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Abstract: In cooperative tasks, the ability to keep a kinematic relationship between the robots in-
volved is essential. The main goal in this work is to design a synchronization control law for mobile
manipulator robots (MMRs) considering a (2,0) differential mobile platform, which possesses a
non-holonomic motion constraint. To fulfill this purpose, a generalized trajectory tracking control
law based on the computed torque technique, for an MMR with n degrees of freedom, is presented.
Using Lyapunov stability theory, it is shown that the closed loop system is semiglobal and uniformly
ultimately boundedness (UUB) stable. To add position-level static coupling terms to achieve syn-
chronization on a group of MMRs, the control law designed for the trajectory tracking problem is
extended. Both experimental and numerical simulation results are presented to show the designed
controllers performance. A successful experimental validation for the trajectory tracking problem
using an 8 degrees of freedom (DoF) robot model (KUKA youBot) is depicted. Finally, numerical
simulations in the CoppeliaSim environment are shown, which are used to test the synchronization
control law made on the hypothetical scenario, where a two robot system has to manipulate an object
over a parametric trajectory.

Keywords: cooperative tasks; master–slave synchronization; static coupling; trajectory tracking;
mobile manipulator robot

1. Introduction

Entrusting a single robot to deal with complex or heavy tasks may not be the best
option: some tasks require more than one robot, so in that sense, the synchronization of
multi-robot systems represents a better solution. For this reason, it has been an intensive
area of research in the last decades. Cooperative manipulation is one of the methods used
to deal with the synchronization idea; it allows a multi-robot system to manipulate a heavy
and/or big object more efficiently than a single robot.

There are some classical approaches to achieve coordination on a robot system [1]: one
of them is the master–slave strategy, which is used in this work. In this strategy, a master
MMR is considered, which is in charge of setting up the trajectory reference for the slave
MMRs while using cross-coupled controls to synchronize motions amongst the robots;
therefore, a kinematic relationship can be maintained for a desired task.

There are some interesting approaches for synchronizing fixed-base manipulators,
for example, synchronization control based on output differential flatness [2]; in [3], the ro-
bustness of the sliding mode technique is considered; in [4], a system under parametric
uncertainties is considered; in [5], the authors deal with dynamical uncertainties; and in [6],
the problem of obstacle avoidance is solved. More recently, sophisticated controllers have
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been considered, see, for instance, [7], where a non-linear model predictive control is used
for the synchronization problem at position and force levels.

Mobile robots are also a case of study on synchronization. In [1], a swarm of mobile
robots that can switch between formations are presented; in [8], a discrete approach on
differential robots is developed; also, varying formations have been considered; this is the
case in [9].

For the case of control MMRs, there are some works reported for the trajectory tracking
control; in [10], the authors solved the trajectory tracking problem by designing a robust
controller based-on sliding mode technique; an extended state observer and movement
constraint in the mobile base was introduced in [11]; and another approach was taken
in [12], where the dynamical model of MMR is obtained by using Gibbs–Appell formulation
instead of the classical Lagrange methodology. However, these works do not consider the
synchronization approach.

The present work has the goal of synchronizing MMRs; to this end, a position-level
synchronization control law using a master–slave scheme with cross-coupled terms is
provided as an immediate extension of a trajectory tracking controller. The trajectory
tracking problem for a n DoF MMR is solved designing a non-linear control law based-on a
computed torque control with gravity compensation.

This work is organized as follows. In Section 2, the dynamic equations of the n
DoF MMR are developed. In Section 3, the controller design and stability analysis are
addressed. The master–slave synchronization is posted as an extension of the trajectory
tracking controller in Section 4. The results are depicted in Section 5, and the findings and
conclusions are summarized in Section 2.

2. Problem Statement

Consider the n DoF MMR configuration shown in Figure 1, where {0} frame corre-
sponds to inertial frame, and the end-effector frame is denoted by {e}.

(a) MMR (b) (2, 0) type differential mobile robot

Figure 1. n DoF MMR configuration.

