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Abstract: Since wind turbines are exposed to harsh working environments and variable weather
conditions, wind turbine blade condition monitoring is critical to prevent unscheduled downtime and
loss. Realizing that common convolutional neural networks are difficult to use in embedded devices,
a lightweight convolutional neural network for wind turbine blades (WTBMobileNet) based on
spectrograms is proposed, reducing computation and size with a high accuracy. Compared to baseline
models, WTBMobileNet without data augmentation has an accuracy of 97.05%, a parameter of 0.315
million, and a computation of 0.423 giga floating point operations (GFLOPs), which is 9.4 times
smaller and 2.7 times less computation than the best-performing model with only a 1.68% decrease
in accuracy. Then, the impact of difference data augmentation is analyzed. The WTBMobileNet
with augmentation has an accuracy of 98.1%, and the accuracy of each category is above 95%.
Furthermore, the interpretability and transparency of WTBMobileNet are demonstrated through class
activation mapping for reliable deployment. Finally, WTBMobileNet is explored in drones image
classification and spectrogram object detection, whose accuracy and mAP@[0.5, 0.95] are 89.55% and
70.7%, respectively. This proves that WTBMobileNet not only has a good performance in spectrogram
classification, but also has good application potential in drone image classification and spectrogram
object detection.

Keywords: wind turbine blade; defect detection; convolutional neural network; lightweight;
edge computing

1. Introduction

Wind power has become an important source of electricity for production and domestic
use due to the global energy crisis and the increasing demand for clean energy [1–4].
Wind power is one of the fastest growing renewable energy segments worldwide [5–7],
with advantages such as being clean and renewable and having technological maturity.
Nevertheless, wind energy still suffers from poor reliability and high operational and
maintenance costs, resulting in poor availability and affordability compared to traditional
energy sources [8–10]. Wind turbine blades (WTBs) are an important component of a
wind turbine (WT), accounting for about 20% of the total cost, and are also the component
with the highest failure rate [11,12]. Since commercial WTs are typically exposed to harsh
working environments and variable weather conditions, the operating time of WTBs is
greatly reduced due to various defects. Structural health monitoring (SHM) technologies
are major concerns for the wind industry and academia. The monitoring is reliable and cost-
effective, reducing long downtime and high maintenance costs and avoiding catastrophic
scenarios due to undetected failures [13]. In recent years, WTBs have gradually increased
in size, thus improving efficiency and energy production, but with a higher probability of
failure [14]. Therefore, studying the structural health monitoring of WTBs is significant and
meaningful [15,16].
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Early studies of WTBs structural health monitoring could be categorized into two
classes, noncontact measurement studies and contact measurement studies [17]. Contact
measurement studies mainly consist of stress measurements, vibration measurements, etc.
For instance, Wang et al. [18] utilized the multi-channel convolutional neural network
(MCNN) to automatically and effectively capture defect characteristics from raw vibra-
tion signals. Wang et al. [19] proposed a novel wavelet package energy transmissibility
function (WPETF) method, increasing the high-frequency resolution of vibration signals
while maintaining its low sensitivity to noise, for wind turbine blades fault detection.
However these methods may modify the physical, chemical, mechanical or dimensional
properties of WTBs. Hence, contact measurement is difficult for practical applications in
wind farms [20]. Noncontact measurement mainly includes acoustic testing and visual
testing. Acoustic testing is a technique employed for early defect detection mainly in the
frequency-domain. Tsai and Wang [21] developed a defect detection method based on
convolutional neural network for wind turbine blade surfaces, which analyzed the physical
correlation between surface conditions and acoustic signals of operating wind turbines
under realistic environmental conditions. Reddy et al. [22] proposed a WTB structural
health monitoring method by detecting the images with unmanned aerial vehicles and
discusses deploying the trained neural network model using a micro-web framework.

