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Abstract: Edge computing can avoid the long-distance transmission of massive data and problems
with large-scale centralized processing. Hence, defect identification for insulators with object de-
tection models based on deep learning is gradually shifting from cloud servers to edge computing
devices. Therefore, we propose a detection model for insulators and defects designed to deploy on
edge computing devices. The proposed model is improved on the basis of YOLOv4-tiny, which is
suitable for edge computing devices, and the detection accuracy of the model is improved on the
premise of maintaining a high detection speed. First, in the neck network, the inverted residual
module is introduced to perform feature fusion to improve the positioning ability of the insula-
tors. Then, a high-resolution detection output head is added to the original model to enhance its
ability to detect defects. Finally, the prediction boxes are post-processed to incorporate split object
boxes for large-scale insulators. In an experimental evaluation, the proposed model achieved an
mAP of 96.22% with a detection speed of 10.398 frames per second (FPS) on an edge computing
device, which basically meets the requirements of insulator and defect detection scenarios in edge
computing devices.

Keywords: edge computing; defect; insulator; object detection; deep learning; YOLOv4-tiny; inverted
residual module

1. Introduction

Insulators play a key role in the electrical insulation and mechanical fixation of over-
head transmission lines. They can withstand high voltages for long periods and occasionally
encounter natural disasters. Therefore, timely inspection and maintenance are required to
ensure the normal operation of insulators [1]. Given that transmission lines are being laid
more and more widely, the traditional manual approach to inspecting insulators requires
considerable human resources, and the inspection efficiency is low. The use of new line
inspection equipment, such as unmanned aerial vehicles (UAV) to collect insulator images,
and computer vision algorithms to identify insulators and insulator defects has become a
new mode of inspection [2,3].

Early computer vision algorithms were primarily based on using the geometric fea-
tures of insulators represented in image pixel values to identify insulator defects. These
kinds of algorithms firstly highlight the insulator information based on the image process-
ing method and then input the processed image data into the neural network to discriminate
the condition of the insulator. Wang et al. [4] extracted edge features based on a wavelet
method, and the thickness of ice coating insulators was determined according to the num-
ber of pixels between ice edges. Yan et al. [5] detected the water bead edge of insulators
based on the Canny operator, and the hydrophobicity of water on insulators was identified
with a classification algorithm. Li et al. [6] studied insulator edge detection based on the
Canny operator optimized using a two-dimensional maximum entropy threshold, which
effectively extracted the edge information of insulator images and improved the accuracy
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of insulator crack detection. However, the insulator images used in these methods required
that the insulator objects occupy a large proportion of images and are poorly applicable
to UAV aerial images with a large number of objects and diverse scales; therefore, the
application of the methods described above remains relatively limited in practice.

Deep learning object detection algorithms take the complete image as input, carry out
image feature extraction and object prediction through a convolutional neural network
(CNN) [7], and can output the position of insulators and defects in the image, which
is very easy for transmission line operation and maintenance personnel to discriminate
the condition of insulators. Deep learning object detection algorithms are more suitable
for insulator and defect detection scenarios with many small-scale objects and complex
backgrounds; therefore, research on using these methods has been widely conducted in
recent years. Deep learning object detection algorithms can be largely divided into two
categories. The first includes two-stage object detection algorithms represented by faster
region convolutional neural network (Faster R-CNN) [8], which propose suggestion boxes
through a region proposal network in the first stage and obtain the object detection results
based on suggestion boxes in the second stage. The second includes single-stage object
detection algorithms such as single-shot multibox detector (SSD) [9] and you only look
once (YOLO) [10–13], which omit the step of proposing suggestion boxes and predict object
box results based on anchors alone. The detection speed of single-stage object algorithms is
generally higher than that of two-stage object algorithms. These algorithms [14–16] have
been adopted to study the detection of insulators and defects, and satisfactory detection
results were obtained through adaptive adjustment of the detection models.

