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Abstract: With improvements in lubrication and material strength, the power transmitted by plastic
gears has increased significantly. To develop high-performance transmission systems, it is necessary
to gain deep insights into the dynamic characteristics of plastic gears. However, because plastics
are viscoelastic materials, they do not obey Hooke’s law, which is the basis of traditional gear
dynamic models. In this study, a refined dynamic model for an epoxy gear pair considering material
viscoelasticity and extended tooth contact is established, and the differences in the dynamic responses
between an epoxy and a steel gear pair are compared with respect to the dynamic meshing force
and dynamic transmission error. The results show that: (1) the plastic gear can restrain the meshing
impact, it has a generally lower dynamic meshing force than steel gear pair; (2) the position accuracy
is the weak point of plastic gears, and this is significantly affected by the rotation speed; (3) the way to
indirectly evaluate the dynamic meshing force by measuring the dynamic transmission error, which
is often used for metal gears and is less effective for plastic gears.

Keywords: plastic gear; material viscoelasticity; extended tooth contact; gear dynamics; finite
element method

1. Introduction

Plastic gears, which offer the advantages of self-lubrication, light weight, and mass
production by injection molding, are extensively used in various low-load-transmission
applications in home appliances, instrumentation devices, office equipment, and medical
devices. Lately, designers have expanded the application scenarios for plastic gears that
accommodate greater loads further by using novel additives and substituting dry contact
with oil-lubricated contact [1,2]. Hasl et al. [3] from the Gear Research Center at the
Technical University of Munich tested the load-carrying capacity of injection-molded
polyacetal gears under oil-lubricated conditions. They found that the power transmitted by
these gears could be raised to as high as 30 kW, meeting the power requirements of compact
city vehicles. As the transmitted power increased, the vibration and noise generated
by the plastic gears rose accordingly, resulting in enormous attention from scholars [4].
The investigation of plastic gear dynamics has contributed significantly to revealing their
functional behavior and led to improvements in the characteristics of plastic gears in the
power transmission field.

As transmission errors are a significant source of unwanted vibration and noise in
gear drives [5], many scholars have studied transmission errors involving plastic gears.
For example, Tsai et al. [6] and Karimpour et al. [7] simulated the static transmission error
(STE) of plastic gears using the finite element method. They pointed out that extended
tooth contact, owing to low tooth stiffness in plastic gears, could be observed, which
resulted in notable differences in the STE between plastic and metal gears. Similarly,
Meuleman et al. [8] modelled the plastic gear teeth using beam elements to investigate
the influences of material types, contact ratios, and pressure angles of the drive- and
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driven-gears on the plastic gear pairs’ STE. They subsequently proposed design principles
to reduce these STE fluctuations. Nonetheless, employing the STE as an indicator of
system excitation can only help to accurately predict the dynamics of nearly pure torsional
gear pairs [5]. The actual system excitation cannot be denoted by the pre-calculated STE
when tooth separation and back-side contact occur in gear pairs. Consequently, scholars
developed a dynamic model for plastic gears based on their instantaneous mesh state.
Atanasiu et al. [9] calculated the mesh stiffness per unit of contact length using the potential
deformation energy method and established a torsional dynamic model of steel/plastic
helical gear pairs using the time-varying contact length during engagement. Then, the
dynamic mesh force (DMF) and dynamic transmission error (DTE) of the steel/plastic gear
pair during its operation were analyzed. Lin et al. [10] established a torsional dynamic
model for plastic gears which considers the temperature effects on plastic material, then
the distributions and variations of bending and surface contact stresses around the fillet
and contacting points are investigated. Subsequently, they proceeded to investigate the
interaction between the dynamic contact load and the tooth profile wear of engaged plastic
gear pairs by coupling the tooth wear equation in the dynamic model for plastic gears [11].
Duan et al. [12] established a torsional dynamic model for the planetary gear set, and
comparatively investigated the patterns of dynamic load when the sun, planet, and ring
gears are replaced with plastic gears, respectively. Notably, in the aforementioned studies,
the plastics have been treated as elastomers [6–12] and the dynamic properties of the plastic
gears have been approximated by modifying the mesh stiffness and mass density using the
traditional dynamic model for metal gears. In contrast, viscoelastic plastics can undergo
significant creep and relaxation, and their constitutive models are entirely different from
those of metallic materials [13]. Guingand et al. [14–16] from the Institut National des
Sciences Appliquées established a load-sharing model that considered the viscoelastic
properties of the plastics and investigated the mechanical behavior of plastic cylindrical
gears made of polymeric material through numerical and experimental studies. However,
the load sharing model was quasi-static and did not consider the corner contact caused by
the significant plastic gear tooth deformations.

