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Abstract: The main contribution of this article is creating synergy between subjects; this means
that students use the same graphical tool in several subjects. So far, the bond graph has not been
used in control theory, but it is the “native language” of mechatronics engineers, so we would
like to introduce it into the teaching of control theory. The bond graph method is proposed as a
novel teaching method to teach mechatronics subjects in the paper. The bond graph is a graphical
alternative to ordinary differential equations from a mathematical standpoint. Traditionally, control
theory employs ordinary differential equations, as they are familiar to control theorists. However,
mathematically, both approaches are equivalent but require a slightly different approach in their
application. This article highlights the mathematical similarities between the two approaches while
emphasizing the distinctions in graphical representation. Another contribution is that the PID and
sliding mode controller are represented using the bond graph method. In the meantime, through the
use of practical examples, we effectively illustrate how the same problem can be solved using either
approach. In the training materials, the PID controller and an adaptive robust sliding mode controller
(ARSMC) with the bond graph are utilized as examples to demonstrate synergy in mechatronics.
Finally, we present proof that mechatronic engineers achieve superior outcomes when utilizing the
bond graph approach, based on test results from undergraduate students.

Keywords: modeling and simulation; block diagram; bond graph; LabVIEW programming; PID;
SMC; adaptive robust control; synergy in mechatronics

1. Introduction

There is an increasing demand for the integration of control theory in everyday devices.
The equipment contains more and more controllers than before, which makes control
theory play a critical role in mechatronics engineering. Mechatronics is an interdisciplinary
subject, including electronics, mechanical, and control theory [1]. Traditionally, control
theory employs block diagrams, and block diagrams are derived from ordinary differential
equations(ODEs). ODEs could be substituted by the bond graph from a mathematical point
of view.

Mechatronics systems are defined as multidisciplinary engineering systems, combin-
ing precise mechanical engineering, electronic control, and intelligent software in a system
framework that is utilized in product design and production processes [1]. Mechatronics
engineering focuses on realistic problem solutions from a strong mathematical background
standpoint because of the cross-subject characteristics [2]. Mechatronics subjects are inter-
disciplinary, which means the students need to master the knowledge of multiple subjects
to fulfill the requirements of daily study [3]. Mechatronics engineering includes four com-
ponents: mechanics, electronics, computers, and control methods. The more components
involved, the more technologies and teaching methods [4]. The education of undergraduate
mechatronics engineering should focus on fundamental knowledge, due to the critical role
it plays [5]. After introducing the education aspect, from a robotics application point of
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view, mechatronics subjects need integration tools to achieve synergy since they contain
multidisciplinary field knowledge [6,7]. Bond graph is proposed as an integration graphi-
cal tool to present the synergy in mechatronics engineering, and it has been proposed as
the right choice for education students in modeling systems for decades [8]. The bond
graph has been not only as an intelligent design support in the education monitoring
system [9] but also as an interactive teaching modeling tool in bioengineering modeling
and simulation [10]. According to the paper [11], mechatronics subjects require a series of
operations such as analysis and assessment to draw students’ attention and accomplish
multidisciplinary. It points out that students prefer a relaxed and visual teaching method to
traditional teaching methods [12]. Therefore, this article uses a new teaching model in con-
junction with traditional education and develops a suitable teaching model by analyzing
and assessing students.

Bond graph is a graphical and visual tool to represent the energy flows in multiple
domains [13], it could represent many fields not only the thermomechanical field [14], but
also the mechatronics subject [15]. Besides applying simulation in multiple domains and
system-level understanding, the bond graph deals with fault diagnosis in the industry
field [16].

The bond graph has all the advantages of the visual representation. Visual representa-
tions such as graph illustrations and diagrams increased favorability with students [17].
The graph plays a pivotal role in various domains, and it is relevant for understanding and
comprehending [18]. Research from Stanford University said that visual representations
are not only for lower-level work but also for more advanced or abstract [19].

The proportional–integral–derivative (PID) controller is a classical linear controller [20–22]
in control theory. The benefits of adaptive reference control of the model are essentially
outlined in [23]. In control theory, there is no perfect controller; for example, the PID
controller response is quick, but there is an obvious oscillating response before reaching
the desired value as seen in the simulation [24]. Compared with the PID controller, the
sliding mode controller is a type of discontinuous or nonlinear control approach [25], which
provides nonlinearity in DC motor speed control [26]. The sliding mode controller is chosen
as a teaching material because it requires high nonlinear features and high abstraction in
the mechatronics engineering and control theory just as Figure 1 shows [27–29].
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Figure 1. Abstraction and non-linear features of mechatronics subjects.

