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Abstract: Degradation of the ignition system can result in startup failure in an aircraft’s auxiliary
power unit. In this paper, a novel acoustics-based solution that can enable condition monitoring
of an APU ignition system was proposed. In order to support the implementation of this research
study, the experimental data set from Cranfield University’s Boeing 737-400 aircraft was utilized. The
overall execution of the approach comprised background noise suppression, estimation of the spark
repetition frequency and its fluctuation, spark event segmentation, and feature extraction, in order to
monitor the state of the ignition system. The methodology successfully demonstrated the usefulness
of the approach in terms of detecting inconsistencies in the behavior of the ignition exciter, as well as
detecting trends in the degradation of spark acoustic characteristics. The identified features proved
to be robust against non-stationary background noise, and were also found to be independent of the
acoustic path between the igniter and microphone locations, qualifying an acoustics-based approach
to be practically viable.

Keywords: ignition system; envelope detection; envelope spectrum; acoustic feature extraction; data
segmentation; background noise reduction

1. Introduction

The auxiliary power unit (APU) is one of the key systems in aircraft. Its function
is to supply electrical and pneumatic power during ground operation, and in the event
of in-flight emergencies. An APU is a gas-turbine engine that is composed of multiple
integrated sub-systems that are prone to degradation during operation. The APU has been
reported to be one of the major drivers of aircraft maintenance [1], with an associated
$4 billion worth of maintenance, repair, and overhaul costs reported within a single year
(2018). These costs and activities increase further when operations are disrupted as a result
of unscheduled maintenance. Around 10% of the time, startup failure has been reported to
be the cause of such disruptions [2]. Some possible causes of startup failure can result from
degradation of the starter motor [3], or anomalies in the fuel or ignition system [4].

An APU’s ignition system is responsible for generating a series of sparks to initiate the
combustion process. The ignition system comprises an exciter that provides high-voltage
signals to an igniter, and is activated by the APU controller during predefined ranges of
rotational speeds. Any degradation/failure in the ignition system leads to weak and/or
inconsistent sparks, which can delay the combustion process to such an extent that the
APU does not reach the desired level of acceleration required for a successful startup.
Therefore, monitoring of the ignition system is desirable so that any deviation from the
designed characteristics can be detected in the early stages of component degradation;
thus, monitoring can support proactive maintenance and prevent APU failures. The
industry is proactively working towards the development of innovative strategies that
can enable reductions in maintenance costs [5]. For legacy systems, developing a means
for ignition system monitoring is challenging due to the lack of technical data [6] from
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the APU built-in test equipment (BITE). Furthermore, retrofitting any additional intrusive
sensors will require hardware modifications, and may also impose additional testing and
certification requirements.

A novel approach to support condition monitoring can be implemented by incor-
porating microphones that are installed in the near periphery of APU key sub-systems.
This is a convenient, non-intrusive, readily deployable approach. The microphones do
not interfere with the safety and performance of the machines, and therefore should not
require extensive efforts for certification. For an APU ignition system, continuous analysis
of the acoustics that are associated with spark discharge may provide useful information
about the health of the system. During a spark discharge, an ionization process takes place
that creates a channel of ionized gas between the electrodes; this gas expands as a result of
intense Joule heating. The process radiates an intense shock wave that transforms into an
acoustic pressure pulse that propagates into the surrounding medium at the local speed
of sound [7,8]. This research aims to conduct a feasibility study on the implementation of
spark acoustic characteristics to support an APU ignition system diagnostics solution.

1.1. Boeing 737-400 APU

In order to support successful implementation of the research addressed in this paper,
experimental testing was conducted on an APU in situ. Cranfield University’s ground
demonstrator Boeing 737 (B737) aircraft was utilized to support the experimentation. As
illustrated in Figure 1a, the reference APU is shielded by a fire enclosure and is installed
inside the tail section of the aircraft. As per the specifications provided in the aircraft
maintenance manual (AMM), the APU is a single shaft gas-turbine engine that provides
auxiliary power (electrical and pneumatic) to the aircraft using an electrical generator and
pneumatic flow from the load compressor (LC) (see Figure 1b). The power section consists
of a centrifugal compressor, reverse annular flow combustor, and a radial turbine. The
compressor and turbine are mounted on the same shaft, and rotate at a constant (63,830)
rpm throughout the APU operating modes. The APU pneumatic system consists of a
load compressor, inlet guide vanes (IGV), surge control valve (SCV), and bleed valve
(BV). The APU draws air from the atmosphere through an inlet door at the side of the
fuselage, which remains open only during operation. The overall operation of the APU is
controlled by a full authority digital engine controller (FADEC), which is installed in the
cargo compartment. One of our previous studies [9] reported further on the details of the
reference APU’s operation and parameters. Herein, our focus is on the startup operation of
the APU.