The structural health monitoring of wind turbine blades includes signal processing
and fault diagnosis. As the raw signals show no significant characteristic, these signals
need to be extracted before fault diagnosis [23]. Through signal processing, the features of
raw signals can explore the hidden information of defects. There are some commonly used
signal processing methods, such as fast Fourier transform (FFT) and short-time Fourier
transform (STFT). The FFT converts time-domain signals into frequency-domain, and loses
the information about time. To solve this problem, STFT is proposed to reserve the time and
frequency-domain information by moving a window of fixed length on acoustic signals
and applying the FFT on each segment. To distinguish the defects based on the features, it
is necessary to design a fault diagnosis algorithm. With the development of deep learning,
convolutional neural network (CNN) has been widely used in fault diagnosis due to the ad-
vantage of automatically extracting information without any human supervision [24]. Thus,
some academics have employed CNN to achieve defect detection. Edge-side lightweight
YOLOv4 [25] is proposed to achieve real-time safety management of on-site power system
work. The model takes the advantages of depth-wise separable convolution and mobile
inverted bottleneck convolution to reduce the size and computation of model with a high
accuracy. Zhang et al. [26] used a deep convolution generative adversarial network to
generate fault samples and used the residual connected convolutional neural network for
feature extracting and classification. Despite the successful applications of deep learning in
other fields, it still lacks in-depth research on the applications in wind turbine blade defect
detection. There are still some challenges for the use of deep learning [24].

(1) Data aspect: Defects of wind turbine blades are often repaired at an early stage,
making them difficult to be obtained. In addition, the diversity of defect categories
and degrees of wind turbine blades makes it hard to construct a complete dataset.

(2) Model aspect: Common convolutional neural networks mainly have good perfor-
mance on ImageNet, COCO and other datasets. The general trend has been to make
deeper and more complicated networks in order to achieve higher accuracy [27], re-
sulting in huge size and computation. Hence, these models cannot be carried out in
embedded devices for edge computing. The model for WTB defect detection should
be explored for actual scenarios.

(3) Explanation aspect: Deep learning is often treated as a black box due to its complexity.
Although these models enable superior performance, they lack the ability to decom-
pose into individual intuitive components, making them difficult to interpret [28].
Therefore, it is important and meaningful to build trust in deep learning.

To address the above challenges, a lightweight convolutional neural network called
WTBMobileNet for wind turbine blade defect detection is proposed. Specifically, for the
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data aspect, acoustic signals of different defect categories and degrees are collected from
three wind farms (Dawu, Diaoyutai and Xiaolishan) and analyzed in detail through spec-
trograms. In order to alleviate the problem of data imbalance, class-balanced loss function
is used in this study. For the model, WTBMobileNet is designed to implement multi-
scale and efficient feature extraction, mainly combining the advantages of GoogLeNet [29],
MobileNet [27] and ResNet [30]. The proposed model is compared with baseline networks
in multiple aspects, which proves its effectiveness and excellent performance. In addition,
the impact of different data augmentations on WTBMobileNet is analyzed, and the best-
performing model is trained through four data augmentations which have positive gains.
Finally, the application potential of WTBMobileNet is explored, demonstrating that the
proposed model has good performance in both drone image classification and spectrogram
object detection.

2. Methodology
2.1. Workflow of the Study

In order to apply CNN to wind turbine blade defect detection in embedded devices, a
lightweight convolutional neural network is proposed in this paper. This approach can be
outlined as in Figure 1:

(1) Acoustic signals are collected through the front-end acoustic acquisition system and
marked by professional institutions and wind farm employees.

(2) The time-domain acoustic signals are converted into spectrograms by short-time Fourier
transform, while retaining the time-domain and frequency-domain information.

(3) Spectrograms are divided into training, validation and testing sets by a stratified
sampling method, accounting for 70%, 10% and 20%, respectively.

(4) Data augmentation is employed for the expansion of the training set and the validation
set, which are used to train the model and adjust the learning rate, respectively.

(5) The testing set is used to determine the generalization and performance of the pro-
posed network.

Figure 1. The framework of wind turbine blade defect detection based on CNN.

2.2. Convolutional Neural Network

The convolutional neural network is the most famous and commonly network, auto-
matically identifying relevant features without any human supervision. CNN is stacked
by convolutional layers, pooling layers and fully connected layers [31]. The neurons in
the convolutional layer share the same weights and bias to generate the output feature
map, which are defined as a kernel or filter. The main task of the pooling layer is the
down-sampling of the input feature map. The most familiar and frequently utilized pooling
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method is the average-pooling layer that outputs the average of the values of the sub-area.
The full connected layer is located at the end of CNN and connected to all neurons of the
previous layer.

