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Abstract: Spreader beams used in lifting operations undergo a purely compressive load to spread
apart the ends of a sling which enables large payloads to be lifted from a single point, such as a crane
hook, without damage. A modular spreader beam can be made using subcomponents of different
standard sizes to create a spreader beam of any length, making them more versatile and cost-effective
than non-modular spreader beams. However, while the manual calculation and selection of an
optimum number of subsections for a single beam is straightforward, the process for the multiple
range of spreader beam is very challenging and is labour-intensive in a lifting company. The main
aim of this study was to develop an automated system for determining the optimal configuration of
the modular spreader beam which leads to increasing the efficiency of the lifting company through
saving the associated labour and time costs. The automated system is underpinned by designing an
algorithm based on a dynamic programming optimisation search to test every possible configuration
and return the optimal configuration. Hence, the main novelty in this study is the development of a
computer-based system to automate the selection process of the modular beam’s subsections, which
generates an optimal package immediately to create different lengths with the fewest sections needed
for a lifting operation. Eventually, the process of generating quotation for clients can be significantly
accelerated while the risk of human errors can be also eliminated.

Keywords: modular spreader beam; optimization; computational approach; algorithm; costing

1. Introduction

Modular spreader beams are the staple products of lifting companies such as Durham
Lifting Ltd. [1], which is located in England and actively supports the local industries by
providing heavy-duty lifting operations. Durham Lifting designs and supplies modular
spreader beams; the respective product range under the brand MultiSec will be the key
focus of this paper [2]. A spreader beam is a simple device consisting of a long bar that
holds two slings apart. When a lifting load is applied, the spreader beam encounters pure
compressive force while the slings undergo tensile force, as displayed in Figure 1. Assuming
that the load’s centre of gravity is central to the spreader beam and the two header slings
are symmetrical, the slings are then subjected to the same tensile force. Resolving for each
side, the vertical force on one side will be half the total weight of the beam and what it is
carrying. This can be converted into the sling tension to determine the compressive force in
the beam [3]. This is equal to the total compression as the beam is in equilibrium, where the
compressive force on the other end of the beam will be equal and opposite [4]. According
to Eurocode 3 BS EN 1993-1-1:2005, the stress resulting from the compressive force must be
two times below the yield stress of the material [5], which in this case is steel grade S355,
with the yield strength of 355 MPa [6]. The resulting stress value can be used to determine
the appropriate spreader beam size for safe lifting operation.
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Figure 1. A schematic diagram of a spreader beam used in a lifting operation, indicating the con-
version of lifting loads (shown by the vertical red arrows) into compressive forces (shown by the 
horizontal blue arrows) in the beam and tensile forces in the slings. 

The spreader beams are required to be operated with the load's centre of gravity di-
rectly in line with the crane hook. This ensures that the lift is balanced and stable. The size 
of items being lifted can vary widely, therefore beams of various lengths are required. 
Using modular spreader beams allows the manufacturer to create the desired total beam 
length from multiple sections with smaller lengths using prefabricated parts. This offers 
flexibility, meaning that customers can have various lengths of beams to cope with differ-
ent payloads. Figure 2 shows a sample of the MultiSec range assembled by Durham Lift-
ing to comply with a certain length as per a client’s payload size which is composed of 
four strut sections and two fixed-size end units holding shackles and drop links [2]. 

Figure 1. A schematic diagram of a spreader beam used in a lifting operation, indicating the
conversion of lifting loads (shown by the vertical red arrows) into compressive forces (shown by the
horizontal blue arrows) in the beam and tensile forces in the slings.

The spreader beams are required to be operated with the load’s centre of gravity
directly in line with the crane hook. This ensures that the lift is balanced and stable. The
size of items being lifted can vary widely, therefore beams of various lengths are required.
Using modular spreader beams allows the manufacturer to create the desired total beam
length from multiple sections with smaller lengths using prefabricated parts. This offers
flexibility, meaning that customers can have various lengths of beams to cope with different
payloads. Figure 2 shows a sample of the MultiSec range assembled by Durham Lifting to
comply with a certain length as per a client’s payload size which is composed of four strut
sections and two fixed-size end units holding shackles and drop links [2].