In summary, the dynamic modeling and analysis of plastic gears await further in-
vestigation. This study proposes a refined dynamic model for plastic gears considering
material viscoelasticity and extended tooth contact, and reveals the differences in dynamic
responses between the epoxy gear pair and steel gear pair. The research results can provide
theoretical support for the design of high-performance plastic gear transmission systems.

2. Modeling Approach
2.1. Viscoelasticity Description

The linear viscoelastic properties of plastics can be deduced from relaxation tests.
When subjected to constant strain, plastics produce a gradually decreasing stress. The
temporal evolution of the reaction stress provides the material’s relaxation modulus E(t), a
time varying ratio of stress over strain. This modulus can be expressed by rheological mod-
els that introduce the so-called retardation times, roughly the time scale of the material’s
response. Usually, a single retardation time is insufficient to describe the viscoelasticity of
plastic, and the relaxation modulus E(t) can be expressed as:

E(t) = E0

(
1 −

l

∑
i = 1

gi

(
1 − e −

t
τi

))
(1)

where E0 is the instantaneous modulus, gi is the statistical weight, τi is retardation time,
and they are all material constants.
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2.2. Formulation of Plastic Tooth Force
2.2.1. Mechanical Model of the Plastic Gear Tooth

To establish the plastic gear dynamic model, it is necessary to define the force–
deformation relation of the plastic tooth. In the case of metal gears, the tooth stiffness is
introduced as the ratio of tooth force over tooth deformation. The tooth stiffness can be cal-
culated using an analytical method in which the gear tooth is considered as a nonuniform
cantilever beam and the tooth stiffness consists of five parts:

K = 1/

(
1

Ks
+

1
Kb

+
1

Ka
+

1
Kh

+
1

K f

)

= 1/

[
1
G

∫ d

0

1.2 cos2 α

Ax
dx +

1
E

∫ d

0

(xcosα − hsinα)2

Ix
dx +

1
E

∫ d

0

sinα

Ax
dx

+
1
E

2
(
1 − ν2)

πb
+

1
E

cos2αm

(
L∗
( u f

s f

)2
+ M∗

u f
s f

)
+ P∗(1 + Q∗tanαm)

b

 (2)

where Ks, Kb, Ka, Kh, and K f are the shear stiffness, bending stiffness, axial compressive
stiffness, Hertzian contact stiffness, and fillet-foundation stiffness, respectively. The other
symbols in Equation (2) have been discussed thoroughly in reference [17]. Because the
integral values in Equation (2) are determined by the tooth geometry and are independent
of the material’s properties, it is possible to rewrite the relation between tooth stiffness and
material modulus with the geometric influence coefficient Cg as follows:

K = CgE (3)

In the case of the plastic gear, a relaxation stiffness can be introduced through the
relaxation modulus. In this method, the relaxation stiffness is defined as the time-dependent
force output corresponding to a constant deformation input that can be calculated by
combining expressions (1) and (2) to.

K(t) = K0

[
1 −

l

∑
i = 1

gi

(
1 − e

t
τi

)]
(4)

where K0 = CgE0 is the instantaneous tooth stiffness, and gi and τi have the same
values as in Equation (1). Equation (4) represents the viscoelastic properties of plastic
gear tooth deformation in the form of a Prony series. The exponential Prony series is
particularly popular as it enables the use of a recursive algorithm for a fast and easy
solution of the convolution integral constitutive law. However, to couple the relaxation
tooth stiffness model with the gear dynamic model, the viscoelastic properties of the plastic
tooth should be converted from the Prony series form to the differential form as in the
following Equations (5)–(7), whose topological structure is shown in Figure 1 [13].