A simple conclusion can be derived from all the surveys above: the mechatronics
subject is an interdisciplinary and complex subject for university students. And the task
for teachers is to figure out an easier method to teach relevant subjects. The bond graph
is proposed as the core method of mechatronics subjects, because of its power synergy
function and comprehensive graphical language.
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The core subject, ‘modeling and simulation’, integrates a high level of abstraction and
non-linear features as shown in Figure 1. Students need to spend plenty of time studying
mechatronics subjects using the traditional method. In this paper, a new teaching method,
the bond graph method with a high accelerated learning curve is proposed for students to
learn mechatronics subjects. It could help students learn and master the subject concepts
quickly compared with the traditional mathematical method.

Compared with the traditional methodology, students can derive block diagrams
directly from the bond graph without complex mathematical calculations. This comparison
indicates that the bond graph method is a more straightforward approach to explaining
system dynamics compared to the traditional mathematical method.

1.1. Motivation and Problem Statement

The bond graph is a powerful graphical tool in the control system. The demand for
control theory in everyday devices is expanding, necessitating the involvement of not only
dedicated control specialists but also a wider range of engineers to fully embrace control
theory. However, it is essential to introduce an alternative teaching method to effectively
engage non-specialists in understanding and applying control theory principles. The
objective is to empower mechatronic engineers to extend their proficiency in mathematical
modeling tools from mechatronics design to control system design.

From the mechatronics point of view, the DC motor with control is a good example
since it has electrical and mechanical parts. From the control theory perspective, DC motor
control is very simple since the generation of the magnetic field and generation of the
torque can be controlled separately. We can assume that the magnetic field is constant, and
we focus on the rotation of the motor. Three possible variables can be controlled: torque,
angular velocity, and position angle.

The very basic controller type is the PID all textbooks on control start with. What is
very new in this article is the bond graph description of the PID controller.

The sliding mode control (SMC) is selected as a little bit of an advanced control. It
is popular in the field of motion control since the real system always consists of power
electronics elements. The term ’power electronics’ refers to switching-mode transistors,
making it a typical variable structure system. Sliding mode is a special operation mode of
variable structure systems. The realization of a sliding mode controller is straightforward
from an engineering standpoint; however, the mathematical description of the sliding mode
requires highly sophisticated mathematical techniques [30]. Undergraduate students can
write a simple code for sliding mode control even if they do not understand the whole and
deep theoretical background.

The professor decided on the bond graph method as a practical graphical tool [31,32]
for the modeling subject in the mechatronics engineering faculty University of Debrecen
around 2015. First, the bond graph was introduced to MSc students in Control Theory
subject, and later we introduced it in undergraduate Basics of Mechatronics (first semester)
and Modelling and Simulation subject (fifth semester). According to the literature, PID and
sliding mode controllers have not been represented using the bond graph before.

1.2. Structure of the Article

In this paper, the novel teaching method structure is as follows: the Section 2 introduces
the simulation of the DC motor using the traditional method and the bond graph. Section 3
demonstrates the teaching methods to mechatronics undergraduate students using a PID
controller. In Section 4, the paper proposed a simple sliding mode controller with a general
target model and an adaptive robust sliding mode control with the real motor parameters
as nonlinear-control teaching materials. The controllers and the model are simulated using
the bond graph method. And, in the following section, the paper presents sample tests
conducted on undergraduate students from the mechatronics department, at the University
of Debrecen. The results are showcased in a chart format, providing evidence to support



Machines 2023, 11, 959 4 of 19

the claim that the bond graph method is an efficient and acceptable learning tool compared
to the traditional mathematical method for mechatronics engineering students.

2. DC Electrical Machine Modeling

A DC motor is the demonstration model utilized as a teaching material in this course.
The DC electrical machines are applied as a fundamental actuator model in undergraduate
mechatronics engineering study. Most electrical machines can be simplified as DC electrical
machines. As a result, DC electrical machines are commonly employed as actuation
elements in industrial applications. The DC electrical machines are simple to model and
analyze, making them ideal for educational purposes.

The electrical circuit on the left side is connected by a voltage resource, an inductor,
and a resistor with a series connection. The mechanical side relates to a gearbox and
winding with moments of inertia. An “ideal motor” connects electrical and mechanical
parts in Figure 2. The ideal motor is modeled as a resistance Ra, an inductor La and back
electromotive force Vem f .
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Figure 2. Schematic of DC electrical machine with a gearbox and a load.