The flexibility provided by the MultiSec range is more cost-effective for the customer
as this is now an off-the-shelf product and does not need to be bespoke. While it is essential
that appropriate beam lengths are supplied to meet the customer’s requirements, this flexible
product also causes less manufacturing cost and time for the seller. The main issue, however, is
dividing the total required length into smaller sizes and determining the optimal arrangement
of smaller beam sections to be used on demand. Furthermore, in order to supply a set of beam
sections to the customer that can be reconfigured to supply any required length, an optimal
approach is essential to determine the minimum number of beam sections, generating all of
the required lengths. The lower the total number of sections supplied to create this package,
the better for both the customer and the company as it would be cheaper for the customer
while the manufacturer also incurs less labour cost and time.

In the absence of an automated system to determine the optimal arrangement of the
required MultiSec and number of beam sections, the manual process takes a significant
amount of time. Furthermore, the risk of making a mistake in the manual process cannot
be ignored; therefore, the time taken from checking to approval is considerably long. This
eventually causes delays in generating quotes for customers.

Therefore, a tool which enables automation of this process and calculates these sizes
instantly is essential. This tool, which has now been developed and has led to spending
much less time, is a programme to divide the modular spreader beam’s total length into
minimum required number of subsections in an optimal way. Hence, the customer can
receive the quotation much faster, which also leads to more conversions from enquiries to
sales. Furthermore, admin staff in the sales team who may not be engineers will also be
able to calculate the required beam configuration using the automated system, which is
advantageous as it means that highly technical staff can be less involved.
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The flexibility provided by the MultiSec range is more cost-effective for the customer 
as this is now an off-the-shelf product and does not need to be bespoke. While it is essen-
tial that appropriate beam lengths are supplied to meet the customer’s requirements, this 
flexible product also causes less manufacturing cost and time for the seller. The main is-
sue, however, is dividing the total required length into smaller sizes and determining the 
optimal arrangement of smaller beam sections to be used on demand. Furthermore, in 
order to supply a set of beam sections to the customer that can be reconfigured to supply 
any required length, an optimal approach is essential to determine the minimum number 
of beam sections, generating all of the required lengths. The lower the total number of 
sections supplied to create this package, the better for both the customer and the company 

Figure 2. (a) A sample MultiSec spreader beam used in the Durham Lifting company; (b) the same
beam in a typical lifting operation [2].

The tool to calculate the optimal subsections to create the full beam assembly uses a
custom-made optimization algorithm to determine which configuration of sections will use
the lowest number of sections to create an assembly of the desired length. The automated
system can perform the calculation repeatedly for a wide range of desired total lengths.
The manual process requires at least one engineer to spend more than one hour to work
out the optimal configuration in addition to considerable time required for rechecking
and approval, while the automated system reduces this process time to a few seconds and
eliminates the risk of human errors. The company could then sell or hire out their modular
spreader beams as a set that can be used to create several lengths, meaning the customer
need only purchase or hire one package and can reconfigure the modular spreader beam to
create as many different lengths as needed depending on the payload dimensions.

In this paper, the aim is to develop an automated system using dynamic programming
to improve the efficiency in an engineering business. The expectation is that the programme
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automates engineering calculations and creates an activity-based costing system to deliver
a quote accurately and quickly. It would then enable the company to offer a price for
the supply of a system instantly which could be carried out even by a non-expert sales
staff member. The way this process is developed is discussed along with the advantages
of such a system. The next section provides a research background on costing systems
and the techniques to improve these systems, which is followed by explaining the overall
structure of the developed algorithm where the input parameter is the range of total lengths,
and the final output is the optimal number of required subassembly sections. Finally, the
effectiveness of the algorithm is demonstrated.

2. Literature Review of the Approach

The first step needed to be taken was to explore if there is any existing explicit
approach to solve this problem. A similar issue to this challenge is calculating the coins
needed to give change, which could be set as the starting point. There are two methods
commonly used for this issue: greedy algorithm, and dynamic programming [7,8]. The
greedy algorithm is a search algorithm that works from the “top-down”, meaning that the
algorithm searches through possible solutions and only considers the current selection,
disregarding other possible solutions. This is carried out from the “top-down” from largest
to smallest value [7,9]. One of the main advantages of a greedy algorithm is that it is
effective in finding an approximate solution to complex combinatorics problems with a
computation time that increases linearly with the number of combinations. Hence, it could
accomplish the solution through very few steps, much quicker than other methods [10]. The
main issue of the greedy search is that although it will find an appropriate approximation
of a combinatorics problem, this may not always be the best solution, as the algorithm
only works locally on the current problem which means it is likely to be confined in local
extremums. Although the algorithm is simple, it might not produce the absolute optimal
solution to a combinatorics problem and should only be used to find an approximation [11].