2.3. Short-Time Fourier Transform

The time-domain information and frequency-domain information of acoustic signals
represent the position and condition of WTBs, respectively. The Fourier transform considers
the entire signal, whose frequency information is averaged, and consequently loses the
information about time. Therefore, we process acoustic signals using the short-time Fourier
transform (STFT) while preserving the time and frequency-domain information. STFT [32]
extracts the segments of the time-domain signal by moving a window of fixed length on the
time-domain signal and applying the Fourier transform on each extracted segment, hence
providing time-localized frequency information in Figure 2, which can be expressed as

STFT(t, f ) =
∫ ∞

−∞
[x(τ)g(τ − t)]e−j2π f τdτ (1)

where x is the time-series signal, and g is the function of window.

Figure 2. The diagram of short-time Fourier transform.

2.4. Data Augmentation

Data augmentation is quite effective for audio to make a generalized model, which
increases the size of the dataset and avoids overfitting. Data augmentation for wave-
form is applied to raw time-series signals, which changes how they sound. Several basic
augmentation methods for waveform are as follows:

(1) GaussianNoiseSNR: add noise that follows normal distribution, and the amplitude is
decided by the Signal-to-Noise Ratio (SNR), which can be expressed as

SNR = 20 log10
As

An
(2)

where As and An are the amplitude of the signal and the noise, respectively.
(2) PinkNoiseSNR: add noise that follows a gradual decrease in noise intensity from low frequency

to high frequency, and the amplitude is determined by SNR.
(3) PitchShift: shift the pitch of a waveform by steps, and make the sound heard as an effect higher

or lower.
(4) TimeShift: shift waveform to the left or the right with a random second.
(5) VolumeControl: adjust the volume of the waveform.
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2.5. Lightweight Module Architecture

It is very difficult to deploy a convolutional neural network in practical applications [24].
The general networks trend to be deeper and more complicated in order to achieve higher
accuracy. Instead, these advances to improve accuracy are not necessarily making networks
more efficient with respect to size and speed [27]. In WTB defect detection, the task needs
to be carried out in a timely fashion on a computationally limited platform. Therefore,
reducing the size and floating point operations (FLOPs) of networks with a high accuracy is
a major problem. In this paper, a lightweight module for WTB defect detection (LW-Module)
is defined which reduces computation and size with a high accuracy. The architecture of
the lightweight module is shown in Figure 3.

The design of the lightweight module is based on Inception [29], shown in Figure 4a,
which increases the width and depth of a model without an uncontrolled blow-up in
computational complexity and abstract features at various scales. There is an inevitable
increase in the number of outputs which concatenates branch A, branch B, branch C and
branch D and it leads to a computational blow-up within a few stages. To solve the problem,
1 × 1 convolution, called projection, is used after the contact layer, which reduces the
number of outputs. To further reduce parameters and computation, depth-wise separable
convolution (DSC) [27] shown in Figure 4b is used in the module, which factorizes a
standard convolution into a depth-wise convolution and a pointwise convolution. The cost
of DSC and standard convolution is expressed in Equation (3). The DSC uses about 1/S2

k
times less computation than standard convolution at only a small reduction in accuracy.
With the depth increase of the network, degradation and vanishing gradient problems
have been exposed. The degradation problem is that accuracy becomes saturated and then
degrades rapidly. Therefore, shortcut connections [30] are employed in the module.

COSTDSC = Sk ∗ Sk ∗ Cin ∗ S f ∗ S f

+ Cin ∗ Cout ∗ S f ∗ S f

COSTconv = Sk ∗ Sk ∗ Cin ∗ Cout ∗ S f ∗ S f

COSTDSC
COSTconv

=
1

Cout
+

1
S2

k

(3)

where Sk is the size of the kernel, S f is the size of the feature map, Cin is the input channels,
and Cout is the output channels.