An ideal gearbox with the ratio set to N1/N2 = 81/1 is added to the DC motor
model for convenient simulation, where the torque and angular velocity relationship are
T1/T = N1/N2, and ω1 ∗ N1 = ω ∗ N2.

2.1. DC Motor Modeling Using Ordinary Differential Equation (ODE)

A mathematical representation of the DC motor is shown in the following (1) and (2).

L
dia

dt
= Va − R ∗ ia − ke ∗ω ∗ N2

N1
(1)

J
dω

dt
= km ∗ ia ∗

N2

N1
− B ∗ω− TL (2)

where the left side of the rotor is the electrical part, the circuit consists of a resistor Ra(Ω);
an inductor La(H); Vem f is the back electromotive force Vem f = ke ∗ ω; Va(V) is the ar-
mature voltage; and ia(A) donates the armature current of the electrical circuit. On the
right side of the rotor, T1(Nm) is the electromechanical torque generated by the motor,
T(Nm) is the torque transform by gearbox, and TL(Nm) denotes the load torque. ω(rad/s)
shows the speed of the motor, ω1(rad/s) donates the speed of the rotor, J

(
gcm2) and

B(Nms/rad) represent the rotor inertia and the viscous friction of the DC motor electri-
cal part. ke(Vms/rad) and km(mNm/A) represent the gyrator’s back EMF constant and
motor constant, respectively.

The time constant is a critical parameter of the DC motor which could provide a rough
estimate of DC motor response time; the step time of simulation should be shorter than the
DC motor time constant. Electrical constant = L/R = 106.38× 10−6 s = 0.106 m.
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The low pass filter time constant at the D-part in the PID controller is set to 1 ms; it
has the same order as the electrical time constant of the motor. The rotor inertia and the
mechanical time constant could derive the coefficient of viscous friction: 0.898 Nms/rad.
And the torque constant is equal to the back EMF constant: 16.8 Vms/rad. DC motor and
gear drive parameters are all based on the motor Maxon A-Max26 (1109961) and gear drive
(110396) shown in Tables 1 and 2.

Table 1. Parameters of Maxon A-max 26 (110961).

Maxon A-Max 26 (110961)

Nominal torque 17.4 mNm

Nominal current 1.08 A

Terminal resistance 3.13 Ω

Terminal inductance 0.333 mH

Mechanical time constant 14.7 ms

Rotor inertia 13.2 gcm2

Torque constant 16.8 mNm/A

Table 2. Parameters of Gear Drive (110396).

Gear Drive (110396)

Reduction 81:1

Number of stages 3

Max continuous Torgue at Gear output 1.8Nm

Max efficiency 80%

2.2. Bond Graph Modeling in the Control Loop in Mechatronics Engineering

The mathematical methodology solution could be more difficult if the schematic is
complex enough; in the meantime, the bond graph could prove an easier solution to solve
the same question of the traditional method.

Our department uses the bond graph method to derive the block diagram rather
than using the usual method. The bond graph may be constructed immediately by the
schematic, obviating the steps of traditional formula analysis. The bond graph could
merge two separate field systems. The DC electrical machine is an excellent example to
demonstrate this principle.

The bond graph of the DC motor is depicted in Figure 3. There are two parts to
the bond graph. The electrical and mechanical parts are represented by two 1−junctions,
respectively. The gyrator connects two parts since the DC motor can convert one form of
energy to another form of energy. TF represents the gearbox in the schematic because the
energies’ form is the same as the gearbox. The numbers on the bond are the notation, which
could help with visualization and calculation of the energies and flows.

The block diagram can be derived from the bond graph method shown in Figure 4. It
analyzes the directions of energies and flows instead of complex mathematical calculations.
The bond graph method is much more acceptable than the traditional learning method for
the students.

The relation of all the components is in the flowing: the first 1–junction represents
the common flow energy; the common flow is the current of the electrical circuit. The
calculation of the 1–junction is the effort energy: e1 = e2 + e3 + e4, the output of the
first junction is e3. Then, the equation is e3 = e1 − e2 − e4. The same concept applies
to the second 1–junction, e8 = e6 − e9 − e7. TF is the gearbox and the ke and km are the
GY parameters.
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The final goal of the “modeling and simulation” subject is to study the performance or
methodology comparison from the simulation data. The simulation software is LabVIEW–
2014, and the LabVIEW code could be generated from the block diagram above shown in
Figure 5.
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A comparison of the two methods is shown in Figure 6. The right side is the traditional
mathematical method using the ordinary differential equation (ODE) and state-space to
derive the block diagram. The bond graph method is proposed on the left side, the bond
graph could be converted from the schematic directly, and the block diagram can be derived
by analyzing the bond graph energies’ flow.
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The two methods are essentially the same with minor differences in details. The block
diagram derived from the bond graph can implicitly explain the directions of energy flows.
The bond graph is an efficient method to derive the block diagram. It does not mean that
the bond graph method is better than the ODE; the bond graph method could provide a
clear relationship of the whole system from the graphical point of view in mechatronics
engineering. It could represent multiple domains using the same graphical language, which
could enhance the synergy in the mechatronics engineering subject.

