage.
Jang et al. performed RBRDO considering the manufacturing uncertainty of SPMSM. They
proposed a design that minimizes the back electromotive force and increases the reliability
of cogging torque [12]. Kim et al. conducted an RBRDO study of BLDC motors and
reduced the cogging torque and the failure rate of output torque [22]. Hao et al. calculated
the uncertainty using Monte Carlo simulation and performed RBRDO to minimize the
mass of solid rocket motors [23]. Jang et al. performed RBRDO of IPMSM considering
manufacturing and material uncertainty. They proposed a design to reduce torque ripple
and the failure rate of output torque, and they explained the superiority of RBRDO by
comparing the results of RBRDO, DDO, and RBDO [24]. The above studies tried to
reduce torque ripple or cogging torque through EM design changes to improve vibration
performance. However, the change in vibration response after design optimization was
not analyzed.

In this study, considering the uncertainty caused by the manufacturing tolerances of
BLDC motors, we proposed RBRDO as a multi-objective optimization that simultaneously
maximizes the output torque and minimizes its standard deviation. We performed the
EM–structural coupled analysis to calculate the output torque, torque ripple, and vibration
response of the BLDC motor. To perform RBRDO, we selected the tooth thickness, slot
opening (SO) width, slot radius, slot depth, tooth width, magnet thickness, and magnet
length as the design variables related to the shape of the stator and rotor that affect the
output torque of the motor. We performed the reliability analysis of the BLDC motor
considering the distribution of the design variables. We used the rate of change compared
to the initial value of the torque ripple and the area of the permanent magnet as constraints.
We verified the superiority of RBRDO by comparing the results of RBRDO with those
of DDO and RDO. Further, we performed a vibration analysis to analyze the change in
vibration response in RBRDO compared to the initial BLDC motor.

2. Electromagnetic–Structural Coupled Analysis

We used the EM–structural coupled analysis to calculate the vibration response of a
BLDC motor. We calculated the EM force acting on the stator tooth through the EM FEA.
By applying the calculated EM force as the load condition of the structural finite element
model, we calculated the acceleration response of the motor due to the EM force. In this
study, we neglected the tangential EM force. The tangential EM force is generally negligible
because its effect on the motor vibration is less than the radial EM force [25].

In this study, we used a BLDC motor with a rated output of 1.5 kW, 4 poles, and
24 slots, as shown in Figure 1. Table 1 summarizes the specifications of the BLDC motor.
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Table 1. Specifications of the BLDC motor.

Specifications Quantity

Type BLDC

Number of poles 4

Number of slots 24

Rated power 1.5 kW

Rated torque 7.17 N·m
Rated speed 2000 rpm

The EM forces generated in the air gap cause the EM vibration of an electric motor.
Using the principle of virtual work, we can calculate the EM force as follows:

∂

∂s

∫
Ω

∫ H

0
B·dHdΩ = Fs, (1)

where B is the magnetic flux density, H is the magnetic field, s is the x, y, and z axes in
the Cartesian coordinate system, and Ω is the domain where the nodal force Fs is applied.
Applying Equation (1) to the mesh element e gives the following equation:∫

e

(
−BT ·J−1·∂J

∂s
·H +

∫ H

0
B·dH

∣∣∣J−1
∣∣∣∂|J|

∂s

)
dV = Fs, (2)

where J is the Jacobian matrix of e, and V is the total volume. The Jacobian matrix is
determined according to the element type. In the linear case, the integral of B can be
simplified as follows: ∫ H

0
B·dH =

∫ H

0
µH·dH =

µ

2
|H|2, (3)

where µ is the magnetic relative permeability. Using (1), (2), and (3), the local force Fi
s

applied to a given node i can be formulated as follows:

∑
∀e

∫
e

(
−BT ·J−1·∂J

∂s
·H +

µ

2
|H|2

∣∣∣J−1
∣∣∣∂|J|

∂s

)
dV = Fi

s . (4)

Equation (4) can be expressed in the matrix form as follows:

− [B]T[ J ]−1[H]∇J +
µ

2
[H]2[ J ]−1∇J = {Fs}. (5)

We performed an EM analysis using the 2-D cross-sectional model shown in Figure 2
to calculate the output torque, torque ripple, and EM force acting on the stator tooth of the
BLDC motor. A three-phase alternating current at 2000 rpm rated operation was applied as
the analysis condition.