Edge computing is a method of processing data near the source. It was first proposed
by Akamai in 1998 to solve the problem of network congestion [17]. In 2016, Shi et al. [18]
provided a widely recognized definition of edge computing as referring to the enabling
technologies allowing computation to be performed at the edge of the network on down-
stream data on behalf of cloud services and upstream data on behalf of Internet of Things
(IoT) services. Because edge computing has the advantages of avoiding large-scale data
transmission and centralized processing, image data processing is gradually shifting from
cloud servers to edge computing devices [17,19]. However, owing to the limited computing
and storage resources of edge computing devices, they cannot implement detection models
with large numbers of parameters and high computational complexity. Hence, higher
requirements for lightweight operation have been proposed for detection models [20]. The
detection accuracy of lightweight detection models generally decreases compared to the
more computationally intensive methods. Thus, it is important to obtain a detection model
with both accuracy and rapidity on edge computing devices.

YOLOv4-tiny [21] is a representative lightweight object-detection model in the YOLO
series. It performs detection relatively rapidly on edge computing devices, but its detection
accuracy is generally lower than that of heavier object detection models. In this study,
we propose an improved detection model based on YOLOv4-tiny designed to maintain
high detection speed on edge computing devices to improve detection accuracy. In order
to obtain the insulator and defect detection model with accuracy and rapidity on the
edge computing device, we mainly improved YOLOv4-tiny in terms of the following
three aspects:

(1) Considering the problem of positioning deviation owing to the thin neck network
structure, two serial inverted residual modules were used as the neck feature fusion
modules of YOLOv4-tiny to enhance the feature fusion ability of the backbone network.

(2) Considering YOLOv4-tiny’s tendency to miss defect objects or detect them incor-
rectly, a detection output head suitable for small-scale objects was added to the original
network structure, and the detection accuracy of small defects was improved without
affecting detection accuracy for large insulators.

(3) Considering the problem of split detection boxes, split object boxes were deter-
mined after non-maximum suppression (NMS) through the intersection over union (IoU)
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and aspect ratio and then replaced by an external enclosing rectangular box to improve
detection performance.

2. Improvements to YOLOv4-tiny
2.1. Network Sturcture of YOLOv4-tiny

YOLOv4-tiny is a simplified model proposed on the basis of YOLOv4. Its network
structure uses CSPDarkNet53-tiny as the backbone network, performs feature fusion
through CBL layers that combine convolution (Conv), batch normalization (BN), and
a Leaky ReLU activation function, and finally performs object box prediction through
two detection output heads. The network structure of YOLOv4-tiny is shown in Figure 1.
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Compared with YOLOv4, YOLOv4-tiny has fewer parameters and floating point of
operations (FLOPs) of convolution (Table 1).

Table 1. Comparison of computational complexity and model size between YOLOv4 and YOLOv4-tiny.

Models FLOPs (G) Parameters (M)

YOLOv4 141.456 63.943
YOLOv4-tiny 16.149 5.876

2.1.1. Network Structure of CSPDarkNet53-tiny

YOLOv4-tiny uses a CSPDarkNet53-tiny backbone to extract image features. Based on
the CBL, CSPDarkNet53-tiny includes a residual module (Res Module) through a cross-
stage structure and channel split. The Res Module has two feature fusion operations,
including external and internal fusion. The objects of external fusion are the results of the
first and fourth CBL with a relatively large span. Corresponding to the external fusion,
the internal fusion objects are the results of the second and third CBL with a small span.
A channel split is applied to the first CBL; that is, a channel split is performed on the
convolution result, and the convolution result with only half of the channels is reserved as
the input for the subsequent convolution. Therefore, the number of channels of the internal
fusion objects is only half that of external fusion objects.

CSPDarkNet-53-tiny adopts fewer stacking times of convolution blocks and reduces
the number of input channels based on channel split, which helps reduce FLOPs and the
number of parameters.

2.1.2. Simplified Feature Pyramid Network (FPN) Neck Network

YOLOv4-tiny’s neck network uses a minimalist FPN structure. The neck network of
YOLOv4-tiny takes the feature results of CSPDarkNet53-tiny in two scales as inputs. The
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deep feature is upsampled and fused with the shallow feature. Although the neck network
of YOLOv4-tiny realizes feature fusion using a simple convolution combination, this part
of the model is so thin as to seriously degrade the detection accuracy of the model.

2.1.3. Design of the Detection Output Head

The head of YOLOv4-tiny is connected to the neck. The feature results of the two
dimensions of the neck are taken as inputs, and the corresponding output results are
obtained by combining the CBL and Conv layers. The number of channels of the YOLOv4-
tiny detection output is expressed in Equation (1).