Figure 3. Principle and structure diagram of lightweight module.
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Figure 4. Schematic of: (a) inception; (b) depth-wise convolution; (c) standard convolution;

2.6. Evaluation Metrics

Wind turbine blade defect detection is treated as a classification problem, and the
confusion matrix is an effective evaluation method, shown in Table 1. We evaluate different
networks by accuracy, precision, recall and F1-score. In this study, defect detection is a
multi-class problem. Therefore, the metrics are calculated by weighted average which
averages the support-weighted mean per category. Different metrics can be expressed in
Equation (4). Moreover, class activation mapping (CAM) [33] is used to build a generic
localizable deep representation that highlights exactly which regions of an image are
important for discrimination.

accuracy =
TP + TN

TP + FN + FP + TN

precision =
TP

TP + FP

recall =
TP

TP + FN

F1-score = 2 × precision × recall
precision + recall

(4)

Table 1. The confusion matrix: 0: normal; 1: abnormal.

Predicted
0 1

label 0 True positive (TP) False negation (FN)
1 False positive (FP) True negative (TN)
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3. Empirical Analysis
3.1. Dataset

The acoustic signals are acquired by two specialized outdoor devices from three wind
farms (Dawu, Diaoyutai and Xiaolishan), namely CUBE produced by 01dB and DR-60D
produced by TASCAM. The technical specifications of the devices are shown in Table 2. The
spectrograms are extracted from acoustic signals whose length is 10 s by STFT. The dataset
built by spectrograms contains a total of 4737 images. It is composed of several defects,
such as crack, unbalance and others. All spectrograms are divided into four categories
according to the frequency and shape of the defect information, namely Normal, Defect 1,
Defect 2 and Defect 3, respectively. The spectrogram of each blade is the same for normal
signals, and it is easy to be discriminated. Defect 1 is similar to Defect 2, and the defect
information appears periodically. The main difference is the frequency band and shape of
the defect information, as shown in Figure 5b,c. Defect 1 is a low frequency defect (below
10 kHz), and the defect information is difficult to distinguish due to the high noise. Defect
2 is a high frequency defect (above 10 kHz), and defect information is easy to distinguish.
Defect 3 is special, and the spectrogram of one blade is stronger than the other two. Finally,
the dataset is divided into training, validation and testing sets by a stratified sampling
method, accounting for 70%, 10% and 20%, respectively. Table 3 shows the details of
training, validation and testing sets.

Figure 5. The spectrogram of (a) normal (CUBE, Dawu); (b) Defect 1 (DR-60D, Dawu); (c) Defect 2
(DR-60D, Dawu); and (d) Defect 3 (CUBE, Diaoyutai).

Table 2. Technical specifications of the acquisition devices.

Specification CUBE DR-60D

frequency response 3.15 Hz∼20 kHz ± 2 dB 20 Hz∼20 kHz + 0.5/−2 dB
nominal sensitivity 50 mV/Pa 31.6 mV/Pa
temperature range −40 °C∼ + 120 °C 0 °C∼ + 40 °C

sampling frequencies 51,200 44,100
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Table 3. Details of each dataset.

Category Training Validation Testing

normal 785 112 224
defect 1 555 80 159
defect 2 1224 175 350
defect 3 751 107 215

total 3315 474 948

3.2. Training WTBMobileNet

To carry out real-time WTB defect detection on the embedded device raspberry pie,
we design a lightweight network based on an LW-Module, which is called WTBMobileNet.
The WTBMobileNet is built on several stacked LW-Modules as mentioned in the previous
section except for the first layer which is a standard convolution. The architecture of WTB-
MobileNet is defined in Table 4. The WTBMobileNet is stacked by a standard convolution,
6 LW-Module, average pool and a linear layer. All layers are followed by a batchnorm
and LeakReLu nonlinearity function with the exception of the first standard convolution
layer which is followed by a hard swish [34] and the final linear layer which has softmax
nonlinearity function.

For the process of training, the spectrogram is resized into 512 × 512 taking RGB color
channel with mean subtraction. The WTBMobileNet is implemented and trained in PyTorch.
Adam with a batch size of 64 is used to update the model. The initial learning rate is 0.01
and the scheduler is ReduceLROnPlateau that reduces the learning rate when a metric has
stopped improving, and cross entropy loss is used to estimate WTBMobileNet performance
during the optimization process. For the best-performing model, the WTBMobileNet with
the maximum F1-score in the validation set is saved.

The curve of error for training and validation sets is shown in Figure 6. With the
increase of epoch, the errors for both training and validation sets initially decrease and
finally remain stable at a large epoch. When WTBMobileNet converges, the error between
both is about 0.012, which means there is no overfitting. Since the natural noise improves
the robustness of acoustic signals, the overfitting effect is suppressed.