F0 = k0δ (5)

Fi + ci
ki

.
Fi = ci

.
δ, (i = 1, 2, . . . , l) (6)

Ft =
l

∑
i = 0

Fi (7)
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where δ is the tooth deflection,
.
δ is a derivative of δ, Ft is the tooth force, and ci, ki, and k∞

can be calculated from K0, gi, and τi, respectively, using the following expressions [13]:

k∞ = K0

(
1 −

l

∑
i = 1

gi

)
(8)

ki = K0gi (9)

ci = kiτi (10)

where K0 is the same as in Equation (4) and gi and τi are the same as in Equation (1).
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Figure 1. Mechanical model of plastic gear tooth. 
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Figure 2. Meshing analysis of spur gear. 
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where mod(𝑥, 𝑦) is the remainder function and the range of |𝐴𝐺| is [0, |𝐴𝐵|). 

Figure 1. Mechanical model of plastic gear tooth.

2.2.2. Tooth Deflection Considering the Extended Tooth Contact Effect

As plastic gears have a relatively low modulus, the tooth deflections can be large
compared to those experienced by metal gears. Further, the flexibility of non-metallic gears
allows for gear tooth contact outside the theoretical line of action. Figure 2 shows the mesh
analysis model of a spur gear pair without tooth modification, where 1 is the driving gear,
2 is the driven gear, and rbj is the base radius of gear j. The generalized displacement of the
gear pair can be expressed as:

[u] = [x1, y1, θ1, x2, y2, θ2]
T (11)

where xj, yj (j = 1, 2) is the translational displacement of gear j relative to its initial position;
θj is the angular displacement of gear j relative to Oj A taken as the initial position and is
positive in the rotational direction of gears, i.e., θj values are more than zero.
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As shown in Figure 2, SE is the theoretical region of engagement without consideration
of tooth deformations, and S′E′ is the actual region of engagement with consideration of
tooth deformations. As S′ and E′ are load-related points, using S′E′ as the mesh analysis
region will cause much inconvenience. Therefore, AB with a fixed length is selected as
the mesh analysis region based on the principle of ensuring AB ⊃ S′E′ in this study. The
following is a brief description of the method employed in this study. Let point A precede
point S and |AS| = 0.5pb; let point B follow point E and |AB| = ceil(εα + 1)pb; where
pb is the base pitch, ceil(x) is the minimum integer of value not less than x, and εα is the
contact ratio. AB includes three subregions: the determination region of early approach
AS, the theoretical region of engagement SE, and the determination region of retarded
recess EB. G is the intersection point of the driving gear tooth profile (or its extension) on
AB, and |AG| is a periodic function of the angular displacement θ1 expressed as:

|AG| = mod(θ1rb1, |AB|) (12)

where mod(x, y) is the remainder function and the range of |AG| is [0, |AB|) .
The computational equation for total deformation δ of the tooth pair along the line

of action in the three subregions of AB is discussed in two cases without considering the
tooth back-side contact.

(1) When G lies on the SE:

δ = δ0 = max((x1 − x2) sin α + (y1 − y2) cos α + rb1θ1 − rb2θ2, 0),

0.5pb ≤ |AG| ≤ (εα + 0.5)pb
(13)

(2) When G lies outside the SE, the total deformation of the gear teeth along the line
of action is determined by subtracting the primary clearance from the theoretical
deformation due to the presence of the primary clearance.

δ = max(δ0 − Sa, 0), |AG| < 0.5pb (14)

δ = max(δ0 − Sr, 0), |AG| > (εα + 0.5)pb (15)

where Sa and Sr are the primary clearances of the tooth pair on AS and EB, respectively,
and their computational methods are derived in detail in reference [18].

According to the geometric analysis, the first-order derivative of δ is given by:

.
δ =



.
δ0 =

[( .
x1 −

.
x2
)

sin α +
( .
y1 −

.
y2
)

cos α + rb1ω1 − rb2ω2
]
H(δ0), 0.5pb ≤ |AG|

≤ (εα + 0.5)pb( .
δ0 −

.
Sa

)
H(δ0 − Sa), |AG| < 0.5pb( .

δ0 −
.
Sr

)
H(δ0 − Sr), |AG| > (εα + 0.5)pb

(16)
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where H(x) is the Heaviside step function; when x ≤ 0, then H(x) = 0, otherwise
H(x) = 1.