Co = (Nclasses + 5) × Nanchors, (1)

where Co is the channel of the detection output, Nclasses is the number of prediction classes,
and Nanchors is the number of anchors for one detection head.

2.2. Improved Methods for YOLOv4-tiny
2.2.1. Inverted Residual Module

The neck network of YOLOv4-tiny is extremely simple. Although it helps the model
achieve a significant decrease in FLOPs and the number of parameters, the excessively thin
structure significantly decreases detection accuracy, particularly in terms of the accuracy of
insulator positioning.

To improve the insulator positioning accuracy of the YOLOv4-tiny model, we referred
to the inverted residual module of MobileNetV2 [22]. In the neck network, two serial
inverted residual modules are used to achieve feature fusion and improve the fusion effect
between the semantic information of the deep feature map and the position information of
the shallow feature map. The basic structure of the inverted residual module is shown in
Figure 2.
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Figure 2. Structure of the inverted residual module.

The inverted residual module is based on depthwise separable convolution. The depth-
wise separable convolution comprises depthwise and pointwise convolutions. Here, the
depthwise convolution converts a three-dimensional convolution into a two-dimensional
convolution of each channel using the grouping convolution method. This step is used
to achieve dimensional changes in the width and height of the feature map. Pointwise
convolution is used to realize the expansion and contraction of the feature graph channels
by a 1 × 1 convolution. This step is used to change the number of channels. Although
depthwise separable convolution can realize the basic functions of conventional convo-
lution, it uses fewer FLOPS and parameters. Under the action of depthwise separable
convolution, the introduction of an inverted residual module in the neck network did not
significantly reduce the detection speed.

The main feature of the inverted residual module is channel expansion. The method
first expands the channel number of the feature graph by CBR, then changes the width
and height of the feature graph by depthwise convolution, and finally shrinks the chan-
nel number by CBR. For the YOLOv4-tiny CSPDarkNet53-tiny backbone, because fewer
channels are used, the inverted residual module can be adapted to extract more feature



Machines 2023, 11, 122 5 of 12

map information through pointwise convolution channel expansion to improve the feature
fusion ability of the network.

In addition, the inverted residual module adopts a squeeze and excitation (SE) atten-
tion mechanism [23], the structure of which is shown in Figure 3.
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As shown in Figure 3, the SE attention mechanism first flattens the feature graph with
average pooling along the channel direction, then applies the two-layer perceptron to the
flattening result, and finally multiplies the result of the perceptron action with the original
feature graph element by element to obtain the feature graph of the attention action. The
SE serves to distinguish the importance of feature graph channels, assign higher weights to
important channels, and improve the model’s attention to important channels.

2.2.2. Design of Three Detection Output Heads

Owing to the pursuit of an extremely lightweight design, YOLOv4-tiny adopts double
output heads for object detection; that is, only the feature fusion results of the fifth and
fourth downsampling of the backbone model are used for object detection. Although this
design may have relatively little influence on large objects, it cannot guarantee detection
accuracy for small objects.

YOLO’s detection strategy is to set large anchors for deep feature maps with more
downsampling times to examine large-scale objects and small anchors for shallow feature
maps with fewer iterations of downsampling for small objects. This is because deep feature
maps have a lower resolution and shallow feature maps have a higher resolution.

In the detection of insulators and defects, the size of insulators is generally large. Thus,
the design of double output heads has relatively little influence on the detection accuracy of
insulators. However, defects are generally relatively small. To avoid the negative impact of
double output heads on the accuracy of defect detection, YOLOv4 was used as a benchmark
to restore the design to three output heads. The structure of the YOLOv4-tiny model designed
with the inverted residual module and three output heads is shown in Figure 4.

2.2.3. Supplementary Post-Processing with Prediction Boxes

Both Sections 2.2.1 and 2.2.2 provide improvements from the perspective of the net-
work structure of YOLOv4-tiny. In addition to the network structure, we also considered
improving the post-processing part of the prediction boxes of YOLOv4-tiny to improve
detection performance.

In this work, YOLOv4-tiny exhibited a phenomenon of split detection results. The split
objects were generally large insulators. The concrete manifestation was that the detection
results of the insulators were split into two object boxes with very similar shapes and
certain overlapping areas. Although the model successfully detected the insulator, this
effect is not helpful for power system operation and maintenance personnel.