As a result of the EM analysis, the output torque and torque ripple were calculated as
7.16 N·m and 3.46 N·m, respectively, as shown in Figure 3. Compared with the performance
specification of the BLDC motor (7.17 N·m), the relative error is 0.14%.

The radial EM force acting on the stator tooth was calculated as shown in Figure 4.
Vibration analysis was performed by inputting the calculated radial EM force into the
stator structure.
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The mechanical properties of BLDC motors can be described using the following
equation of motion:

[M]
{ ..

x
}
+ [C]

{ .
x
}
+ [K]{x} = {F(t)}, (6)

where [M], [C], and [K] represent a mass matrix, damping matrix, and stiffness matrix,
respectively. {x} is the displacement vector and {F(t)} is the applied load vector.

The harmonic components of the EM force calculated through the EM analysis were
applied to the stator tooth of the 3-D finite element model. Transient analysis using the EM–
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structural coupled analysis method was performed to calculate the acceleration response in
the finite element model of the BLDC motor shown in Figure 5. Fast Fourier transform was
performed to obtain the normalized frequency response curve shown in Figure 6.
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The vibration measurement data in Figure 7 were used to verify the EM–structural
coupled analysis results [26]. Table 2 summarizes the relative errors of the peak frequen-
cies of the EM–structural coupled analysis and the vibration measurement results. The
maximum relative error of the analysis and experiment for the frequency at which the
peak acceleration value occurs in the range of 0 to 1000 Hz is less than 4%. We verified
the vibration prediction accuracy of the analysis model. The reason for the difference of
133.3 Hz in the magnitude of the analysis and measurement results is that a sinusoidal
current without harmonic components was applied to the input current. We performed a
reliability analysis and RBRDO of the BLDC motor using the verified analysis model.
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Table 2. Comparison of the peak frequencies of measured and simulated results.

Measured Peak
Frequency (Hz)

Simulated Peak
Frequency (Hz) Relative Error (%)

133 133.3 0.23%
276 266.6 −3.48%
403 399.9 −0.77%
540 532.8 −1.33%
612 599.4 −2.06%
670 666 −0.60%
705 699.3 −0.81%
724 732.6 1.19%
780 765.9 −1.81%
820 799.2 −2.54%
943 932.4 −1.12%
986 965.7 −2.06%

1000 999 −0.10%

3. Probabilistic Design Optimization

The design optimization method is divided into DDO and PDO depending on whether
the uncertainty of the design variables is considered. DDO is a traditional design opti-
mization method in which the design variables are assumed to have a fixed value without
considering uncertainty.

The DDO problem can be formulated as follows:

min f (d),

subject to gi(d) < 0, i = 1, 2, · · · ,
(7)

where f is the objective function for the design variable d, and g is the constraint.
Because DDO does not consider the uncertainty of design variables, the product perfor-

mance may vary, thereby not satisfying the requirements of the designer or causing product
failures. Therefore, a PDO method that considers the uncertainty of design variables was
used. PDO can be divided into RBDO and RDO depending on whether the design purpose
is to satisfy the reliability or minimize the performance fluctuation.

RBDO is used to design a product that satisfies the reliability as per the requirement
of the designer by quantitatively defining uncertainty. Therefore, reliability analysis is
necessary to accurately predict the failure probability of a constraint condition. Reliability is
a design condition in product design that refers to satisfying the required performance. The
design variable is defined as a probability variable X to consider reliability quantitatively.
A performance function representing the required performance is defined as g to evaluate
the reliability of a product. As shown in Figure 8, the performance function is expressed as
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a probability density function, and at the performance function equals 0, it is divided into
a feasible and an infeasible region that satisfies the constraint condition. The probability
of product damage is obtained by calculating the area where g > 0 in the probability
density function curve shown in Figure 8. Reliability increases as the probability of damage
decreases [27].
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The RBDO problem can be formulated as follows:

minh(d),

subject to PF(gi(X) > 0) ≥ Pt, i, i = 1, 2, · · · , (8)

where h is the objective function, gi is the i-th constraint function, PF is the failure rate
under infeasible conditions, and Pt, i is the i-th target value to guarantee the reliability of gi.