2.3. Plastic Gear Pair Dynamic Model Considering Material Viscoelasticity and Extended Tooth
Contact

In Section 2.2, the computational method for the meshing force of a single pair of gear
teeth at different regions of the line of action was derived (Equations (5)–(7) and (13)–(16)).
Here, we derive the computational method for the meshing force when multiple pairs of
gear teeth are engaged sequentially. Although the plastic gear tooth deformation requires
a certain amount of time to be restored after the load is removed, the time is shorter than
ten times the loading time [19]. Therefore, when the tooth numbers of the driving and
driven gears are more than 10, the gear tooth deformations can be considered as zero
prior to the next engagement, regardless of the gear tooth deformations at the present
engagement. As pb is the spacing between adjacent intersection point G on AB and the
range of |AG| is [0, ceil(εα + 1)pb) , there are, in total, ceil(εα + 1) intersection points
on AB. Table 1 shows that the contact ratio of the study case (i.e., spur gear pair) is 1.69,
thus ceil(εα + 1) = 3. This means that there are three intersection points on AB that are
sequentially denoted by Gk (k = 1, 2, 3) (Figure 3). At time t, the spacing between point
Gk and point A is expressed as:

|AGk| = mod
([

θ1(t) + (3 − k)
2π

Z1

]
rb1, 3pb

)
, k = 1, 2, 3 (17)

Table 1. Basic parameters of spur gear pair.

Z1/Z2 m (mm) b (mm) α (◦) εα kxj, kyj (N/m) cxj, cyj (Ns/m)

23/64 3 20 20 1.69 7.8 × 1010 1.57 × 105
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Figure 3. Gear mesh analysis, t1 < t2: (a) t1 (b) t2.

When the angular displacement θ1(t) of the driving gear increases, the value of
|AGk| (k = 1, 2, 3) periodically varies from small to large value in the interval [0, 3pb) ,
representing the left-to-right cyclic motion of Gk on AB.

Based on the above analysis of the engagement process, the continuous excitation of
the tooth pair on the line of action during the continuous gear drive can be determined
by substituting Equation (17) into Equations (13)–(16). Using the basic dynamic modeling
approach of gears [20], a six-degree-of-freedom model of a pair of spur gear pairs is
established as follows:

M
..
u + C

.
u + Ku = T + FmR (18)

Fm =
n

∑
k = 1

l

∑
i = 0

Fi,k (19)

f (Fi,k,
.
Fi,k) = 0, (i = 0, 1, . . . , l; k = 1, 2, . . . n) (20)

where M = diag(m1, m1, I1, m2, m2, I2) is the generalized system mass matrix, mj (j = 1, 2)
is the mass of gear j, Ij is the moment of inertia of gear j, and diag(x1, x2, . . . , xn) is the diago-
nal matrix with x1, x2, . . . , xn taken as the diagonal elements; C = diag

(
cx1, cy1, 0, cx2, cy2, 0

)
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and K = diag
(
kx1, ky1, 0, kx2, ky2, 0

)
are the damping and stiffness matrices of the bear-

ing system, respectively, cxj and cyj are the bearing damping of the gear j in the x and
y directions, respectively, and kxj and kyj are the corresponding bearing stiffnesses, re-
spectively; u is the generalized displacement of the gear pair and its six degrees of
freedom are shown in Equation (11); T = [0, 0, T1, 0, 0, T2]

T is the system load vector,
R = [− sin α,− cos α,−rb1, sin α, cos α,−rb2]

T is structure vector depending on gear geom-
etry; Fm is the sum of the mesh forces of all tooth pairs on AB; Fi,k is the ith meshing force
component of the kth tooth pair. Different from the algebraic form meshing force formula
of the metal gear, the meshing force component Fi,k of the plastic gear is in the form of
differential equation. The function f in Equation (20) essentially includes Equations (5)–(7)
and (13)–(17).

3. Simulation Results and Discussion
3.1. Model Settings and Validation

Taking a certain type of pre-developed four-seat electric sightseeing vehicle as an
example, it is driven by a two-stage gear reducer with a total ratio of 6.56. To reduce the
cost, a plastic gear is proposed to be used in the high-speed stage. It is known that the
total mass of the vehicle is 890 kg, the power of the drive motor is 4 kW, the input torque
of high-speed stage is 19.1 N·m, the input speed of high-speed stage is 2000 r/min, and
the gear parameters are shown in Table 1. In order to reveal the influences of material
viscoelasticity on the dynamic behavior of the gears, plastic and metal gear pairs with
the same basic parameters are selected for comparative study in this paper. The obtained
conclusions can give guidance to the selection of dynamic modeling methods for plastic
gears. In this study, the plastic gear is made of epoxy with a density of 1180 kg/m3, and
more viscoelastic parameters are shown in Table 2. The metal gear is made of carburizing
and quenching heat-treatment carbon steels, which have a density of 7850 kg/m3, a Young’s
modulus of 209 GPa, and a Poisson’s ratio of 0.3.