To address this problem, we added a post-processing operation for prediction boxes
after the NMS, which determined the coincidence size and similarity degree of prediction
boxes based on their IoU and aspect ratio. If two prediction boxes met the characteristics of
the split prediction boxes of the insulators, the external enclosing rectangular box of the
two prediction boxes would be used to merge the split boxes. The basic process of this
post-processing is shown in Figure 5.
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In this study, an external enclosed rectangular box was used to replace the two split
rectangular prediction boxes of an object through this post-processing operation. Although
Improvement 3 had relatively little impact on the quantitative indicators of detection
accuracy, it avoided the confusion of detection images caused by the split detection results.
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3. Experiments and Analysis

In this study, we trained the object detection models on a server to obtain the weights.
The detection speed of the models depended on the computing power of the hardware.
As we mainly consider the detection speed at the edge, the detection speed of the model
was tested on an edge computing device. The same weight file was used in the testing
process so that the detection accuracy of the model on the edge computing device was
consistent with that on the server. To demonstrate this, we randomly selected some image
samples and found that the detection results of the two types of hardware were consistent.
Considering that the detection speed of the model on the edge computing device was much
lower than that of the server, the detection accuracy test was carried out on the server to
save experimental time.

3.1. Experimental Setup

In this study, training and testing were performed on the server, and a speed test was
performed on the edge computing device. The experimental environment of the server and
the edge computing device included the Python 3.6 programming language and PyTorch1.7
deep learning framework, and both transmitted files over Wi-Fi. A comparison of the
hardware used on the server and edge computing device is presented in Table 2.

Table 2. Hardware comparison between the server and the edge computing device.

Hardware Server Edge Computing Device

CPU 2*Intel Xeon Platinum 8171M CPU 6-core NVIDIA Carmel
ARM®v8.2 64-bit

GPU 2*Nvidia GeForce RTX 3090 GPU 384-core NVIDIA VoltaTM

GPU 48 Tensor Cores

3.2. Training

In this study, we adopted conventional settings for experimental training. The freezing
training with no updating of the backbone weight was carried out first, and then the
non-freezing training with the updating of the whole model weight was carried out. The
specific training setting parameters are shown in Table 3.

Table 3. Training setting parameters of the models.

Parameters Freezing Training Non-Freezing Training

Epoch 150 350
Initial Learning Rate 3 × 10−5 2.4 × 10−4

Change in Learning Rate Cosine Annealing Cosine Annealing
Batch Size 5 2
Optimizer Adam Adam

3.3. Dataset Construction

In this work, we used a portion of the open-source Chinese power line insulator
dataset (CPLID) [24] and added insulator and insulator defect image samples collected
from across the Internet. The established dataset consisted of 1060 images. Among these,
641 images of normal insulators and 419 images of defective insulators were included.
The dataset was divided into 760 training samples and 300 testing samples. Color gamut
transformation was used to perform data augmentation on the training set in an offline
data augmentation of 300 testing images. The specific method was to carry out two gamut
conversion operations on each image and to expand the number of images in the test set to
three times the original number. Because the training and test sets were separated before
data expansion, there was no situation where the original image data are in the training set
and the expanded image data were based on the original image in the test set. In this way,
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the information of the training set could be avoided from leaking to the test set, and the
reliability of the testing results was guaranteed. Sample statistics were conducted on the
training and test sets, and the statistical results are presented in Table 4.

Table 4. Dataset sample distribution.

Dataset Insulators Defects Images

Training Set 1372 328 760
Test Set 1728 309 900

3.4. Analysis of the Experimental Results

In this study, we compared the differences in speed between the improved YOLOv4-
tiny and other object detection models in an edge computing device. Yolov4-tiny-1, yoloV4-
tiny-1-2, and yoloV4-tiny-1-2-3 represent the YOLOv4-tiny with three improved methods
added in turn.

3.4.1. Testing and Analysis of Detection Speed

First, the detection speed of the model was tested using an edge computing device.
The quantitative indicator of detection speed is FPS, which refers to the number of images
detected within a single second. In this study, the FPS of each model was tested three times
on the edge computing device, and the average value was obtained (Table 5).