3. Linear Control with the Bond Graph Method for Undergraduate Students

This paper not only presents new teaching methods for the students but also provides
teaching strategies. The teaching strategy is to make the knowledge modular; in the
meantime, it could train students to think by themselves when they face a new assignment
by building the knowledge brick by brick.

Linear control is a fundamental control method in the control theory. A PID controller
is a typical controller for the DC motor speed control in the linear controller domain.

Modular knowledge could be demonstrated using Figure 7. All the knowledge was
taught to the students modularly; students could solve new tasks by integrating knowledge.
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PID controller can be represented using the bond graph operational amplifiers sep-
arately. The bond graph of the PID controller contains an inverter operational amplifier,
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differential operational amplifier, and integral operational amplifier. The bond graph of the
PID controller is shown in Figure 8.
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The bond graph of the PID controller is another main contribution of the paper. The
input of the PID controller is the Se : u, which represents the error between the reference
input value and the measurement output value. u is the control signal of the DC motor
plant. The bond graph of the DC motor speed control using the PID controller is shown
in Figure 9. The GY symbol on the feedback bond graph is a tacho generator, which can
convert the flow energy into effort energy.
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Figures 8 and 9 seem to be not simple enough for the electrical and control engi-
neering students, but the figures could be a pleasant clear graphical language for the
mechatronics students.

Figure 10 shows the step response of DC motor speed control using the PID controller
with different ki. The overshoot of step response increases with the increases in the ki,
Where kp = 1, kd = 0.01. The results of the two methods are the same.

The plots can help students understand how the controller parameters affect the simu-
lation results. Trajectories e and

.
e of the PID controller could express the characteristics of

convergent performance. e and
.
e represent the position error and velocity error, respectively,

in Figure 11. All the trajectories converge to the origin point in a finite time. The position
error increases with the increase in ki.

The plots of the simulation from both methods are the same, but the methods to obtain
the simulation result are different. The bond graph method could be considered a novel
and powerful tool to solve simulation problems in mechatronics engineering.
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Figure 10. DC motor speed control using PID controller with varying ki.
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4. Nonlinear Control with the Bond Graph Method for Undergraduate Students

Nonlinear control was introduced to the master students at first in the mechatronics
engineering faculty at the University of Debrecen. With the iterative update of knowledge,
the acceptance of nonlinear control for undergraduate students has increased. The nonlinear
control is reintroduced in the undergraduate teaching materials because the sliding mode
is complex enough in the theoretical part and simple enough for undergraduate students
to implement. The sliding mode controller is one of the most efficient nonlinear controllers,
which would apply to the BSc teaching curriculum. This section presents a normal sliding
mode controller for position and speed tracking. Then, an adapt robust sliding mode
controller method is introduced using the general model and real DC electrical machine
parameters, respectively.

4.1. A Very Simple Sliding Mode Controller for Education Aim

The equations of the DC motor, (1) and (2), can be written in the following simple
second-order form:

J
..
θ(t) = u(t) + d(t) (3)
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where J is the moment of inertia; u(t) is the control input, i.e., the voltage of the motor; and
d(t) is the disturbance, which must be a limited function. It can include external functions
like the load torque and the internal first-order terms because of R and B. This means
that, in this case, we do not need to know all the parameters of the motor, only J is known
exactly. We would like to emphasize to the students that during the design of the controller,
the inductance of the rotor circuit (the electric time constant) is ignored. We consider it
as unmodelled dynamics, which is covered by the controller. It is quite common in the
engineering field that we start with a simple model. The goal is to use the simplest model,
which provides satisfactory results.

The sliding surface is designed as follows:

s(t) = ce(t) +
.
e(t) (4)

where c is satisfied Hurwitz condition, c > 0. Tracking error and tracking error derivative
are shown as follows:

e(t) = θ(t)− θd(t),
.
e(t) =

.
θ(t)−

.
θd(t) (5)

where,θd(t) is the ideal angle signal. A general sliding mode control block diagram shows
in Figure 12.
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Figure 12. A general sliding mode control.