The APU’s startup system consists of a starter motor assembly and ignition system
(ignition exciter, igniter, and igniter lead). Aircraft DC power is required to start the APU,
which can either be provided externally or by using onboard batteries. This power is
utilized by the starter motor to spool up the APU so that the fuel and air mixture reaches
the combustor. As per the AMM, from 7–95% of the rated rpm (7768–60,638 rpm), the
ignition system is energized using the same DC power to produce a series of sparks that
initiates combustion. In the case of a fault or degradation in any of the components of
the ignition system, the combustion process will not initiate. Under such conditions, the
FADEC terminates the startup sequence, and a ‘No Flame’ error is displayed.



Machines 2022, 10, 822 3 of 19Machines 2022, 10, x FOR PEER REVIEW 3 of 19 
 

 

 

Figure 1. The APU of a Boeing 737-400 (a) aircraft tail section and APU compartment; (b) compo-

nents of the APU. 

The APU’s startup system consists of a starter motor assembly and ignition system 

(ignition exciter, igniter, and igniter lead). Aircraft DC power is required to start the APU, 

which can either be provided externally or by using onboard batteries. This power is uti-

lized by the starter motor to spool up the APU so that the fuel and air mixture reaches the 

combustor. As per the AMM, from 7–95% of the rated rpm (7768–60,638 rpm), the ignition 

system is energized using the same DC power to produce a series of sparks that initiates 

combustion. In the case of a fault or degradation in any of the components of the ignition 

system, the combustion process will not initiate. Under such conditions, the FADEC ter-

minates the startup sequence, and a ‘No Flame’ error is displayed. 

The most common type of degradation that is associated with the igniters stems from 

their tips being exposed to water or ice, as well as due to their intrinsic wear and tear. As 

per the AMM, as illustrated in Figure 2, the wear can appear as erosion or damage to the 

outer surface. This can increase the gap between the electrodes to such an extent that the 

supplied voltage is unable to produce a spark, consequently leading to the loss of sparks 

during the startup sequence. On the other hand, a faulty ignition exciter will not produce 

a series of sparks at the desired frequency, or may not generate the desired voltage to 

produce a spark. Furthermore, a degraded igniter cable can also lead to a reduction in the 

amount of electrical energy that is supplied to the igniter, which can result in similar ef-

fects. 

Figure 1. The APU of a Boeing 737-400 (a) aircraft tail section and APU compartment; (b) components
of the APU.

The most common type of degradation that is associated with the igniters stems from
their tips being exposed to water or ice, as well as due to their intrinsic wear and tear. As
per the AMM, as illustrated in Figure 2, the wear can appear as erosion or damage to the
outer surface. This can increase the gap between the electrodes to such an extent that the
supplied voltage is unable to produce a spark, consequently leading to the loss of sparks
during the startup sequence. On the other hand, a faulty ignition exciter will not produce a
series of sparks at the desired frequency, or may not generate the desired voltage to produce
a spark. Furthermore, a degraded igniter cable can also lead to a reduction in the amount
of electrical energy that is supplied to the igniter, which can result in similar effects.
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1.2. Literature Review

Condition monitoring of the ignition system can be performed by monitoring the
high-energy voltage pulses at the output of the exciter [11]. However, the proposed analog
circuitry needs to be electrically coupled with the ignition exciter, and should incorporate a
safety mechanism while handling the high voltages. A similar solution was also reported [12]
which determines the time period required for the current in a capacitive discharge ignition
system to decay to a zero-ampere level, as an indicator of system health. In [13], it was
suggested to use the accumulated number of spark counts as an indication of the wear on
an igniter. However, this approach makes use of the commanded number of sparks from the
engine controller, and does not utilize the actual number of sparks that may be taking place
for more accurate results. A different methodology was presented in [14], which proposed
the utilization of a spark detector and a pressure transducer to detect faults in the igniter.
For a degraded igniter, the spark gap increases to such an extent that sparks do not take
place at high ambient pressures. Such a solution requires intrusive sensors with associated
hardware complexities that can withstand the harsh environment of the combustor. The
safety measures recommended by [15] can ensure the reliability of the spark plugs in a gas
turbine, but they require human involvement, and the procedures cannot be automated.