Dynamic programming is another mathematical optimization method appropriate for
solving the current problem; it was created in the 1950s by Richard Bellman [12]. Dynamic
programming has many applications across all areas of engineering, as well as other fields
such as economics [13]. The method is used to solve complex optimization problems
by breaking these problems into smaller sub-problems and using recursion to test each
subproblem [7,12]. However, dynamic programming is slightly different for using only
plain recursion [14]. Recursion can also be used for optimization, and it is where a large
problem is solved by solving several smaller sub-problems related to the larger overall
problem [15]. A recursive function is a function that calls itself, meaning many layered
loops [16]. In an optimization problem, this will allow a recursive function to check all
possible outcomes to then determine the best solution. The issue with this approach is that
the computation time increases exponentially with an increase in combinations. This can
result in a high run time [17]. Furthermore, using recursion to solve combinatorics problems
can result in the large number of iterative processes, which is computationally expensive.
An example of this matter is to calculate the Nth Fibonacci number using recursion, which
has a computation time that increases exponentially as N increases linearly. Therefore,
recursion is only suitable when the number of combinations is low [18].

Dynamic programming resolves this issue as it improves the recursion algorithm in a
way that reduces the computational time, while retaining the same level of accuracy [19].
Whilst optimizing a combinatorics problem, recursion will repeat the same calculation many
times, which is slow. A dynamic programming approach will perform each calculation
once and store the output if the calculation needs to be performed again. Hence, instead of
recalculating the answer, the stored output is taken, which significantly increases the speed
and efficiency of the program [14].

As a preliminary proof that dynamic programming and recursion is advantageous over
a greedy algorithm, a trial on the MultiSec range selection was carried out, as explained in
the following. Assume that desired beam length is 1500 mm and it should be composed of
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sections with the following available lengths: 1000 mm, 750 mm, and 250 mm. A recursive
algorithm would start with the largest section and check if it is suitable, it would then
try to add more until a solution is found [11]. The greedy algorithm would select the
1000 mm section as it is under the 1500 mm total length and then try to add sections to
it. Another 1000 mm section could not be added as this would make the total length now
2000 mm which exceeds the required length, so the next smaller section is tried. A 750 mm
section would be also too large as the total would become 1750 mm which is still larger
than 1500 mm. The 250 mm section would then be tried which is suitable as the total length
is now 1250 mm, which is under 1500 mm. This is then repeated, and, as the larger two
sections are also too large, another 250 mm section is selected. The total length is now
1500 mm, comprising sections of length 1000 mm, 250 mm, and 250 mm, three sections
in total. This is, however, not optimized to select the minimum number of sections. The
optimal solution is a total length of 1500 mm comprising sections of length 750 mm and
750 mm, two sections in total. This is where the greedy algorithm fails. If the same problem
was approached with dynamic programming or recursion, every possible solution would
be calculated, leading to attainment of the true optimal solution.

3. Algorithm: The Optimal Selection Process of Subassembly Sections

The purpose of this section is to present the overall structure of the algorithm de-
veloped for automating the optimal selection process, as shown in Figure 3. The input
parameter is the required range of total lengths, and the final output is the optimal number
of required subassembly sections. Initially, the input parameters are checked to determine
if it is within an appropriate range; if so, the end unit lengths are subtracted from the total
length. Otherwise, the input parameters are required to be regenerated.

Subsequently, the 2D arrays are created to store the lengths of subassembly sections.
These 2D arrays may have to be recreated in accordance with the change of array size,
when the required number of subassembly sections is updated. It is noted that the array is
set up in such a way that (0, current length) until (0, maximum).

Once the 2D arrays are set up, there will be several looping processes. The process
iteratively calculates the sections needed for each length between minimum length and
total length, incrementing at the step size that is defined by the length of subassembly
sections. This is performed with a for loop that loops (total – minimum)/step times, each
time storing the values in a 2D array with each iteration along the first dimension and the
section sizes in the second. This is then transposed into a 2D array, storing iteration number
in the first dimension and quantities of each section size in an appropriate position in the
second dimension. Finally, the maximum value for each specific section size is determined
and added to a new array. This is repeated for every section size. This new array contains
the quantity of sections needed in the position that correlates to the defined step size.