Our goal is that s(t)→ 0 . The sliding mode occurs if s(t) = 0. In sliding mode, the
error tends to zero exponentially. The solution is quite easy from the mathematical point of
view; we have to find a proper Lyapunov and use the Lyapunov condition. We will show
this method in the next subsection but in our case, it can be explained by very elementary
mathematical tools as well. If s(t) > 0, then s(t) must be decreased, i.e.,

.
s(t) < 0. If

s(t) < 0 than s(t) must be increased, i.e.,
.
s(t) > 0. The students can understand it. In other

words, the signs of s(t) and
.
s(t) must be opposite, so we ask the students to express

.
s(t)

and substitute e(t) and
.
e(t) in the resulting formula. We can change the control signal only.

That is why we use a term in the control signal which changes according to the sign of s(t)
The easiest solution is the signum function. Finally, they can express the control signal u(t).
We can ignore all unknown terms of it and we assume that k is big enough to determine the
sign of

.
s(t). Since the operation area of a real motor is limited, the e(t) is limited as well.

In a certain area of e(t), a very simple control law can be applied:

u(t) = k ∗ sgn(s) (6)

where the choice of k must meet two contradictory conditions. If k is too small, it cannot
compensate for the disturbance; if it is too large, the chattering phenomenon causes prob-
lems. Therefore, it is advisable to calculate the so-called equivalent control signal ue(t),
which ideally keeps the system in sliding mode.

u(t) = ue(t) + k ∗ sign(s) (7)
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The sign function has to compensate for our calculation error only. If the system is
in sliding mode, then s(t) = 0 and

.
s(t) = 0, the equivalent control can be calculated from

the latter. .
s(t) = c

.
e(t) +

..
e(t)

= c
.
e(t) +

..
θ(t)−

..
θd(t)

= c
.
e(t)−

..
θd(t) +

u(t)+d(t)
J

(8)

Since d(t) is not known, it can be substituted by the signum function and the control
signal u(t) designed as

u(t) = J ∗
[
−c ∗ .

e +
..

θd − k ∗ sign(s)
]

(9)

In this case, a smaller k can be selected and the chattering can be reduced. The moment
of inertia J = 10, θd(t) = sin(t), position target, and speed target initial condition are set
to 0.3 and 1.0, respectively. d(t) = 0.5 ∗

.
θ(t) + 1.5 ∗ sign(

.
θ(t)), c = 0.5, k = 0.5. The result

simulation of position and speed tracking is shown in Figure 13.
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Figure 13. A general sliding mode control position and speed tracking.

The position and speed tracking performance is shown above. Some conclusions
can be derived from the plots, the initial condition of the position affects the tracking
performance in the general sliding mode controller. The speed tracking does not perform
well even if the initial speed is the same as the ideal signal. An adaptive robust sliding mode
controller is introduced to overcome the tracking error problem in the following section.

4.2. An Adaptive Robust Sliding Mode Controller

Adaptive control is a control method that can modify its characteristics to adapt to
the changes in the dynamic characteristics of the target and disturbances. Robust control
means that the control system maintains certain performance characteristics under certain
parameter perturbations. By applying the adaptive robust sliding mode control, the position
and speed tracking could track the ideal target well [33].

In the previous section, we emphasized that J is exactly known. Now, we also allow
parameter uncertainty in the case of inertia. Since this parameter uncertainty is also limited,
it can also be included in the disturbance signal d. In this section, as a didactic innovation,
we present a method where the uncertainty of the J parameter is not considered part of d,
but is calculated separately in such a way that the sliding mode control is combined with
the estimation of a J parameter. Parameter estimation itself is part of the curriculum.

The real and estimated inertia are J and Ĵ. The estimation error is

∼
J = Ĵ − J (10)

Our goal of s(t)→ 0 is extended by an additional goal
∼
J (t)→ 0 .
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The Lyapunov function consists of two terms one for s(t) and one for
∼
J (t).

V =
1
2

Js2 +
1

2γ

∼
J

2
(11)

where γ > 0 and V(t) ≥ 0. V(t) can be zero only if s(t) = 0 and
∼
J = 0, but these are our

goals. If V(t) > 0, then
.

V must be negative. Let us calculate
.