From the perspective of signal processing, the impulsive nature of the spark signal
makes it comparable to the signals that are generated by faulty gears [16] and bearings [17–21].
However, during such studies, vibration sensors are used, and the foremost aim is to
detect such signals without further characterization of the detected time domain signal; this
could be used as a potential metric for monitoring the state of degradation. The reported
acoustics-based condition monitoring applications are limited, and the experimentation
is generally conducted in controlled environments. The research reported in [22] on
bearings is among such examples. The applications where microphones have been used
for impulsive sound detection are dissimilar to the scope of this paper (for example, for
gunshot sound detection [23], detection of partial discharges on electrical transmission
lines [24], and direction-finding applications [25]), but the underlying methodologies can be
modified for the current application. The study conducted by [26] offers useful insight into
spark characteristics, but the methodology used an elaborate set of sensing mechanisms
that make it unsuitable for online condition monitoring.

The electrical and acoustic characteristics of spark discharge have been greatly studied
by the research community. A study conducted by [27] extensively analyzed the time
domain and frequency domain characteristics of acoustic radiation from electrical spark
discharge, and related the time domain signal with N-wave acoustic pressure waves. A
study by [28] investigated the directional characteristics of sparks, and found that the
angular position of the microphone affects the widths and peak sound pressures of the
received pulses. The authors in [29] observed the acoustic characteristics of lighting
current discharge as a function of peak values of discharge currents. Spark characteristics
have also been studied for enabling their utilization in studying acoustic phenomena on
scale models [7]. The research by [30] focused on the electrical characteristics of sparks,
and correlated them to variations in the capacitance, voltage, and spark gap. The above
experiments were conducted in controlled environments using high sampling rates so
that each acoustic pulse was clearly visible without corruption from background noise,
multi-path reflections, and distortions due to low temporal resolutions. For an aircraft
APU, such conditions cannot be achieved because of the presence of background noise
from APU operation, as well as from multi-path effects caused by the acoustically reflecting
aircraft surfaces around it. The requirement of a very high sampling rate for acoustic
data acquisition cannot be satisfied, as it demands more complex hardware which is
incompatible for onboard applications.

1.3. Scope of Research

In light of the aforementioned literature, there exists a gap in knowledge regarding
the investigation of spark acoustic characteristics for online condition monitoring. The
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research addressed in this paper is dedicated to the evaluation of ignition system spark
acoustic characteristics that can be implemented to support an ignition system diagnostics
solution. The overall strategy involves the collection of data from microphones installed in
the periphery of the APU sub-systems, and the exploration of features that can enable the
conversion of noise into meaningful information for condition monitoring. The outcome
of this research suggests that a well-placed microphone can capture certain characteristics
of the sparking sound, which can potentially be employed to support an ignition system
fault diagnostics solution. The paper is organized as follows: Section 2 describes the
experimental setup utilized for this study; Section 3 explains the analyses that were carried
out on the acquired data; and Section 4 presents the results.

2. Experimental Data Collection

For this study, experimental data were acquired from Cranfield University’s Boeing
737-400 aircraft APU. Multiple PCB Piezotronics 130F20 1

4 inch IEPE microphones were
installed around the APU, as shown in Figure 3a. The microphones had a sensitivity of
45 mV/Pa, and a flat frequency response in the 20 Hz–20 kHz range. They were integrated
with NI-DAQ using NI-9234 modules which sampled the acoustic data at 51.2 kHz for
each channel. The sensitivity of the selected microphones and voltage limit of ±5 V of
the NI-9234 modules allowed noise data acquisition with peak noise levels up to 111 Pa
or 134 dB. Six of the nine microphones were placed inside the fire enclosure, two were
installed outside but inside the APU compartment, while one microphone (shown as FF
in Figure 3) was placed 10 m away in the far-field of the APU exhaust. Initially, vibration
sensors were also considered for this study, but it was found that they were unable to
detect any sparks, and were therefore excluded from the detailed study. The low energy
produced by sparks is unlikely to induce considerable vibrations in the APU structure, and
thus cannot be picked up by vibration sensors.
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Initial Analysis and Data Preparation