Table 2. Prony series parameters for epoxy [21].

Parameter Value Parameter Value Parameter Value

ν (Gpa) 5.205 g1 0.3786 τ1 7.321 × 10−7

G0 (Gpa) 1.4818 g2 0.3134 τ2 1.163 × 10−4

E0 (Gpa) 4.06011 g3 0.1470 τ3 0.06407
ρ (g/cm3) 1.18 g4 0.0738 τ4 463.4

The three-dimensional finite element model of the spur gear is established using
Abaqus (Figure 4a) based on the hexahedral element C3D8R. The geometric parameters
of the gear pair are shown in Table 1. The single tooth meshing state is taken for analysis,
and the unloaded gear teeth are omitted to reduce the number of elements (there are
29,120 elements and 34,912 nodes in total). Subsequently, a constant load of 20 N·m is
applied to the finite element model, and the gear materials are set as carbon steels and
epoxy, respectively. The tooth deformations along the line of action are obtained as shown
in Figure 4b,c. The results show that the tooth deformation of the steel gear pair does
not change with time (Figure 4b), while that of the epoxy gear pair increases with time
(Figure 4c). As a validation, the calculation results of the proposed theoretical model and
the finite element model are compared and agree well with each other (Figure 4c). Table 3
shows the employed stiffness and damping parameters in the mechanical model during
the case calculations.
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Figure 4. Tooth deformation analysis of steel and epoxy gear: (a) finite element model; (b) tooth
deformation of steel gear pair; (c) tooth deformation of epoxy gear pair.

Table 3. Basic parameters of mechanical model (Figure 1) for epoxy gear.

Parameter Value Parameter Value Parameter Value

k∞ 8.89 × 106 (N/m) k2 3.19 × 107 (N/m) c3 9.60 × 105 (N·s/m)
k1 3.86 × 107 (N/m) c2 3.71 × 103 (N·s/m) k4 7.52 × 106 (N/m)
c1 28.26 (N·s/m) k3 1.49 × 107 (N/m) c4 3.48 × 109 (N·s/m)

3.2. Frequency-Dependent Tooth Force

As shown in Figure 5a, a pulse deformation with period of 2t1 and duty cycle of 50%
is applied to the mesh force model of the gear teeth (Equation (6)). Figure 5b,c show the
curves of the output gear tooth forces at different deformation frequencies. The gear tooth
force is markedly attenuated (i.e., relaxation is obvious) at a low deformation frequency
in the deformation holding process (Figure 5b), while the relaxation is not obvious at a
high deformation frequency during the deformation holding process (Figure 5c). This
suggests that the tooth force of the epoxy gear approximates to that of the steel gear when
deformation is excited at a high frequency.
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Figure 5. Frequency-dependent tooth force: (a) gear tooth deformation; (b) response of the tooth 

force when 𝑡1 = 3𝜏1; (c) response of the tooth force when 𝑡1 = 0.05𝜏1. 
Figure 5. Frequency-dependent tooth force: (a) gear tooth deformation; (b) response of the tooth
force when t1 = 3τ1; (c) response of the tooth force when t1 = 0.05τ1.

3.3. Dynamic Load Factor

Although the speed range of the prototype motor is 0–2000 r/min, the rated motor
speeds of the same type of vehicles in the market are different. In addition, the motor
parameters may be reselected in the subsequent development. Therefore, as basic theoretical
research, this study expands the speed range to 0–5000 r/min during the analysis. The
speed of 5000 r/min is selected as the upper limit because such vehicles rarely use high-
speed motors due to cost reasons. Figure 6 shows the dynamic load factors of the epoxy
and steel gear pairs in the range of 0–5000 r/min. The dynamic load factor Kv is defined as
follows [22]:

Kv =
max(DFm(t))
max(SFm(t))