Robust design is a method that additionally considers robustness in the existing design
method and was first developed by Taguchi Genichi. The Taguchi method uses the S/N
ratio and orthogonal array as evaluation indices for robustness to minimize the performance
fluctuations due to noise factors [28,29]. The Taguchi method maximizes the S/N ratio to
reduce the variation of the quality loss function and further uses an adjustment parameter
such that the average of the quality loss function reaches the target value. Through this
process, we can discover a design that reduces the fluctuation of the quality loss function
and simultaneously satisfies the target performance.

However, since robust design uses an orthogonal arrangement table, it is difficult to
consider a wide design range, and the design variables can be defined only in a discrete
space. In addition, the general design requires many constraint conditions. The Taguchi
method is inefficient in dealing with these constraints. RDO, a mathematically well-
developed design optimization method, is used to solve the above problems [30].

RDO is used to find a design in which the product performance is insensitive to
uncertainties, such as the variations of design variables. In this method, the mean of the
quality loss function is optimized, and the variance is minimized while satisfying the design
constraints. The RDO problem can be formulated as follows:

min f
(
µh, σ2

h
)
, h(X; d),

subject to gi(d) ≤ 0, i = 1, 2, · · · ,
(9)

where f is the quality loss function consisting of mean µh and variance σ2
h for h. Since f is

expressed as the sum of the mean and variance multiplied by a specific weight, RDO is a
multi-objective optimization. d is a vector of design variables defined as d = µ(X), where
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µ represents the mean of the design probability variable X. The purpose of RDO is to find
the design that is most insensitive to changes in probability variables within the effective
design domain gi ≤ 0 [28].

RBRDO is a method that integrates the above two design optimization methods
to minimize the performance fluctuation characteristics and simultaneously satisfy the
reliability level required by the designer. In the problem formulation of RBRDO, the loss
function of the product quality is minimized according to the probabilistic constraint shown
in the following equation:

min f
(
µh, σ2

h
)
, h(X; d),

subject to PF(gi(X) > 0) ≥ Pt, i, i = 1, 2, · · · .
(10)

RDO and RBDO are integrated into one numerical model to solve Equation (10).
Although such an integrated optimization problem requires a high computational cost,
it has an increasing need because it enables a robust and reliable product design against
changes in design variables.

4. Reliability-Based Robust Design Optimization of the BLDC Motor
4.1. Reliability Analysis of the BLDC Motor

The stator and rotor of the BLDC motor are generally manufactured through the
stamping process. There are uncertainties in the manufacturing process due to various
factors, such as manufacturing tolerances and assembly environment. These uncertainties
can eventually lead to variations in motor performance. The performance variation of the
motor may not satisfy the requirements of the designer and may increase the failure rate.
Therefore, we require a design considering the uncertainty caused by the manufacturing
tolerance of the BLDC motor.

The design variables that affect the motor’s output performance are defined as shown
in Figure 9. Table 3 summarizes the distribution of design variables caused by the uncer-
tainty of manufacturing tolerances during the stamping process. In this study, we referred
to the stamping uncertainty of the metal plate proposed in [31]. Baron et al. recommended
a standard deviation of 0.06 mm for the stamping process. We performed a reliability
analysis to calculate the performance variation of the BLDC motor. Table 4 summarizes
the reliability analysis results. Figure 10 shows the probability distributions for the output
torque and torque ripple of BLDC motors.
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Table 3. Probabilistic distribution of the design variables of the BLDC motor.

Parameters Unit Mean Standard Deviation Distribution

Tooth thickness x1 mm 0.5 0.06 Normal

SO width x2 mm 2.18 0.06 Normal

Slot radius x3 mm 4.05 0.06 Normal

Slot depth x4 mm 15.86 0.06 Normal

Tooth width x5 mm 4.19 0.06 Normal

Magnet thickness x6 mm 6 0.06 Normal

Magnet length x7 mm 37.53 0.06 Normal

Table 4. Reliability analysis of the BLDC motor.

Output torque
Mean (N·m) 7.16

Standard deviation 0.49

Torque ripple
Mean (N·m) 3.46

Probability of failure (%) 36.81

Machines 2022, 10, 797 10 of 16 
 

 

Table 3. Probabilistic distribution of the design variables of the BLDC motor. 