The acoustic data were acquired for APU startups on eight different occasions (rep-
resented as a day for the purposes of analysis demonstration), out of which six startups
utilized the internal aircraft battery, while the remaining startups used external ground
power. On six of these occasions, the aircraft was parked on a taxiway, while the other two
experiments were conducted inside a partially enclosed hangar near the runway. Initially,
the acoustic data were manually analyzed in order to identify the microphone locations
where the spark noise was clear and remained audible for longer durations as the APU
spooled up and the background noise increased. In the far-field of the APU, the spark
signal was found to degrade sharply as soon as the combustion process initialized, mak-
ing it impossible to detect the presence of a spark for a longer duration of time. This
observation remained the same for all microphone locations where the background noise
was high compared to the spark-generated noise. On the other hand, microphones that
were placed closest to the igniter (the locations denoted by IGN and SCV in Figure 3b,c)
were found to be the most suitable locations to capture spark characteristics, and therefore
remained the primary focus of discussion in this paper. The IGN sensor location indicates
that the microphone is near the igniter, while SCV specifies the sensor’s proximity to the
surge control valve. These two sensor locations are the closest to the igniter, with the SCV
being on the opposite side compared to the IGN’s location. Between the igniter and the
microphones, there are multiple layers that may incur a shielding effect on the acoustics.
These layers can be identified as, amongst others, combustor liner and APU casing (see
zoomed-in cross-sectional view of the combustor in Figure 3d).

The acquired data were able to capture most of the events taking place throughout the
APU startup sequence, which included: inlet door actuation, starter motor engagement,
activation of ignition system from 7–95% rpm, combustion build up, IGVs opening at
45%, starter motor disengagement at 50%, and the APU settling at 100% rpm. Note that
to support the spark characteristics evaluation in this paper, only the data segment that
represented the spark was implemented. For this purpose, the time duration where the
APU rpm was between 7–20% (4468–12,766 rpm) was found to contain information about
the spark events; hence, a detailed analysis for this duration is presented in this paper.

3. Employed Methodology

The employed approach to investigate the spark characteristics from the aircraft’s
APU startup is presented in Figure 4. There are two steps involved: Step 1 deals with the
estimation of spark repetition frequency (SRF), while Step 2 is related to the evaluation of
various feature extraction techniques on the acquired spark signals. The initial application
of a high-pass filter (Step 0) to suppress background noise was a precursor for each step.
For SRF, the envelope spectrum was analyzed to enable visualization of the degree of
fluctuations for a given day of operation.

With regards to the second step of the overall approach, each spark signal was sepa-
rately processed once the average time difference between spark events was known (equal
to 1/SRF). Within each spark event, the signal was further segregated into background
noise, and the region between the onset of the spark and the peak acoustic pressure. The
onset time for each spark was estimated by analyzing the slope of the acoustic signal, once
a moving average filter was applied. The segregated segments were then analyzed using
various feature extraction techniques, and their performance was evaluated using various
metrics and visual inspection.
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4. Results and Discussion

This section presents the results that were acquired through the successful imple-
mentation of the developed methodology elaborated in the preceding section. First, the
acquired spark acoustics data were analyzed to devise and implement a high-pass filter to
address background noise suppression. The filtered data were subsequently evaluated to
determine the SRF, their fluctuations, and the acoustic features for each spark throughout
the complete data set. Finally, the acquired overall results were assessed to substantiate
the potential of employing spark acoustics characteristics to support an online condition
monitoring solution for the ignition system.

4.1. Implementation of High-Pass Filter

The noise generated during the spark event can be masked by the background noise.
For an APU operating in situ, the background noise is a complex phenomenon. In general,
a major part of the background noise stems from the superposition of tonal noise generated
by the shaft, compressor blades, cooling fan blades, gears, the broadband noise produced
by the combustion process, and acoustical reflections taking place within the APU com-
partment. The resultant overall background noise during APU startup is non-stationary,
which is due to variations in the APU rpm and gradual build-up of the combustion process.
The tonal noise dominates the lower frequencies because the rpm is low (e.g., APU shaft
frequency is in the range of 75–210 Hz for 7–20% rpm). The combustion noise is also present
at low frequencies [9]. Figure 5a shows a portion of one cycle of the sparking sequence;
initially, a spark occurs and then gradually fades away into the background noise. In
Figure 5b, the power spectrum of these two signals demonstrates that the noise generated
by the spark is present for frequencies greater than 5 kHz. This observation is in agreement
with the analysis reported in [31].
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Figure 5. Comparison between spark and no spark signal: (a) time domain representation; (b) fre-
quency domain analysis and magnitude response of the high-pass filter.

The application of a high-pass filter with a cut-off frequency of 5 kHz can be a good
choice to suppress the no spark characteristics. However, the figure only shows the spark
taking place at a very early stage of the startup sequence where the tones generated by
the shaft, compressor blades, cooling fan blades, and gears are at lower frequencies. As
the APU spools up, these frequencies also increase and begin to overlap with the spark
noise frequencies. The impulse noise generated by a spark discharge is almost broadband
in nature and peaks at around 10.5 kHz, with a 6 dB/octave drop on either side of the
peak [27]. A high-pass filter with an fc at around 10.5 kHz represents an appropriate filter
for suppressing the background noise at the lower frequencies. Therefore, a high-pass
filter was applied to the raw acoustic data using MATLAB’s ‘highpass’ function with an
fc = 10.5 kHz transition band steepness and stop-band attenuation of 0.98 and 80 dB,
respectively. The filter produced by this function is a FIR filter with 829 coefficients and a
stop-band frequency of 10.19 kHz (magnitude response of the filter is shown in Figure 5b).