(21)
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where max(DFm(t)) is the maximum DMF and max(SFm(t)) is the maximum static mesh
force. Figure 6 shows that the Kv of the epoxy gear pair is lower than that of the steel gear
pair at comparatively lower speeds (e.g., less than 900 r/min). Additionally, the Kv curve
of the epoxy gear pair climbs slowly and shows no obvious peak–trough characteristics
at a low speed, whereas the Kv curve of the steel gear pair ascends quickly with the
rotational speed and then fluctuates to form multiple obvious peak–trough structures. This
is attributed to the fact that the viscoelasticity of plastics helps to inhibit the DMF of the
gears, yet the inhibitory effect decreases with increasing rotational speed (see Section 3.2).
Therefore, epoxy and steel gear pairs show similar curve shapes of Kv and multiple peak–
trough structures at comparatively higher rotational speeds (e.g., more than 1000 r/min),
yet the Kv peak of the steel gear pair is greater than that of the epoxy gear pair.
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Figure 6. Comparison of Kv between epoxy gear pair and steel gear pair.

After obtaining the maximum Kv, the DMFs of the epoxy and steel gear pairs are
taken for further analysis. Figure 7a,b show the simulated DMFs of the epoxy gear pair at
3380 r/min in the time and frequency domains, respectively. In the time domain, the epoxy
gear pair is impacted by approach and recess actions, the DMF fluctuates periodically,
and tooth separation does not occur. In the frequency domain, the major components of
DMF are the mesh frequency (1300 Hz) and its multiple frequencies, and the maximum
amplitude occurs at the 6-fold mesh frequency. Figure 7c,d show the simulated DMFs of
the steel gear pair at 4330 r/min in the time and frequency domains, respectively. In the
time domain, the minimum DMF of the steel gear pair is zero, thereby suggesting that
instantaneous tooth separation occurs during gear drive and the drive quality deteriorates.
In the frequency domain, the primary components of DMF are mesh frequency (1659.8 Hz)
and its multiple frequencies, and the maximum amplitude occurs at the 2-fold mesh
frequency. A comparison between Figure 7b,d suggests that the DMF of the steel gear pair
shows more sideband components near the mesh frequency and its multiple frequencies,
whereas the DMF of the epoxy gear pair shows fewer sideband components.

3.4. Dynamic Transmission Error Factor

Because the meshing stiffnesses of the epoxy gear and the steel gear are quite different,
it is inconvenient to directly compare their dynamic transmission errors. To facilitate the
analysis of the variation of characteristics of dynamic transmission error with rotational
speed, the dynamic transmission error factor KDTE is defined by reference to the definition
of the Kv as follows:

KDTE =
max(DTE(t))
max(STE(t))

(22)

where max(DTE(t)) is the maximum DTE and max(STE(t)) is the maximum static trans-
mission error. As shown in Figure 8a, the KDTE curve of the epoxy gear pair decreases
rapidly and then flattens out in the range of 1–250 r/min. Figure 8b shows the DTEs of the
epoxy gear pair at different rotational speeds, and it can be seen that there is an obvious
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creep phenomenon at low speeds. With the increase of speed, the creep deformation de-
creases gradually, i.e., the peak value of DTE decreases gradually. Furthermore, when the
rotational speed exceeds a certain value, the peak value of DTE decreases very slowly.
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Figure 7. Comparison of dynamic mesh force: (a) time domain of epoxy gear pair, 3380 r/min;
(b) frequency domain of epoxy gear pair; (c) time domain of steel gear pair, 4330 r/min; (d) frequency
domain of steel gear pair.
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Figure 8. Dynamic response of epoxy gear pair: (a) Kv; (b) DTEs.

As shown in Figure 9, when the rotational speed continues to rise, the KDTE curve
of the epoxy gear pair generally shows a marginally decreasing trend and multiple peak–
trough structures. Specifically, the overall decreasing trend occurs as a result of the short-
ened creep time of the epoxy gear tooth, and the nonlinear dynamic behavior of the gear
pair gives rise to the peak–trough structures. Additionally, the KDTE curve of the epoxy
and steel gear pairs are noticeably different—namely, the former is less than 1 while the
latter is greater than 1. This signifies that the DTE of the epoxy gear pair is lower than its
STE when the creep behavior and mesh excitation are considered simultaneously, whereas
the DTE of the steel gear pair is greater than its STE because of the absence of creep.
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Figure 9. Comparison of KDTE between the epoxy gear pair and the steel gear pair.