Figure 6. The error of WTBMobileNet with the epochs increasing.
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Table 4. Architecture of WTBMobileNet.

Type Size Stride Output Size Branch Output Size

convolution 3 × 3 2 256 × 256 × 16
LW-Module 2 128 × 128 × 32 10
LW-Module 2 64 × 64 × 40 16
LW-Module 1 64 × 64 × 40 20
LW-Module 2 32 × 32 × 96 48
LW-Module 1 32 × 32 × 144 72
LW-Module 2 16 × 16 × 576 144

Avg pool 16 × 16 1 1 × 1 × 576
Linear 1 × 1 × 4

3.3. Baseline Comparison

To verify the performance of WTBMobileNet for wind turbine blade defect detection,
four baseline networks are compared to WTBMobileNet. The details regarding the four
baseline networks are as follows:

(1) MobileNet is an efficient network that can be easily matched to an embedded device
for vision application, and the structure is built on depth-wise separable convolutions
except for the first layer which is a full convolution.

(2) ResNet solves the degradation problem and gains accuracy from considerably in-
creased depth. The architecture is a plain network with added shortcut connection.

(3) VGG is a network composed of a stack of standard convolutions followed by fully
connected layers. The function of the last layer is softmax.

(4) GoogLeNet focuses on efficient architecture that improves utilization of the computing re-
sources and has a significant quality gain compared to shallower and narrower networks.

As illustrated in Table 5, the proposed network achieves a high accuracy with a
minimum size and computation compared with the other baseline networks. The accuracy
of WTBMobileNet is as high as 97.05%. In terms of precision and recall, the proposed
network is above 97% for both ,and the F1-score is 0.9705. The VGG16 and VGG19 [35]
have bad performance for health monitoring of wind turbine blades. The predictions of
both for all spectrograms in the testing set are Defect 2, which means the networks cannot
distinguish different categories. This implies the stacked standard convolution may not be
able to fully mine the discriminative features from spectrograms for wind turbine blades.
Compared with the worst-performing model (GoogLeNet), WTBMobileNet is about 17.8
times smaller with 18.6 times less computation. The proposed network is 1.59% more
accurate than GoogLeNet, and there is an improvement of 1.56% and 1.59% with regards to
precision and recall, respectively. The best-performance model is the MobileNetV3 [34],
which is 1.68% more accurate than the proposed method. However, WTBMobileNet is
about 9.4 times smaller with 2.7 times less computation. In addition, the performance of
WTBMobileNet can be improved to the same level when using data augmentation. Overall,
WTBMobileNet has good performance in wind turbine blade health monitoring and has
potential for practical applications.

Table 5. Performance of baseline comparison on spectrogram dataset.

Model Accuracy Precision Recall F1-Score Normal Defect 1 Defect 2 Defect 3 FLOPs
(G)

Params
(M)

MobileNetV3 98.73 98.75 98.73 0.9874 98.21 98.11 98.86 99.53 1.161 2.976
ResNet34 97.89 97.94 97.89 0.9790 96.88 96.23 98.86 98.60 19.178 21.287
ResNet50 98.31 98.32 98.31 0.9830 1.00 93.08 99.14 99.07 21.47 23.516
VGG16 36.92 13.63 36.92 0.1991 0.00 0.00 1.00 0.00 80.249 14.717
VGG19 36.92 13.63 36.92 0.1991 0.00 0.00 1.00 0.00 101.999 20.026

GoogLeNet 95.46 95.52 95.46 0.9546 95.98 88.05 98.00 96.28 7.857 5.604
WTBMobileNet 97.05 97.08 97.05 0.9705 98.66 91.82 98.00 97.67 0.423 0.315
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3.4. WTBMobileNet Result

The result of WTBMobileNet is displayed in a confusion matrix, as shown in Figure 7a,
where the x-axis is label type and the y-axis is predicted type. The WTBMobileNet without
augmentation can accurately distinguish most spectrograms in the testing set, and only
28 samples are incorrectly identified. The proposed network exhibited the accuracy of
97.05%, precision of 97.08%, recall of 97.05% and F1-score of 0.9705. This means that
WTBMobileNet has a good performance in wind turbine blade health monitoring. However,
the proposed model is not good at identifying Defect 1 with an accuracy of only 91.82%
compared to 98.11% for MobileNetV3. This indicates that Defect 1 can theoretically be
identified accurately, and WTBMobileNet still has potential for improvement.