The acquired results are shown in Figure 6; part (a) of the figure shows the raw signal
for the selected duration, as well as how the noise levels progressively increase as the APU
spools up. The weak spark signals are not observable in the graph; however, with the
application of the high-pass filter, a series of impulse signals emerge after 7% RPM as illus-
trated in Figure 6b. The instances where the sparking sound was generated are noticeable,
and the gradual increase in the background noise level in between these instances is also
visible. After 20% of the rated RPM (at 18 s—see Figure 6c), the background was found to
significantly increase, which resulted in it completely masking the sparking sound.
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4.2. SRF Estimation

Envelope analysis was performed on the filtered acoustic signal to estimate the average
SRF. MATLAB’s ‘envspectrum’ function was used for this purpose. It initially computes the
envelope of the input signal by taking the absolute of the analytic signal, and then takes
the FFT of the envelope. For Day#1 of the operation, the results are shown in Figure 7a
for the acquired acoustic data corresponding to location IGN (for location SCV, the results
are identical and are not presented to avoid repetition). It can be seen that multiple peaks
occurred in the envelope spectrum. The first peak is at 76 µHz, and does not correspond to
the time period of the peaks occurring in the envelope signal. The next peak, which occurs
at 6.6 Hz, is in line with the periodic spikes in the time series data, and can therefore be
regarded as the repetition frequency (SRF) of the high-energy impulse signals.

The same analysis was repeated for the complete data set, and the results are presented
in Figure 7b. The variation in the source of aircraft power modifies the SRF; 6.6 Hz on
battery, and 8 Hz with external power. A similar variation in the SRF can also occur if there
is degradation in the components (resistances and capacitances) that control the repetition
frequency; hence, the SRF can be regarded as an appropriate metric to monitor the health of
the ignition system. Moreover, the approximate number of sparks (Nsparks) can be estimated
for a given startup, even if all of the sparks have not been detected by knowing the SRF
and the time required to transition from 7–95% rpm (t7−95% rpm); that is, the estimate can
be obtained as follows:

Nsparks = t7−95% rpm × SRF, (1)

The time t7−95% rpm is already known through the FADEC as it monitors the APU
rpm. Eventually, the Nsparks can be accumulated after each startup for estimating the
RUL of the igniter. Furthermore, inconsistencies in the sparks that are caused by a fault
in the ignition system will broaden the width of the SRF peak, which can also be used
as a potential condition monitoring indicator. These widths have been estimated using
MATLAB’s ‘findpeaks’ function, and have been placed as bars on top of the SRF values in
Figure 7b. During experimentation, the fluctuations in SRF are mostly marginal, with a
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slight exception on Day#2 (lowest SRF and highest fluctuations). On this day, the APU was
powered by the aircraft battery which may not have been sufficiently charged, leading to
the low-frequency inconsistent sparks.
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4.3. Spark Event Segmentation

Having successfully estimated the SRF, each corresponding impulse signal could be
individually analyzed to extract the acoustic features from the region where the spark
characteristics were dominant. Each spark signal is composed of background noise, the
onset of spark, peak acoustic pressure, and the gradual decay in energy which eventually
diminishes due to the presence of the background noise, as shown in Figure 8. The region
of significant interest occurs between the onset of the spark (tonset), and the time (tpeak)
where peak pressure is observed. Within this region, spark characteristics are found to be
dominant, and less affected by background noise.
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In order to estimate tonset, a change detection strategy based on slope values was
applied to the moving averaged version of the filtered acoustic signal. In order to do this,
an averaging filter with window size = 256 was applied after taking the absolute of the
filtered signal; this allowed for the reduction in the background noise while preserving
the spark event locations, as shown in Figure 9a. MATLAB’s ‘ischange’ function was then
utilized to provide the time location (tonset) for each spark event where the highest positive
change occurred in the slope of the averaged version of the signal. Figure 9b shows the
time (tonset) where the rise in acoustic pressure is taking place, which was identified by the
function. Using tonset and tpeak, the high-pass filtered acoustic data was segmented around
each of the spark events, as follows:

tonset –0.08 ≤ t < tonset Background noise
tonset ≤ t ≤ tpeak Spark signal
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Figure 9. Moving average filter results: (a) series of sparks; (b) single spark with identified location
of tonset.