V,

.
V = Js

.
s +

1
γ

∼
J

.
∼
J (12)

According to (8),
J

.
s = J

..
θ − J(

..
θd − c

.
e) (13)

Substituting (3) and (13) into Equation (12),

.
V = s

(
u + d− J(

..
θd − c

.
e)
)
+

1
γ

∼
J

.
Ĵ (14)

The equivalent control signal is calculated from the first term of
.

V. Since J is inertia,
then J > 0. This means, J as a multiplier, does not change the sign of the product. It is not
known, so it can be substituted by its estimation, Ĵ. Two terms (−kss and k ∗ sign(s)) are
added to the equivalent control signal since in addition to suppressing the disturbance,
parameter adaptation must also be ensured. If s is big, then −kss is dominant; if s is small,
then k ∗ sign(s) is dominant. The control signal designed in the following way can ensure
convergence to the sliding mode:

u = Ĵ(
..

θd − c
.
e)− kss− ksign(s) (15)

where ks > 0, k > 0. Besides the control, a proper adaptation method must be selected as
well. Substituting (12) into (14),

.
V = s

(
Ĵ(

..
θd − c

.
e)− kss− ksign(s) + d− J(

..
θd − c

.
e)
)
+

1
γ

∼
J

.
Ĵ (16)

Equation (13) can be derived as

.
V = −kss2 − k|s|+ d ∗ s +

∼
J
(

s
( ..

θd − c
.
e
)
+

1
γ

.
Ĵ
)

(17)

Then, the adaptation law is selected by the last term of
.

V, which must be zero. Then,
the adaptive law can be set as

.
Ĵ = −γs

( ..
θd − c

.
e
)

(18)

4.3. Analysis and Fine-Tuning of the Adaptation

When s = 0,
.

V = 0, where
.

V = −kss2 − k|s|+ ∆ ∗ s ≤ −kss2 � 0. When
.

V ≡ 0, s ≡ 0.
When t→ ∞ , s→ 0 . The convergence of the system depends on the ks.

In order to prevent the control input signal u(t) from being too large due to too large
Ĵ, it is necessary to design the adaptive law so that the change in Ĵ is within the range of
[Jmin, Jmax]. A mapping adaptive algorithm is shown as

.
Ĵ =


0 i f Ĵ � Jmax and− γs(

..
θd − c

.
e) > 0

0 i f Ĵ � Jmin and− γs(
..

θd − c
.
e) < 0

−γs(
..

θd − c
.
e)

(19)
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When Ĵ exceeds the maximum value, if there is a tendency to continue to increase,
.
Ĵ > 0, then the value of Ĵ remains unchanged, then

.
Ĵ = 0; when Ĵ exceeds the minimum

value, if there is a tendency to continue to decrease,
.
Ĵ < 0, then the value of Ĵ remains

unchanged,
.
Ĵ = 0.

The position and speed tracking performance are shown in Figure 14. The initial
condition of the position and speed are set to 0.25 and 0, respectively, where J = 1 and
target position signal is set to sint; Jmax = 1.5, Jmin = 0.5, c = 15, ks = 15, γ = 200, and
k = 6.01. d(t) = 0.5

.
θ + 1.5sign(

.
θ). The control signal u is designed as u = ua + us1 + us2,

where ua = Ĵ(
..

θd − c
.
e) is the adaptive control part. Here, us1 = −ks ∗ s. us1 is the sliding

mode equivalent control. us2 = −k ∗ sign(s) is the sliding control unit. The control signal u
can be limited by the adaptive law in Figure 15.
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4.4. Adaptive Sliding Mode Controller Using Real DC Motor Parameters

After applying the simple sliding mode control and adaptive sliding mode control
to the basic target model, the real DC motor parameters from Table 1 are applied in the
adaptive sliding mode control.

Another main contribution of this paper is to introduce the way to represent the
sliding mode by using the bond graph method. The Bond graph of the adaptive sliding
mode is shown in Figure 16. Compared with the mathematical equations, the bond graph
method above presents all the energy flow of the adaptive robust sliding mode control.
The elements R and I are the type of energy in the bond graph. MTF is the modulated
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transformation; it can be considered as a gain in the bond graph. x1 : θ and x2 :
.
θ are the

position and speed, respectively, in the control loop. xd : θd is the ideal position input.
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The position and speed tracking are shown in Figure 17; the position and speed initial
condition is set to [0.2, 0.0]. The position performance can track the ideal position in a very
short period, and the speed has no oscillation as the initial point differs from Figure 14.
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The control signal u of the real DC motor parameters with saturation is shown in
Figure 18. Compared with the control signal in Figure 15, the adaptive sliding mode
controller is robust enough to track the position and speed with less oscillation and small
amplification control signal input, where the reaching parameter c = 5, γ = 50, k = 15.01,
and sliding parameter ks = 50. The plant model parameters are shown in Table 1.