Let us define n = nb + nm, where nb = 3 is the number of DoF for the mobile base
and nm corresponds to the number of DoF for the manipulator. This way, generalized
coordinates are defined as qb =

[
x y θ

]ᵀ for the mobile and qm =
[
φ1 φ2 · · · φnm

]ᵀ
for the manipulator. This yields q(t) =

[
qb

ᵀ qm
ᵀ
]ᵀ for the whole system, namely,

q(t) =
[
q1 q2 · · · qn

]ᵀ
=
[
x y θ φ1 φ2 · · · φnm

]ᵀ. (1)
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where (x, y, θ) is the Cartesian position and orientation of the mobile base on the (x0, y0)
plane and φi, i = 1, · · · , nm are the angular positions for the i-th link.

A (2, 0) type differential mobile robot is considered, meaning that the MMR platform
is governed by the kinematic model shown in (2) for the mobile part.

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω.

(2)

where (ẋ, ẏ) are the Cartesian velocities, θ̇ is its angular velocity on the (x0, y0) plane, and
v is the longitudinal velocity. From (2), it is easy to obtain the non-holonomic constraint
that the mobile robot satisfies as

ẋ sin θ − ẏ cos θ = 0. (3)

2.1. Forward and Inverse Kinematics

The deal with forward kinematics is being able to describe the pose of the end-effector
Xe as a function of q(t), i.e.,

Xe =

[ 0Pe
0Oe

]
= f (q), (4)

where 0Pe is the position vector of the end-effector measured from inertial frame {0} and
0Oe describes its orientation. Xe ∈ Rρ is defined on the task-space.

On the other hand, inverse kinematics is about finding solutions for q(t) given a pose
vector Xe, i.e.,

q(t) = f−1(Xe). (5)

For redundant robots, such as the MMRs considered, solving the inverse kinematics
is a complicated task since the number of DoF is greater than the task-space dimension,
i.e., n > ρ. This implies having multiple solutions for q(t) given a desired trajectory, which
could be a problem because some discontinuities could appear from one solution to another,
but it is also advantageous since the robot can satisfy a task in more than one way.

2.2. Generalized Dynamical Model

For a robot without kinematic constraints, the dynamical model can be described as

D(q)q̈ + C(q, q̇)q̇ + Ff(q, q̇) + G(q) = τ − Je
ᵀ(q)hr. (6)

where D(q) ∈ Rn×n is the inertia matrix; C(q, q̇)q̇ ∈ Rn×n is the Coriolis matrix; Ff(q, q̇) ∈
Rn is the force vector due to friction; G(q) ∈ Rn is the gravitational effects vector;
Je(q) ∈ Rρ×n is the Jacobian matrix that relates the articular velocities with the end-effector
velocities (Ẋe = Je(q)q̇); hr ∈ Rρ is the generalized forces vector due to robot interac-
tion with the environment, if there is no interaction with the environment Je

ᵀ(q)hr = 0;
τ =

[
Fx Fy τc τ1 τ2 · · · τnm

]ᵀ ∈ Rn is the control forces vector; Fx and Fy are the
translation forces on the x0 and y0 axis, respectively; τc is the mobile torque with respect to
its rotation axis; and τi, i = 1, 2, · · · , nm is the torque of the i-th link. All the torques and
forces on the mobile platform are shown in Figure 2.
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Figure 2. Forces and torques description on the mobile platform.

The problem with model (6) is that the non-holonomic constraint (3) is not satisfied.
The incorporation of the constraint into the dynamical model is achieved through the next
procedure, [13,14].

The non-holonomic constraint (3) can be re-written as A(q)q̇ = 0, with A(q) ∈ Rk×n

being k = 1 the number of independent constraints; this yields

A(q) =
[
sin θ − cos θ 0 01×nm

]
, (7)

where 01×nm is a row vector of nm zeros.
Let S(q) ∈ Rn×(n−k) be an invertible full-rank matrix that spans the null space of

A(q), i.e., Sᵀ(q)Aᵀ(q) = 0 is satisfied (or equivalently, A(q)S(q) = 0). Thus,

S(q) =


cos θ 0 01×nm

sin θ 0 01×nm

0 1 01×nm

0nm×1 0nm×1 1nm×nm

, (8)

with 0nm×1 a column vector of nm zeros and 1nm×nm the identity matrix of dimension
nm × nm.