3.5. Relations between Kv and KDTE

As shown in Figure 10, the variation trends in the Kv and KDTE of the steel gear pair
are basically identical, indicating a good linear correlation. This phenomenon is consistent
with the findings reached by Hotait [23] through experimental tests. In contrast, the Kv of
the epoxy gear pair shows poor linear correlation with its KDTE (Figure 11a). For instance,
at nearly 4300 r/min, the Kv curve of the epoxy gear pair peaks, thereby demonstrating
that the DMF is a local maximum value; a trough appears on the KDTE curve, thereby
indicating that the DTE is a local minimum value. Additionally, as highlighted by the
red rectangle in Figure 11a, the KDTE in this region shows an upward trend, while the Kv
shows a downward trend. To reveal the causes of this phenomenon, further inspections
were done at 3980 r/min and 4280 r/min. As shown in Figure 11b, with the increase of
rotational speed, the peak value of the DTE of the plastic gear pair increases, which will
cause the increase of the meshing force component F0 in Equation (7). However, as shown in
Figure 11c, with the increase of rotational speed, the absolute value of the derivative of DTE
decreases, which will cause the decrease of meshing force component Fi (i = 1, 2, . . . , l)
in Equation (7). Finally, although the dynamic transmission error increases, the dynamic
meshing force decreases.
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4. Conclusions

Because plastic gears have the advantages of self-lubrication, light weight, and high
production efficiency, they are widely used to transmit power as a replacement for metal
gears. However, when loaded, plastics have different deformation rules than metals, which
can affect the gear dynamics. In this study, the dynamic characteristics of epoxy and steel
gear pairs with the same basic parameters are systematically compared under the same
working conditions. The main conclusions are described below.

1. The dynamic load factor (Kv) of the epoxy gear pair is smaller than that of the steel gear
pair at low rotational speeds. With increased rotational speeds, both gear pairs’ Kv
curves show some peaks and valleys. However, the rotational speeds corresponding to
the peak values of the different gear pairs’ Kv curves are different, and the maximum
Kv of the epoxy gear pair is smaller than that of the steel gear pair. This means that
the plastic gear can restrain the meshing impact, and it has a generally lower dynamic
meshing force than the steel gear pair.

2. The dynamic transmission error factor (KDTE) of the epoxy gear pair is less than one,
while the KDTE of the steel gear pair is greater than one. Specifically, the KDTE of
the epoxy gear pair decreases rapidly with the increase of the rotational speed at
low speeds. In contrast, it decreases slowly with weak peak–valley characteristics at
high speeds. However, the KDTE of the steel gear pair shows obvious peak–valley
characteristics in the whole speed range. This means that the position accuracy is
the weak point of plastic gears, and this feature is significantly affected by the speed,
especially when the operating speed is low.

3. The Kv of the epoxy gear pair has poor correlation with its KDTE, whereas the Kv of
the steel gear pair has good correlation with its KDTE. This means that the way to in-
directly evaluate the dynamic meshing force by measuring the dynamic transmission
error, which is often used for metal gears, is less effective for plastic gears.
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Nomenclature

α pressure angle
δk sum of normal deformation of tooth pair k
ε material strain
εα theoretical profile contact ratio (without tooth modification)
δ material stress
τi retardation time for viscoelastic material
∆1, ∆2 deformation component of standard linear solid model
b tooth width
ci damping component of viscoelastic gear tooth model
cjx, cjy bearing damping of the gear j in the x and y directions
gi statistical weight of viscoelastic material’s Prony series
ki stiffness component of viscoelastic gear tooth model
k∞ stiffness component of viscoelastic gear tooth model
kjx, kjy bearing stiffnesses of the gear j in the x and y directions
m gear module
mj mass of gear j
pb base circle pitch
rb base circle radius
t time
Cg geometric influence coefficient connecting gear tooth stiffness K and material elastic modulus E
E material elastic modulus
Fm total meshing force of gear pair (one or more tooth pairs)
Ft meshing force for single tooth pair
Jj moment of inertia of gear j
K linear displacement stiffness of gear teeth along the line of action
K0 instantaneous tooth stiffness
Ka tooth axial compressive stiffness
Kb tooth bending stiffness
Kf fillet-foundation stiffness of tooth
Kh Hertzian contact stiffness of tooth
Ks tooth shear stiffness
Kv dynamic load factor
KDTE dynamic transmission error factor
Sa primary clearances of the tooth pair in the region of the early approach
Sr primary clearances of the tooth pair in the region of the retarded recess
Zj tooth number of gear j
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