Table 5. Comparison of the model detection speed on the edge computing device.

Models FPS

Faster R-CNN 1.099
SSD 2.007

YOLOv4 2.089

MobileNetV2-YOLOv4 4.482
ShuffleNetV2-YOLOv4 5.116

GhostNet-YOLOv4 4.724

YOLOv4-tiny 18.075
YOLOv4-tiny-1 14.054

YOLOv4-tiny-1-2 10.805
YOLOv4-tiny-1-2-3 10.398

As can be observed from Table 5, the non-lightweight object detection models Faster
R-CNN, SSD, and YOLOv4 exhibited extremely low detection speeds on edge comput-
ing devices, these methods involve some difficulty in meeting the speed requirements of
insulator and defect detection. Although YOLOv4 with the application of a lightweight
backbone network improved the detection speed to some extent, its detection speed on edge
computing devices is still relatively slow. Yolov4-tiny exhibited a faster detection speed on
edge computing devices, with an FPS exceeding 18. In this study, the network structure
of YOLOv4-tiny was strengthened by Improvements 1 and 2. Under the action of these
two improvements, the FPS dropped to 10.805, with a relatively obvious decrease. Im-
provement 3 did not change the network structure of the model, and the associated
reduction in FPS is relatively small. Finally, the FPS of YOLOv4-tiny with three im-
proved methods was 10.398. Although it is significantly lower than that of the original
YOLOv4-tiny, its detection speed remains far higher than that of non-lightweight object de-
tection models and was more in line with the speed requirements of the insulator and defect
detection scenarios.
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3.4.2. Testing and Analysis of Detection Accuracy

In this study, the recall, accuracy, and average precision (AP) of each object were used
as quantitative indicators of the detection accuracy of the models. The calculation of the
three indicators is expressed in Equations (2)–(4).

P =
NTP

NTP + NFP
, (2)

where P is the detection accuracy, NTP is the number of correctly classified positive samples,
and NFP is the number of incorrectly classified positive samples.

R =
NTP

NTP + NFN
, (3)

where R is the detection recall and NFN is the number of incorrectly classified negative samples.

AP =
∫

PdR. (4)

mAP is used to measure the detection accuracy of all object classes, and its calculation
formula is expressed in Equation (5).

mAP =

Nclasses
∑

i=1
APi

Nclasses
. (5)

Here, I represents the insulator object and D represents the defect object. A comparison
of the detection accuracy indicators of the different models is presented in Table 6. The IoU
threshold of the AP indicator used in this study was 0.5.

Table 6. Comparison of the model detection accuracy.

Models I-AP (%) I-R (%) I-P (%) D-AP (%) D-R (%) D-P (%) mAP (%)

Faster R-CNN 98.25 97.97 91.41 76.76 82.20 77.44 87.50
SSD 96.40 89.87 94.81 95.29 79.61 100.00 95.84

YOLOv4 98.72 97.22 96.16 95.95 94.82 100.00 97.34

YOLOv4-tiny 95.67 93.92 89.62 93.78 91.26 96.25 94.72
YOLOv4-tiny-1 97.98 95.02 96.65 93.93 91.59 98.61 95.96

YOLOv4-tiny-1-2 98.03 95.43 97.06 94.49 92.56 100.00 96.26
YOLOv4-tiny-1-2-3 97.95 95.37 97.23 94.49 92.56 100.00 96.22

Table 6 shows that in the non-lightweight object detection models, YOLOv4 showed
relatively ideal detection accuracy for both types of objects, with insulator AP reaching
98.72% and defect AP reaching 95.95%. Compared with that of YOLOv4, the detection
accuracy of YOLOV4-tiny decreased to a certain extent, mainly in terms of insulator
accuracy, defect recall and defect accuracy.

In this study, Improvement 1 improved the neck feature fusion ability of YOLOv4-
tiny by using the inverted residual module, which enhances the positioning accuracy
and detection accuracy of insulators. The accuracy of insulator positioning can be shown
by the visualization results of the models’ heat map and the actual detection diagrams,
in which the red area of the heat map represents the area of concern for model detec-
tion. The improved insulator positioning pairs for YOLOv4-tiny and YOLOV4-tiny-1 are
shown in Table 7.
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Table 7. Improvement comparison of the insulator positioning.