Parameters Unit Mean Standard Deviation Distribution 
Tooth thickness 𝑥  mm 0.5 0.06 Normal 

SO width 𝑥  mm 2.18 0.06 Normal 
Slot radius 𝑥  mm 4.05 0.06 Normal 
Slot depth 𝑥  mm 15.86 0.06 Normal 

Tooth width 𝑥  mm 4.19 0.06 Normal 
Magnet thickness 𝑥  mm 6 0.06 Normal 

Magnet length 𝑥  mm 37.53 0.06 Normal 
 

  
(a) (b) 

Figure 10. Probability distributions of (a) output torque and (b) torque ripple of the BLDC motor. 

Table 4. Reliability analysis of the BLDC motor. 

Output torque 
Mean (N∙m) 7.16 

Standard deviation 0.49 

Torque ripple 
Mean (N∙m) 3.46 

Probability of failure (%) 36.81 

4.2. Design Optimization for Maximizing the Output Torque of the BLDC Motor 
We applied various optimization methods to improve the output torque of the BLDC 

motor. We performed a DDO that does not consider the distribution of design variables 
due to the manufacturing uncertainty of BLDC motors. However, DDO has a limit in re-
ducing the performance variation when considering the distribution of each variable. An 
RDO, which can minimize performance variation, was performed to overcome the limita-
tions of DDO. Finally, we performed RBRDO to reduce performance variation and failure 
rate simultaneously. Table 5 summarizes the design variables and spaces of BLDC motors. 

Table 5. Design variables and their bounds. 

Design Variables Unit Design Spaces 
Tooth thickness 𝑥  mm 0.2 < 𝑥  < 0.98 

SO width 𝑥  mm 1.96 < 𝑥  < 2.39 
Slot radius 𝑥  mm 3.65 < 𝑥  < 4.45 
Slot depth 𝑥  mm 11.19 < 𝑥  < 20.56 

Tooth width 𝑥  mm 3.69 < 𝑥  < 4.68 
Magnet thickness 𝑥  mm 3.45 < 𝑥  < 8.35 

Magnet length 𝑥  mm 35.53 < 𝑥  < 39.53 

Figure 10. Probability distributions of (a) output torque and (b) torque ripple of the BLDC motor.

4.2. Design Optimization for Maximizing the Output Torque of the BLDC Motor

We applied various optimization methods to improve the output torque of the BLDC
motor. We performed a DDO that does not consider the distribution of design variables due
to the manufacturing uncertainty of BLDC motors. However, DDO has a limit in reducing
the performance variation when considering the distribution of each variable. An RDO,
which can minimize performance variation, was performed to overcome the limitations
of DDO. Finally, we performed RBRDO to reduce performance variation and failure rate
simultaneously. Table 5 summarizes the design variables and spaces of BLDC motors.

The purpose of the DDO of the BLDC motor is to maximize the output torque. The
constraint conditions of DDO are torque ripple and magnet area, and the change is limited to
+5% of the initial value. Equation (11) shows the formulation of the DDO of the BLDC motor.

Find xi(i = 1, · · · , 7),

Maximize Tout(xi),

Subject to g1(xi) ≤ 1.05 Tripp,initial ,

g2(xi) ≤ 1.05 Ainitial .

(11)
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xi represents the seven design variables that determine the shape of the motor, Tout
is a function of output torque, and g1 and g2 represent the functions of torque ripple and
magnet area, respectively.

Table 5. Design variables and their bounds.

Design Variables Unit Design Spaces

Tooth thickness x1 mm 0.2 < x1 < 0.98

SO width x2 mm 1.96 < x2 < 2.39

Slot radius x3 mm 3.65 < x3 < 4.45

Slot depth x4 mm 11.19 < x4 < 20.56

Tooth width x5 mm 3.69 < x5 < 4.68

Magnet thickness x6 mm 3.45 < x6 < 8.35

Magnet length x7 mm 35.53 < x7 < 39.53

RDO of the BLDC motor is a multi-objective optimization that can minimize perfor-
mance variation while maximizing performance by considering the distribution of design
variables due to manufacturing uncertainty. The first and second objective functions are
the maximization and minimization of the mean value of the output torque, respectively.
The constraint conditions are the same as the formulation of the DDO. Equation (12) shows
the RDO problem formulation.