An auxiliary vector η(t) ∈ Rn−k exists that satisfies

q̇(t) = S(q)η(t), (9)

which is defined as

η(t) =
[
η1 η2 · · · ηn−1

]ᵀ
=
[
v θ̇ φ̇1 φ̇2 · · · φ̇nm

]ᵀ. (10)

Let τi and τd be the left and right wheels torque, respectively, see Figure 2. It is possible
to write τ = B(q)τred with B(q) ∈ Rn×(n−k), where:

τred =
[
τd τi τ1 τ2 · · · τnm

]ᵀ (11)

B(q) =


1
R cos θ 1

R cos θ 01×nm
1
R sin θ 1

R sin θ 01×nm
L
R − L

R 01×nm

0nm×1 0nm×1 1nm×nm

. (12)

With R being the radius of the wheels and L the length from the longitudinal axis of
the mobile robot to the wheels.
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Finally, the constrained model is defined as follows:

D̄(q)η̇ + C̄(q, q̇)η + F̄f(q, q̇) + Ḡ(q) = τ̄(q)
q̇ = S(q)η

. (13)

where:

D̄(q) = Sᵀ(q)D(q)S(q) ∈ R(n−k)×(n−k)

C̄(q, q̇) = Sᵀ(q)D(q)Ṡ(q) + Sᵀ(q)C(q, q̇)S(q) ∈ R(n−k)×(n−k)

F̄f(q, q̇) = Sᵀ(q)Ff(q, q̇) ∈ Rn−k

Ḡ(q) = Sᵀ(q)G(q) ∈ Rn−k

τ̄(q) = Sᵀ(q)B(q)τred − Sᵀ(q)Je
ᵀ(q)hr ∈ Rn−k.

B(q) is called the motorization matrix, and it establishes the relationship between the
generalized forces vector τ of the unconstrained model (6) and a new control vector τred
used for the new model (13), where the non-holonomic constraint is satisfied. Notice that
the kinematic model (2) is inside the relationship (9); therefore, model (13) satisfies the
mobile constraint in a natural way.

2.3. Particular Case: KUKA youBot

The KUKA youBot is an 8 DoF industrial-type MMR (n = 8) that is also used for
research purposes [15]. It is composed of a 5 DoF arm mounted on a omnidirectional mobile
base, considered as a differential mobile base in this work by constraining the wheels of
each side of the platform so they move at the same velocity. See Figure 3.

Figure 3. KUKA youBot.

KUKA youBot wheels are of the Mecanum type; these kind of wheels are composed of
a series of rollers placed at 45 degrees from the rotation axis and allow for longitudinal and
transversal motion; however, when the two wheels of each side rotate at the same angular
speed and direction, the transversal velocity is zero, and the omnidirectional base can only
have longitudinal and angular velocities (see the kinematic model for an omnidirectional
platfom in [16]).

The following assumptions for the mobile base are considered:

• The two wheels of each side rotate at the same speed.
• The robot is running on a firm ground surface.
• The four wheels are always in contact with the ground surface.
• There is no slippage between the wheels and the ground surface.

With these considerations, and the fact that the moving direction of KUKA youBot
wheels is the mobile longitudinal axis, i.e., it has not orientation movement, the KUKA
youBot mobile base can be treated as a (2, 0) type differential mobile base [17].

The MMR configuration is depicted in Figure 4.
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(a) Lateral view (b) Top view

(c) End-effector

Figure 4. KUKA youBot configuration.

Consider the symmetrical elements (mobile base and links) in the KUKA configuration,
and the inertia tensor matrix of each element is defined as iIi = diag

{
Iixx Iiyy Iizz

}
,

i = m, b, 1, · · · , 5 measured in local frame; then, the parameters are defined as follows:

• cm, cb, ci, i = 1, · · · , 5: Mobile base, fixed link, and i-th link center of mass (CoM).
• mm, mb, mi, i = 1, · · · , 5: Mobile base, fixed link, and i-th link mass.
• hb, hc: Distance from the floor to mobile base, and mobile base height, respectively.
• R: Wheels radius.
• px, py, pz: Distances to the mobile base CoM.
• L: Distance measured from mobile base longitudinal axis to its wheels.
• Li, i = b, 1, · · · , 5: i-th link length.
• Lci , i = b, 1, · · · , 5: Length to the i-th link CoM.
• rb, rc: Radius measured on the (x0, y0) plane, from the fixed link CoM to the second

link base, and to the first link CoM, respectively.
• Lx: Distance measured on the (x0, y0) plane, from the mobile base centroid to the fixed

link centroid.
• iIi, i = m, b, 1, · · · , 5: i-th element inertia tensor.
• bqi , i = 1, · · · , 8: viscous friction coefficient related to the generalized coordinate qi.