In this section, a simple sliding mode with a general target is simulated in the first
section. It presents an unsatisfied position and speed-tracking performance. Then, an
adaptive robust sliding mode controller is proposed in the second subsection; it shows a
better position and speed tracking performance. For the mechatronics engineering students,
the bond graph of the whole system is presented in the third subsection; the bond graph
demonstrates the synergy of the mechatronics system from a combination of multiple
domains using the same graphical language.

The mathematical method (ODE) could help students build knowledge from the
background perspective. And the bond graph method could help the researchers solve the
problems from a novel graphical standpoint.
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5. Test Results of the Modeling and Simulation Course

The final test from the ‘Modeling and Simulation’ course is evidence that using the
bond graph method is easier than using the traditional mathematical technique to solve the
mechatronics system.

Each year, the sample test is divided into three problems, with students solving
each question using both the traditional mathematical approach and the bond graph
method. And each answer would have two different outcomes. A claim is that the high-
score strategy is the most convenient option for students to study for these three-year
sample examinations.

A total of 21 students were in the ‘Modeling and Simulation’ class in the first year; the
test results were collected to compare the ODE method and the bond graph method. The
questions were graded between 1 (fail) and 5 (excellent). The average and the mean of each
question are shown in Table 3. According to the numerical connection, the average of the
bond graph from questions one to three has increased by 16%, 26%, and 6%, respectively,
when compared to the control group ODE average.

Table 3. The first-year test result.

Question 1 Question 2 Question 3

ODE average 3.57 3.57 3.95
Bond graph average 4.38 4.86 4.24

ODE mean 3.28 3.35 3.56
Bond graph mean 4.31 4.83 4.06

Average (bond graph-OED) difference 0.81 1.29 0.29
Mean (bond graph-ODE) difference 1.03 1.48 0.51

Average (bond graph-ODE) difference (%) 16% 26% 6%
Mean (bond graph-ODE) difference (%) 21% 30% 10%

A total of 38 students attended the second-year test; the result is illustrated in Table 4.
When compared to the control group ODE average, the average of the bond graph from
questions one to three has grown by 22%, 16%, and 20%, respectively, according to the
numerical connection.

In the third year, 37 students finished the exam shown the results in Table 5. According
to the numerical connection, the average of the bond graph from questions one to three
has increased by 25%, 39%, and 33%, respectively, as compared to the control group
ODE average.
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Table 4. The second-year test result.

Question 1 Question 2 Question 3

ODE average 3.17 2.21 3.65

Bond graph average 4.26 3.03 4.63

ODE mean 3.19 1.72 3.14

Bond graph mean 3.84 2.47 4.35

Average (bond graph-OED) difference 1.09 0.82 1.00

Mean (bond graph-ODE) difference 0.64 0.72 1.21

Average (bond graph-ODE) difference (%) 22% 16% 20%

Mean (bond graph-ODE) difference (%) 13% 14% 24%

Table 5. The third-year test result.

Question 1 Question 2 Question 3

ODE average 3.14 1.70 1.65

Bond graph average 4.41 3.65 3.30

ODE mean 2.75 1.49 1.39

Bond graph mean 3.97 3.15 2.65

Average (bond graph-OED) difference 1.27 1.95 1.65

Mean (bond graph-ODE) difference 1.27 1.66 1.26

Average (bond graph-ODE) difference (%) 25% 39% 33%

Mean (bond graph-ODE) difference (%) 24% 33% 25%

When comparing three years vertically, the sample of students has grown, and the
disparity between the bond graph and the ODE has grown steadily each year. On the other
hand, the bond graph has an advantage in the teaching of mechatronics. It also demon-
strates that, for students, this is a more appropriate technique for studying mechatronics.

A t–test is performed to help determine whether there is a significant difference
between the bond graph solution and the ODE solution. The null hypothesis is that the
bond graph and the ODE have the same level of acceptance by students, which is reflected
by the same students using different methods for the same problems.

t =
x1 − x2√

s2
1

n1
+

s2
2

n2

(20)

where x1 is the mean of the bond graph sample, s1 is the standard deviation of the bond
graph, and n1 is the sample size of the bond graph. x2 is the mean of the ODE sample, s2 is
the standard deviation of the ODE, and n2 is the sample size of the ODE.

The t–test results are shown in Table 6:

Table 6. t value of three questions among three years.