The program was originally coded using Python and was then translated into VBA
(Visual Basic for Applications) in Microsoft Excel. The programme is easy to use, where
a non-expert sales staff member could insert the input, execute the program, and finally
obtain the output in a few seconds.
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4. Results and Discussion

The code was developed with the approach of dynamic programming, and the concept
is depicted in Figure 3. The input parameter is the required range of total lengths, and
the final output is the lowest number of required subassembly sections. Considering
a particular total length as an input parameter L, the L is checked to determine if it is
appropriate; if not, the L needs to be reset for further processing. With appropriate value
of L, the first step is to subtract the length of both end units of subassembly sections. It is
noted that the end unit lengths have a fixed value in relation to different MultiSec range.
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The resulting length LR will then be used as a targeted length to determine the optimal
combination of subassembly lengths. With the resulting length LR, a 2D array dataset of
related subassembly lengths is generated. Subsequently, the LR is checked if LR = L [0][m],
which is to check if the LR can be fitted with the subassembly length L [0][m]. If so, the
value m is updated; otherwise, it proceeds to the next step for further checking, where
the checking conditions are LR > L [0][m] and then LR ≤ 1 + L[m][n − 1]. Essentially, the
aforementioned process is carried out continuously until the lowest number of sections
of subassembly lengths is generated. The looping process is carried out repeatedly for a
range of LR values which cover the range of specified input total lengths. In this sense, the
lowest number of sections of subassembly lengths that cater for a range of LR values can
be generated. This set of the lowest numbers of sections is then reorganized so that the
maximum number of each subassembly section can be determined. This set of maximum
numbers indicates the optimal number of subassembly sections that can cover the specified
range of total lengths.

An example of results for the required number of subassembly sections is shown in
Table 1. In this example, the expectation is to determine the lowest number of subassembly
sections for the required MultiSec range from 1500 mm to 8000 mm. It is noted that 750 mm
is the end unit length of the subassembly sections, which is required from Multi 110 to
Multi 250 as a structural constraint. From Multi 13 to Multi 75, the end units of 500 mm
are used as a structural constraint. Referring to Table 1, the 1500 mm MultiSec can be
constructed by two subassembly sections, and 2000 mm MultiSec can be constructed by
two subassembly sections of 750 mm and one subassembly section of 500 mm.

Table 1. Number of subassembly sections in relation to the total length of MultiSec.

Section Size 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000

750 2 2 2 2 2 2 2 2 2 2 2 2 2 2

500 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1000 0 0 1 1 0 0 1 1 0 0 1 1 0 0

2000 0 0 0 0 1 1 1 1 0 0 0 0 0 0

4000 0 0 0 0 0 0 0 0 1 1 1 1 0 0

6000 0 0 0 0 0 0 0 0 0 0 0 0 1 1

The algorithm operates in a similar manner for the remainder of the MultiSec range
from 2500 mm to 8000 mm. The underlying idea is that by starting with two subassembly
sections of 750 mm as the end units, the algorithm searches for the largest possible sub-
assembly section length to be added up until the required length of MultiSec is achieved.
Finally, the maximum values of each row will be taken as optimal values of subassembly
sections. As such, for the MultiSec range of 1500 mm to 8000 mm, the respective subassem-
bly sections are two set of 750 mm units, one set of 500 mm unit, one set of 1000 mm unit,
one set of 2000 mm unit, one set of 4000 mm unit, and one set of 6000 mm unit.

5. Conclusions

The main contribution of this paper was to establish an automated process of determin-
ing the optimal values of subassembly sections of MultiSec range used in heavy-duty lifting
machines. The underlying idea was to implement a dynamic search optimization program,
which involved searching the optimal combination of the fewest subassembly sections to
be assembled as a range of specified total lengths. It was somewhat similar to solving a
max–min problem. Without the automated system, the time taken to work out the optimal
combination of subassembly sections was considerably significant. The effectiveness of the
programme was demonstrated, where the optimal number of subassembly sections can be
now determined given a specified range of total lengths. This automated process can be
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incorporated into the costing process. Eventually, the time taken from the customer placing
an order to provision of costing can also be shortened considerably, to a few minutes.
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