The initial 8 ms of the time was deemed appropriate to represent the background noise.
In conjunction with this assumption, using the aforementioned approach, estimates were
determined for the rise times that corresponded to each detected spark (trise = tpeak− tonset).
Figure 10 presents the acquired values of trise for all 8 test days at sensor locations IGN and
SCV; the overall variation is captured in the form of boxplots. Each plot shows the range,
median (red solid line), and mean (labeled as a black unfilled diamond symbol) values
of the rise times on each day at a given sensor location. The median and mean values of
trise remained stable (4–5 ms) for location IGN throughout the data set. For location SCV,
large deviations (5–9 ms) were observed. The trise values also varied, due to the change in
surroundings (see plots for SCV for Day#7 and Day#8, where the aircraft was parked inside
a semi-enclosed hangar that led to high values of trise). Based on the analysis, trise values
were found to be an inappropriate feature to be observed for condition monitoring due to
their inconsistent behavior. However, the samples existing between tonset and tpeak were
useful for characterizing the spark using various features.
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4.4. Performance Metric for Feature Evaluation

Several features were computed for the background noise and the spark signal around
each spark event. The aim was to identify those features that exhibited stable values
across all the sparks for a given day of operation, regardless of the sensor location, while
maintaining distinct behavior against the background noise. A performance metric was
needed to compare the performance of each feature in terms of similarity between the
results at the two sensor locations, and if applicable, its similarity with background noise
features. For this purpose, the average values of the coefficients of overlap [32] were
selected, and are defined as follows:

1. Mean value of the coefficient of overlap between the distribution of feature values
computed at the two sensor locations:

∆SGV
IGN = 1/n ∑

i
∆SGV:IGN

i , (2)

Here, ‘n′ is the number of days of data collection, and

∆ SCV:IGN
i =

∫
min

{
f SCV

i (x), f IGN
i (x)

}
dx, (3)

In the above equation, f SCV
i and f IGN

i are the probability density functions of a
feature at locations SCV and IGN, respectively, for a day ‘i’. MATLAB’s ‘ksdensity’ function
was used to estimate the probability density function of a feature, and the ‘trapz’ function
was employed to perform the required numerical integration after the ‘min’ operation.

2. Mean value of the coefficient of overlap between the distribution of feature values
computed at a sensor location, and for the corresponding background noise:

∆ S
Noise = 1/n ∑

i
∆ S:Noise

i , (4)

Here,
∆S:Noise

i =
∫

min
{

f S
i (x), f Noise

i (x)
}

dx, (5)

where S can either be IGN or SCV depending on the selected sensor, and f Noise
i corresponds

to the probability density function of the features computed for the background noise,
using that sensor on day ‘i’.

The values of the above coefficients of overlap (∆ SCV
IGN , ∆ IGN

Noise and ∆ SCV
Noise) for a par-

ticular feature can range between [0,1]. A stable feature will exhibit very high values
for ∆ SCV

IGN , which means that the feature is insensitive to the change in sensor location.
Moreover, it is desirable to have a feature that is dissimilar to the noise characteristics; this
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corresponds to low values for ∆ IGN
Noise and ∆ SCV

Noise. Such a feature will be sensitive to the
igniter (or ignition system) degradations, and can therefore be utilized for ignition system
condition monitoring.

4.5. Selected Features for Evaluation

Several categories (statistical, spectral descriptors impulsive metrics, and features
from visibility graphs) of features were considered in this paper. An initial assessment of
the features was done using the defined performance metrics, and the worst performing
features were excluded from the detailed analysis. The least performing features were
identified using the following criteria:

∆ SCV
IGN < 0.6 or ∆ IGN

Noise > 0.2 or ∆ SCV
Noise > 0.2

The low-performing features included, among others, ZCR, kurtosis, skewness, im-
pulse factor, and spectral skewness. As an example, consider the zero cross rate (ZCR)
feature that gives the average number of sign-changes in the signal [33]:

ZCR =
1
N ∑|sgn[x(n)] − sgn[x(n− 1)]|, (6)

where sgn(.) is the sign function, defined as follows:

sgn[x(n)] =
{

1, x(n) ≥ 0
−1, x(n) ≤ 0

The ZCR values for the sparks and the background noise were found to be similar
(very high values for ∆ IGN