Question 1 Question 2 Question 3

First year 0.00930 0.00001 0.26690

Second year 0.00266 0.00008 0.00004

Third year 0.0000004 0.00000058 0.0000025
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In general, the significance level is chosen to be 0.05, and the t value in Table 6 above
shows that the bond graph solution and the ODE solution have a significant difference. It
proves the bond graph method is more acceptable for mechatronics undergraduate students.

The three-year comparison histogram in Figure 19 shows that the students received
a higher score when they used the bond graph to solve the problems compared with the
ODE. Compared with the ODE, the bond graph is a more acceptable method for students
to solve questions in mechatronics engineering. It is straightforward to conclude that the
bond graph method is simpler than the traditional mathematical method in the ‘Modeling
and Simulation’ subject. It does not mean that the bond graph will replace the ODE method
in daily teaching, but the bond graph provides a new graphical perspective of the whole
system. It makes the bond graph a practical tool for learning “modeling and simulation”
subjects in mechatronics engineering and a smart tool for teachers to use.

Machines 2023, 11, x FOR PEER REVIEW 18 of 20 
 

 

Table 6. 𝒕 value of three questions among three years. 

 Question 1 Question 2 Question 3 
First year 0.00930 0.00001 0.26690 

Second year 0.00266 0.00008 0.00004 
Third year 0.0000004 0.00000058 0.0000025 

In general, the significance level is chosen to be 0.05, and the 𝑡 value in Table 6 above 
shows that the bond graph solution and the ODE solution have a significant difference. It 
proves the bond graph method is more acceptable for mechatronics undergraduate stu-
dents. 

The three-year comparison histogram in Figure 19 shows that the students received 
a higher score when they used the bond graph to solve the problems compared with the 
ODE. Compared with the ODE, the bond graph is a more acceptable method for students 
to solve questions in mechatronics engineering. It is straightforward to conclude that the 
bond graph method is simpler than the traditional mathematical method in the �Modeling 
and Simulation’ subject. It does not mean that the bond graph will replace the ODE 
method in daily teaching, but the bond graph provides a new graphical perspective of the 
whole system. It makes the bond graph a practical tool for learning “modeling and simu-
lation” subjects in mechatronics engineering and a smart tool for teachers to use. 

 
Figure 19. Histogram of the three questions results over three years. 

6. Conclusions 
There are three related subjects in the undergraduate student curriculum, “Basics of 

Mechatronics” (first semester), “Modelling and Simulation” (fifth semester), and “Control 
Theory”(sixth semester) in the Mechatronics Engineering Department, University of De-
brecen. In this paper, the bond graph is presented as a novel and reliable tool in the “mod-
eling and simulation” subject to connect these three related subjects. The subject synergy 
is connected by the bond graph method; it provides an efficient process to derive the sim-
ulation block diagram compared with the traditional mathematical method. On the one 
hand, the traditional method (ODE) helps students build the mathematical background; 
in the meantime, a blueprint of the whole system is presented graphically by using the 
bond graph method. On the other hand, multiple fields are represented using the same 
graphical language. It is also the objective and goal of scientific research to encompass a 

Figure 19. Histogram of the three questions results over three years.

6. Conclusions

There are three related subjects in the undergraduate student curriculum, “Basics of
Mechatronics” (first semester), “Modelling and Simulation” (fifth semester), and “Con-
trol Theory”(sixth semester) in the Mechatronics Engineering Department, University of
Debrecen. In this paper, the bond graph is presented as a novel and reliable tool in the
“modeling and simulation” subject to connect these three related subjects. The subject
synergy is connected by the bond graph method; it provides an efficient process to derive
the simulation block diagram compared with the traditional mathematical method. On the
one hand, the traditional method (ODE) helps students build the mathematical background;
in the meantime, a blueprint of the whole system is presented graphically by using the bond
graph method. On the other hand, multiple fields are represented using the same graphical
language. It is also the objective and goal of scientific research to encompass a variety of
research objects under the same theory. It is referred to as the synergy of mechatronics
engineering. Another main contribution of the paper is the representation of the PID and
sliding mode controller using the bond graph.

The example materials present that the bond graph method could provide a better
view of the whole system from a graphical language, and it is a handy tool to solve the
modeling questions for mechatronics students. The paper aims to provide mechatronics
students with a step-by-step introduction to the state of the art in the field of the ‘modeling
and simulation’ subject. Some dispersed problem assignments in Section Three and Section
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Four could properly guide students while also expanding their expertise. This novel
teaching style may aid students in learning how to construct a simulation based on a
real-world question.
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