Find xi(i = 1, · · · , 7),

Maximize F =
(

w1
µ f
µ f 0

+ w2
σf 0
σf

)
,

Subject to g1(xi) ≤ 1.05 Tripp,initial ,

g2(xi) ≤ 1.05 Ainitial .

(12)

F, µ f , and σf represent the mean and standard deviation, mean value, and standard
deviation of the output torque, respectively. µ f 0 and σf 0 are initial values of the mean and
standard deviation of the output torque, respectively. w1 and w2 are weight factors of 0.5
and 1, respectively.

Equation (13) is the formula for the problem of RBRDO, which increases the robust-
ness of the performance and reduces the failure rate by considering the manufacturing
uncertainty of the BLDC motor. Figure 11 shows the RBRDO flowchart. The objective
function is the same as the formulation of the RDO. The constraint condition is the failure
rate; 99% reliability is achieved within the +5% change rate compared to the initial torque
ripple. In this study, we used the system reliability optimization method for the RBRDO of
the BLDC motor. This method is suitable when there are various constraints [32].

Find xi(i = 1, · · · , 7),

Maximize F =
(

w1
µ f
µ f 0

+ w2
σf 0
σf

)
,

Subject to Pr
(

g1(xi) ≤ 1.05 Tripp,initial

)
≥ 0.99,

g2(xi) ≤ 1.05 Ainitial .

(13)
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5. Results and Discussion
5.1. RBRDO Results

Table 6 shows the changes in design variables and performance before and after
RBRDO. Figure 12 shows the superiority of RBRDO by comparing the probability dis-
tribution results of the output torque and torque ripple of the initial BLDC motor and
RBRDO. Consequently, the mean value of the output torque increased by 9% compared
to the initial design to 7.79 N·m. The standard deviation of the output torque decreased
by 45.8% compared to the initial design to 0.26, resulting in a robust design. The mean
value of torque ripple decreased by 51.7% compared to the initial design to 1.67 N·m. The
failure rate decreased by 99.2% compared to the initial design to 0.28%. The magnet area
was 151.1 mm2, which satisfied the constraint condition.

Table 6. Comparison of the design variables and performances in the initial design and RBRDO.

Design Variables and Performance Initial Design RBRDO Rate of Change (%)

Tooth thickness (mm) 0.5 0.46 −8.0
SO width (mm) 2.18 2.37 +8.7

Slot radius (mm) 4.05 3.78 −6.7
Slot depth (mm) 15.86 11.2 −29.5

Tooth width (mm) 4.19 3.70 −11.9
Magnet thickness (mm) 6 5 −16.7

Magnet length (mm) 37.53 39.52 +5.3

Output torque Mean (N·m) 7.16 7.79 +8.8
Standard deviation 0.49 0.26 −46.9

Torque ripple Mean (N·m) 3.46 1.67 −51.7
Probability of failure (%) 36.8 0.28 −99.2

Magnet area (mm2) 152.5 151.1 −0.92
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5.2. Comparison of Results of RBRDO with Those of DDO and RDO

In this study, we performed RBRDO to maximize the output torque and reduce the
performance variation and failure rate simultaneously, considering the manufacturing
uncertainty of the BLDC motor. We compared the design optimization results of RBRDO
with those of the DDO and RDO methods to confirm that RBRDO provides better reliability
and robustness than DDO or RDO. Compared to DDO, RBRDO considers uncertainty. Thus,
it minimizes the standard deviation of performance to improve robustness. In addition,
RBRDO can reduce the failure rate by improving reliability.

Table 7 summarizes each optimization result’s output torque, torque ripple, and failure
rate. Figure 13 shows the probability distributions of output torque and torque ripple as
the result of reliability analysis for each optimization method. In the case of DDO, the
average output torque was 8.49 N·m, and the optimal solution with the highest value was
derived. However, considering the distribution of design variables, the standard deviation
of the output torque was 0.54, which cannot reduce the performance variation that occurs
during mass production. The torque ripple failure rate was 33.0%. In the case of RDO, the
mean value of the output torque was 8.29 N·m, and the standard deviation was reduced by
50% compared to DDO, resulting in a robust design for output performance. However, the
failure rate of 10.1% occurred because the constraint condition for the failure rate was not
considered. In the case of RBRDO, the mean value of output torque was 7.79 N·m, and the
standard deviation was 0.26. Compared to the initial design, it was possible to increase
the output torque and reduce the variation of output performance. In addition, the torque
ripple was 1.67 N·m, and the failure rate was the lowest at 0.28%.