Figure 7. Confusion matrix of WTBMobileNet: (a) without data augmentation; (b) with data augmentation.

To improve the performance of WTBMobileNet, a data augmentation analysis is
performed. The results are presented in Tables 6 and 7. The five data augmentations
mentioned in the previous section are used to improve the performance of WTBMobileNet.
All augmentations except VolumeControl have positive gains. The accuracy improvement
of model B, C, D, E and F are 1.05%, 0.84%, 0.1%, 1.05% and −0.32%, respectively. As
illustrated in Table 7, GaussianNoiseSNR, PinkNoiseSNR, TimeShift and VolumeControl
significantly improve the ability to identify Defect 1, which is 4.41%, 3.78%, 4.41% and
6.29%, respectively. Therefore, WTBMobileNet, called model G in Table 6 is trained through
four data augmentations which have positive gains. Compared with model A (WTBMo-
bileNet without data augmentation), model G has 1.05%, 1.06% and 1.05% improvements
in accuracy, precision and recall, respectively. Moreover, model G significantly improves
the accuracy of Defect 1, from 91.82% to 95.6%. The confusion matrix of model G is shown
in Figure 7b. The number of misclassified spectrograms decreases from 28 to 18, and most
of them are misidentified as Defect 3. Further, all misclassified spectrograms are analyzed.
Some of them contain multiple defects at the same time, with the manually marked defects
being more pronounced. It is difficult to solve this problem by classification, so we try
object detection to deal with the problem in a later section.

Table 6. Augmentation comparison on spectrogram dataset. (The model of A∼G is WTBMobileNet.)

Augmentation A B C D E F G

GaussianNoiseSNR X X
PinkNoiseSNR X X

PitchShift X X
TimeShift X X

VolumeControl X

accuracy 97.05 98.10 97.89 97.15 98.10 96.73 98.10
change 1.05 0.84 0.10 1.05 −0.32 1.05
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Table 7. Performance of WTBMobileNet on different augmentation.

Model Accuracy Precision Recall F1-Score Normal Defect 1 Defect 2 Defect 3

A 97.05 97.08 97.05 0.9705 98.66 91.82 98.00 97.67
B 98.10 98.12 98.10 0.9810 96.88 96.23 99.43 98.60
C 97.89 97.91 97.89 0.9789 97.32 95.60 98.86 98.60
D 97.15 97.18 97.15 0.9714 98.21 91.82 98.00 98.60
E 98.10 98.17 98.10 0.9812 97.32 96.23 98.86 99.07
F 96.73 96.82 96.73 0.9674 94.20 98.11 99.14 94.42
G 98.10 98.14 98.10 0.9811 98.21 95.60 99.14 98.14

3.5. Visual Explanation

Networks based on convolution have unprecedented breakthroughs in vision application
but are often considered as black boxes because of their explanation and transparency [28].
Networks should not only be accurate, but also interpretable, especially when providing
incorrect predictions. Thus, interpretability is the key factor in this study. This makes the
networks not only more credible, but also more reliably deployable.

Class activation mapping showing the attention of networks is used to visually explain
the results of WTBMobileNet to make it more explainable and transparent. Figure 8 indi-
cates the visual explanation of four categories. For normal spectrograms, WTBMobileNet
pays attention to two frequency bands (1 kHz∼6 kHz and 13 kHz∼22 kHz), especially the
low frequency. This is in line with our expectation, since defects are mainly in these two fre-
quency bands. Regarding Defect 1 and Defect 2, the network focuses on the corresponding
defect information, respectively, as shown in Figure 8b,c. For Defect 3, the network mainly
focuses on the spectrogram of one blade which is stronger than the other two. The CAM
results for different categories show that WTBMobileNet accurately focuses on the defect
information of four categories, has good interpretability, and achieves reliable deployment.