YOLOv4-tiny YOLOv4-tiny-1

Heat Map Detection Diagram Heat Map Detection Diagram

Sample 1
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As can be observed in Table 7, YOLOv4-tiny deviated from the center of the insulator
in the focus area of some insulator objects. Although insulators were detected successfully,
the locations of the detection boxes were inaccurate. The area of concern for YOLOv4-tiny-1
was closer to the center of the insulators, so not only could the insulators be detected
successfully, but also the location of the detection boxes was more accurate, and the
accuracy of insulator positioning was improved. Combined with Table 6, the accuracy of
the insulator can be increased from 89.62% to 96.65% by Improvement 1.

For Improvement 2 of this study, the network structure of YOLOv4-tiny was restored
to the three-output design of the conventional YOLO model, and the detection ability of the
model for small-scale defective objects was improved by adding a high-resolution object
detection layer. As can be observed from Table 6, under the effect of Improvement 2, the
recall of defects increased from 91.59% to 92.56%, the accuracy of defects increased from
98.61% to 100.00%, and the cases of missed and incorrect detection of defects were both
solved to a certain extent. The specific results are shown in Table 8.

Table 8. Improvement comparison of the defect detection.
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proved the detection performance (Table 9). 
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As can be observed from Table 8, Improvement 2 can help YOLOv4-tiny detect defect
objects that could not be detected previously and avoid defect misdetection.

In this study, Improvement 3 combines the split detection boxes of the same insulator
with an external enclosing rectangular box. Although Table 6 shows that Improvement
3 had little influence on the quantitative indicators of detection accuracy, it actually im-
proved the detection performance (Table 9).

Table 9. Improvement comparison of the split detection boxes.

YOLOv4-tiny YOLOv4-tiny-1 YOLOv4-tiny-1-2 YOLOv4-tiny-1-2-3

Sample 1
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and accuracy of defects increased from 91.26% and 96.25%, respectively, with the original 
model to 92.56% and 100.00%. 

(4) Post-processing of the prediction box was added to the YOLOv4-tiny model to 
combine the split prediction boxes of large-scale insulators in the form of an external en-
closing rectangular box to improve the actual detection performance of the model. 

(5) The insulator AP, defect AP, and mAP of the improved YOLOv4-tiny were 
97.95%, 94.49%, and 96.22%, respectively, and the detection speed on the edge computing 
device reached 10.398 FPS, which basically meets the requirements of accuracy and speed 
in insulator and defect detection scenarios. 
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As can be observed from Table 9, YOLOv4-tiny is prone to the problem of detection box
splitting for large insulator objects, and the image detection results are relatively confused,
which causes certain problems for transmission line operation and maintenance personnel.
By Improvement 3, the split detection boxes can be merged, and the merged detection
box can select the complete insulator object in a box. This avoids the problem of chaotic
detection results and improves the detection performance of the model.

4. Conclusions

In this study, we developed a method to detect insulators and their defects with
an improved YOLOv4-tiny model taking account of data processing shifted to an edge
computing device. The accuracy and speed of the model were tested on the edge computing
device. The specific conclusions of this work are listed as follows:

(1) YOLOv4-tiny is more applicable to edge computing devices owing to its faster
detection speed and fewer parameters, but some room for improvement remains in terms
of detection accuracy.

(2) By using the inverted residual module as the feature fusion module, the insulator
positioning accuracy of the model was enhanced, and the insulator detection accuracy
increased from 89.62% to 96.65%.

(3) By changing the network structure of YOLOv4-tiny to three output head designs,
the detection ability of the model for small-scale defect objects was improved. The recall
and accuracy of defects increased from 91.26% and 96.25%, respectively, with the original
model to 92.56% and 100.00%.

(4) Post-processing of the prediction box was added to the YOLOv4-tiny model to
combine the split prediction boxes of large-scale insulators in the form of an external
enclosing rectangular box to improve the actual detection performance of the model.

(5) The insulator AP, defect AP, and mAP of the improved YOLOv4-tiny were 97.95%,
94.49%, and 96.22%, respectively, and the detection speed on the edge computing device
reached 10.398 FPS, which basically meets the requirements of accuracy and speed in
insulator and defect detection scenarios.
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