Table 7. Comparison of DDO, RDO, and RBRDO results.

Optimization Method

DDO RDO RBRDO

Output torque (N·m)
Mean 8.49 8.28 7.79

Standard deviation 0.54 0.24 0.26

Torque ripple (N·m)
Mean 3.35 2.63 1.67

Probability of failure (%) 33.0 10.1 0.28

Magnet area (mm2) 160.0 153.2 151.1
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To compare the vibration responses of the initial BLDC motor and RBRDO model,
EM–structural coupled analysis was performed. Figure 14 shows the frequency response
graph of the vibration analysis results. It is a response to the EM force. The fundamental
frequency of 133.3 Hz increased by 9% from 2.18 m/s2 to 2.38 m/s2 due to the energy
density increase. However, the response at 400 Hz and the frequency component of torque
ripple decreased (by 18.2%) from 0.11 m/s2 to 0.09 m/s2. We used the root mean square
(RMS) method to compare the magnitude of the vibration response from 0 to 1000 Hz. The
RMS value of the vibration response of the initial BLDC motor was 0.748. The RMS value
of the vibration response of the RBRDO model increased by 2% to 0.763. However, since
the output torque increased by 9% with RBRDO, we could confirm that a higher increase is
possible in the output torque than the magnitude of the vibration response.
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6. Conclusions

In this paper, we proposed RBRDO to improve the output torque of the BLDC motor
and simultaneously reduce the failure rate and output torque standard deviation caused by
uncertainty due to manufacturing tolerance. Using the EM–structural coupled analysis,
we calculated the output torque and torque ripple, when the BLDC motor rotated at the
rated speed, and analyzed the vibration characteristics. We selected the tooth thickness,
SO width, slot radius, slot depth, tooth width, magnet thickness, and magnet length as the
design variables related to the shape of the stator and rotor, which affected the motor’s
output performance, to perform RBRDO. We performed a reliability analysis of the BLDC
motor using the output torque and torque ripple calculated through EM analysis. We
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defined RBRDO as a multi-objective function to maximize the output torque and minimize
the standard deviation of the output torque. We set the constraint condition to have a
reliability of 99% within a rate of change of +5% compared to the initial torque ripple.

As a result of RBRDO, the optimal design of the mean value of output torque was
7.79 N·m, which increased by 8.8% compared to the initial BLDC motor, and the standard
deviation decreased (by 46.9%) to 0.26. The mean value of torque ripple was reduced
by 51.7% compared to the initial design to 1.67 N·m, and the failure rate decreased by
99.2%. We performed DDO and RDO to confirm that RBRDO showed better robustness
and reliability, and all results were compared through reliability analysis considering the
distribution of design variables. Comparing the results of RBRDO and DDO, we confirmed
that the standard deviation of the output torque, which indicates the performance variation
of the motor, was reduced by 51.9% through the improvement of robustness. Using RBRDO,
the failure rate decreased by 97.2% through improved reliability. Therefore, the RBRDO of
the BLDC motor maximizes the output torque while reducing failure rate and performance
variation caused by manufacturing uncertainty. In addition, comparing the vibration
response of the initial BLDC motor and the RBRDO model revealed that when the output
torque increased by 9%, the vibration response increased by 2%; this confirmed that RBRDO
could increase the energy density without affecting the vibration response.

The proposed procedure proved to be an effective design method for improving
the output performance of a motor while considering both reliability and robustness.
However, additional research should be conducted on the multi-objective reliability-based
robust design optimization to reduce vibration while improving the output performance
of the motor. The multi-objective reliability-based robust design optimization increases
the computational cost exponentially. As a future work, the authors intend to develop a
new solution for a multi-purpose, reliability-based robust design for improving the output
performance of the motor and reducing vibration while considering the computational cost.
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