Figure 8. Class activation mapping for: (a) Normal (CUBE, Dawu); (b) Defect 1 (DR-60D, Dawu);
(c) Defect 2 (DR-60D, Dawu); and (d) Defect 3 (CUBE, Diaoyutai).
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4. Discussion
4.1. Application for Image Classification

Visual inspection is also an important technique commonly used to find faults in
WTBs. In this section, a binary classification image dataset from drones inspection is built.
The image dataset has a total of 9235 images and is divided into training, validation and
testing sets in the same way as the spectrogram dataset. The detail of the the image dataset
is shown in Table 8. The performance of WTBMobileNet on the image dataset is explored,
comparing it to different baseline networks, as illustrated in Table 9. The proposed network
is the second-performing model with just 1.52% lower accuracy than the best-performing
model (GoogLeNet). However, WTBMobileNet is about 17.8 times smaller with 18.6
times less computation. In addition, the accuracy is 5.87%, 0.7% and 0.92% higher than
MobileNetV3, ResNet34 and ResNet50, respectively. As a result, WTBMobileNet reduces
the size and computation with only a small decrease in accuracy and has the potential for
drone inspection of wind turbine blades.

Table 8. Detail of each dataset on images.

Set Normal Abnormal Total

training 4502 1962 6464
validation 643 281 924

testing 1286 561 1847

Table 9. Performance of baseline comparison on image dataset.

Model Accuracy Precision Recall F1-Score Normal Abnormal

MobileNetV3 86.68 88.63 88.68 0.8865 92.30 88.39
ResNet34 88.63 88.79 88.63 0.8870 90.90 0.83
ResNet50 85.33 85.98 85.33 0.8554 86.94 81.64
VGG16 69.63 48.48 69.63 0.5716 1.00 0.00
VGG19 69.63 48.48 69.63 0.5716 1.00 0.00

GoogLeNet 91.07 90.98 91.07 0.9095 95.41 81.11
WTBMobileNet 89.55 89.71 89.55 0.8961 91.52 85.03

4.2. Application for Object Detection

In practice, wind turbine blades usually have a variety of defects at the same time,
so classification is difficult to use to solve the problem. Hence, Faster R-CNN [36] based
on WTBMobileNet is proposed to solve this problem. Mean average precision (mAP)
for different Intersection-over-Union (IOU) is used to evaluate the performance of the
model. The result of mAP@0.5, mAP@0.75 and mAP@[0.5, 0.95] are 96.4%, 73.6% and 70.7%,
respectively. Figure 9 shows some results on the spectrograms in the testing set. The red
is the ground-truth box, and the yellow is the predicted box. The Faster R-CNN based
on WTBMobileNet can identify and locate defects in the spectrograms well and achieve
multi-defect detection. Although some defects are not detected, this can be improved by
optimizing the model.
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Figure 9. Examples of object detection results on the spectrograms using the Faster R-CNN based
on WTBMobileNet. The red is the ground-truth box, and the yellow is the predicted box.

5. Conclusions

In this paper, to address the challenges of deep learning, a lightweight convolutional
neural network is proposed for the embedded devices, which reduces size and FLOPs with
a small decrease in accuracy, to implement wind turbine blade defect detection. Compared
with the baseline models, the proposed model has an accuracy of 95.6%, and the amount of
parameters and computation are 0.315 million and 0.423 GFLOPs, respectively. To further
improve the performance of WTBMobileNet, five data augmentations are analyzed, where
GaussianNoiseSNR, PinkNoiseSNR, PitchShift and TimeShift have positive gains. The
WTBMobileNet with four data augmentations has an accuracy of 98.1%, and improves the
accuracy of Defect 1 from 91.82% to 95.6%. In addition, the interpretability and transparency
of WTBMobileNet are demonstrated through CAM. Finally, WTBMobileNet is tested in
drone image classification and spectrogram object detection. The accuracy, mAP@0.5,
mAP@0.75 and mAP@[0.5, 0.95], is 89.55% and 96.4% and 73.6% and 70.7%, respectively,
proving that WTBMobileNet has great potential in these two applications.

In the future, we would like to further study the deep-learning-based defect detection
method for wind turbine blades from two aspects. First, we would like to optimize the
Faster R-CNN to achieve multi-scale and high-accuracy object detection in drone inspection.
Second, we would like to combine acoustics and vision to achieve multimodal defect
detection for wind turbine blades.
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