Noise and ∆ SCV
Noise), which shows that the feature is sensitive to the

noise present within the spark duration, and is unable to capture any unique characteristics
of the spark. Similarly, the kurtosis value was found to be highly sensitive to sensor location,
and also indicated the level of Gaussian behavior in the data. Figure 11 shows the box plots
for kurtosis values that were computed for the spark and background noise duration for
the two sensor locations. The background noise can be seen to have a Gaussian response
(kurtosis ≈ 3 [34]). For IGN, the mean kurtosis value is around 5–6, while for SCV it is
less than 5, and falls as low as 4 for Day#7 and Day#8 (leading to a high value of ∆ SCV

Noise).
This behavior indicates that the background noise corrupted the acoustic data, even during
the sparking event. The low value of 0.62 for ∆ SCV

IGN is also an indicator of the high level of
dissimilarity that existed between the feature values at the two sensor locations.
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Figure 11. Kurtosis values computed for spark and noise data at sensor locations IGN and SCV.

After carrying out the initial assessment, the following appropriate features were
identified for a detailed comparison:
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1. Peak value after application of moving average filter on the high-pass filtered signal
(Peak):

Peak = ||x||∞
2. RMS:

RMSSpark =

√
1
N ∑ x2

t f or tonset ≤ t ≤tpeak

RMSNoise =

√
1
N ∑ x2

t f or tonset−0.08 ≤ t <tonset

where xt is the high-pass filtered signal around each spark signal, and ‘N’ is the number of
samples within the time duration.

3. Difference between RMS of spark signal and background noise (δRMS):

δRMS = RMSSpark−RMSNoise

4. Mean (µ)
5. Shape factor (SF = RMS

1
N ∑ |xt |

)

6. The average number of connected nodes found using a visibility graph (µHVG). The
horizontal visibility graph was chosen for evaluation, in which two nodes (xi and xj)
are said to be connected only if a horizontal line can be drawn between them that
does not intersect any of the intermediate data points [35]:

xi, xj > xn. ∀ n
∣∣ i < n < j

7. Spectral arithmetic mean (Sp.AM = 1
b2−b1

∑b2
b1

sk)

8. Spectral geometric mean [Sp.GM =
(

∏b2
b1

sk

) 1
b2−b1 ]

9. Spectral flatness (Sp.Flatness = Sp.GM/ Sp.AM)
10. Spectral crest (Sp.Crest = max(sk)/Sp.AM)

where sk is the spectral value at bin k, and b1 and b2 are the band edges, in bins, over which
to calculate the spectral spread.

4.6. Feature Extraction Results

In this section, the results acquired for the selected feature extraction techniques are
presented. The goal of this analysis was to identify features that have the potential to be
employed for ignition system condition monitoring purposes. The values of ∆ SCV

IGN , ∆ IGN
Noise,

and ∆ SCV
Noise were used as a performance metric to systematically identify the most effective

features. Table 1 presents the acquired results for all the selected features against the
defined performance metrics. The features were sorted in decreasing order of ∆ SCV

IGN values.

Table 1. Performance analysis of selected features.

Feature Name ∆ SCV
IGN ∆ IGN

Noise ∆ SCV
Noise

δRMS 0.83 - -
Peak 0.81 0.02 0.10
RMS 0.80 0.10 0.19

Sp.Crest 0.76 0.09 0.07
Sp.Flatness 0.72 0.02 0.05

µ 0.70 0.01 0.02
SF 0.65 0.07 0.13

Sp.AM 0.63 0.00 0.00
Sp.GM 0.62 0.00 0.00
µHVG 0.61 0.00 0.01
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In terms of similarity with the background noise, the SF and RMS features were the
worst performing. The values of ∆ IGN

Noise and ∆ SCV
Noise are 0.07 and 0.13 for SF and 0.10 and

0.19 for RMS. These numbers indicate the degree to which the feature values for spark
and noise resemble one another, thus making them prone to noise. Similarly, the Sp.Crest
feature is also susceptible to background noise. Lastly, the Peak feature is also slightly
affected by background noise if the sensor is far from the igniter (∆ SCV

Noise = 0.1). However,
for this feature, the value of ∆ SCV

IGN is 0.81, which indicates that it does not significantly
vary with a change in the acoustic path, and can therefore be a direct consequence of the
variations in spark discharge characteristics. Figure 12 shows how the peak values vary for
spark and noise duration for the two sensor locations under different days of operation.
Several useful observations can be made through the figure: the peak values are higher
than the background noise if the sensor is close to the igniter; the mean values are similar
(~0.25) across the two sensors; and there is a gradual decrease in the peak values as the
time progresses from Day#1 to Day#8. The gradual decrease in these values may be an
indicator of the level of degradation in the ignition system. It is to be noted that there was a
five-month delay between the first day and the last day of operation, during which it is
probable that atmospheric effects may have degraded the igniter. A similar trend was also
observed for the δRMS feature (see Figure 13), which surpassed all of the other features in
displaying a very high value for ∆ IGN

SCV (0.84). The δRMS appears to gradually decrease after
each day of operation. This feature corresponded to the energy that was added into the
acoustic channel by the spark discharge, and can be an appropriate parameter to ascertain
the health of the system.
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The µHVG feature performed well in terms of its resistance against background noise
(see Figure 14). This value refers to the mean number of samples which are horizontally
visible in a time series data set. For the background noise, the mean value for the feature
was 3.99, while for spark, the values ranged between 3.8 and 0.94. Although µHVG had
very low values for ∆ IGN

Noise and ∆ SCV
Noise; however, it was sensitive to the sensor location(

∆ IGN
SCV = 0.73

)
. For SCV, the values reduced for Day#8, which may have been attributed

to the increase in the rise times at location SCV (see Figure 10), when more samples of
background noise were captured and analyzed within the spark duration.
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The results for feature µ are also interesting (see Figure 15). The value of µ for noise
is zero, while for the spark it is positive for the majority of the data set. The wave that
originated from the spark discharge took the shape of an N-wave, which has more energy
towards the positive side [7], making the mean > 0. During the propagation of such a wave
through a multi-path channel, it is likely that the outcome will also have a positive mean.
Variations in the spark discharge characteristics due to ignition system degradation will
lead to changes in the shape of the N-wave, which can be manifested in the change in
the mean value of the samples taken during the spark duration. The remaining features
(Sp.AM, Sp.GM, and Sp.Flatness) were also found to be highly robust against background
noise, regardless of the sensor location ( ∆ IGN

Noise ∼ 0 and ∆ SCV
Noise ∼ 0). These features,

therefore, present strong potential for capturing the characteristics desired to support the
development of an online condition monitoring solution. It is noted that, in order to fully
comprehend the sensitivities of the acquired features, experimentation should be conducted
under an actual degraded/faulty ignition system.
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5. Conclusions

An ignition system plays a critical role in the startup of an APU. Failures during
APU startup can have safety implications, and lead to disruptions in aircraft operation.
The principal function of an ignition system is to generate sparks to initiate combustion.
A faulty/degraded ignition system can lead to startup failure(s), compromising aircraft
availability and safety. In order to monitor the health of the ignition system, an onboard con-
dition monitoring strategy is needed; it must be universally applicable on any aircraft, with
minimum hardware modifications. Existing methodologies require an electrical interface
with the ignition system. Moreover, no consideration used thus far was dedicated to exploit
the spark acoustic characteristics for formulating an ignition system monitoring solution.

The incorporation of microphones to support the condition monitoring of an APU
ignition system have strong application potential due to their inherent non-intrusive and
non-interfering nature. However, for an APU, the observation of spark acoustic characteris-
tics can be convoluted, as they are subject to multi-path reflections as well as background
noise produced by the turbomachinery components. In this paper, a feasibility study
was conducted to determine the potential of using a microphone for monitoring an APU
ignition system. The overall study was carried out based on the actual startup acoustic data
set that corresponded to a Boeing 737-400 aircraft APU. The devised methodology enabled
the translation of the acquired raw acoustic data into ignition system state-indicating pa-
rameters. The derived parameters can be compared against healthy limits to detect a fault
or degradation in the system. The successful implementation of the reported methodology
leads to the following conclusions:

1. Signal processing of the raw acoustic data acquired from a well-placed microphone
(preferably close to the igniter) can produce condition indicators that are representa-
tive of the health of an ignition system.

2. A high-pass filter with fc = 10.5 kHz is suitable to suppress the background noise,
while retaining the spark acoustic characteristics up to 20% RPM of the APU.

3. Envelope spectrum technique can compute the spark repetition frequency (and the
degree of its fluctuations), which can be compared against nominal limits in or-
der to detect inconsistencies in the ignition exciter electrical characteristics (such as
input voltage).

4. The onset time (tonset) can be reliably estimated by detecting the slope of the signal,
once a moving average filter has been applied.

5. Samples taken between tonset and tpeak of each spark pulse are appropriate for com-
puting features that can be used as indicators of the ignition system’s health.

6. The results show that there are certain features that are robust against time-varying
background noise, and are insensitive to a change in sensor location; thus, these
features can be employed as condition indicators. For example, the features µ and
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δRMS have been found to show a particular trend that is associated with igniter wear
taking place over a period of five months.
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