2.3.1. Forward Kinematics

Let us define 0Pe =
[
xe f ye f ze f

]ᵀ as the position vector for the end-effector on the
inertial frame, and 0Oe =

[
ψe f ζe f

]ᵀ for the orientation, where ψe f is the end-effector
orientation with respect to the vertical axis (z0) and ζe f is the end-effector orientation with
respect to the horizontal axis (x0); the third orientation for the end-effector would be directly
affected by φ5, namely, the wrist rotation; however, for the task contemplated in this work
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this is not necessary, and it is not taken into account. The above considerations allow one
to define the end-effector pose as follows:

Xe =
[
xe f ye f ze f ψe f ζe f

]ᵀ. (14)

The end-effector is related to the inertial frame {0} through the homogeneous matrix
defined as:

0Te =

[ 0Re
0Pe

01×3 1

]
. (15)

where:

0Re =

 sin(φ1 − θ) sin φ5 − cos(φ1 − θ)α1 cos φ5 sin(φ1 − θ) cos φ5 + α1 cos(φ1 − θ) sin φ5 −α2 cos(φ1 − θ)
cos(φ1 − θ) sin φ5 + α1 sin(φ1 − θ) cos φ5 cos(φ1 − θ) cos φ5 − α1 sin(φ1 − θ) sin φ5 α2 sin(φ1 − θ)

α2 cos φ5 −α2 sin φ5 −α1

 (16)

0Pe =

 x + Lx cos θ + [rb + L2 sin φ2 + L3 sin(φ2 + φ3) + (L4 + L5) sin(φ2 + φ3 + φ4)] cos(φ1 − θ)
y + Lx sin θ − [rb + L2 sin φ2 + L3 sin(φ2 + φ3) + (L4 + L5) sin(φ2 + φ3 + φ4)] sin(φ1 − θ)

hb + hc + L1 + Lb + L2 cos φ2 + L3 cos(φ2 + φ3) + (L4 + L5) cos(φ2 + φ3 + φ4)

 (17)

α1 = cos(φ2 + φ3 + φ4), α2 = sin(φ2 + φ3 + φ4).

0Re ∈ R3×3 is the rotation matrix (another representation for orientation) and
01×3 =

[
0 0 0

]
.

2.3.2. Inverse Kinematics

From Figure 4, it is easy to see that orientations in (14) are defined as follows:

ζe f = θ − φ1 (18)

ψe f = φ2 + φ3 + φ4. (19)

where θ can be written in terms of mobile cartesian velocities —computing θ could be tricky
due to the tan−1(•) function. In order to avoid quadrant problems and inconsistencies
(such as having ẋ = 0), it is recomended to use atan2(•, •) function instead—, i.e.,

θ = tan−1
(

ẏ
ẋ

)
. (20)

A simple way for solving the inverse kinematics is defining a desired pose vector

Xed =
[

xe f d
ye f d

ze f d
ψe f d

ζe f d

]ᵀ
for the end-effector and a desired cartesian position

for the mobile base
[
xd yd

]ᵀ. This way, θ can be obtained in desired velocities terms
and the desired orientation ζe fd

can be used to obtain φ1 in (18). Setting (17) equal to
the end-effector desired position

[
xe fd

ye fd
ze fd

]ᵀ and using the desired orientation ψe fd
in (19), we obtain a system of non-linear equations that are numerically solved for φ2, φ3
and φ4.

Finally, note that φ5 does not affect the end-effector position nor orientation (φ5 is used
for rotating the wrist). We can simply establish φ5 as a constant.

2.3.3. Dynamical Model

The dynamical model is such that n = 8 (nb = 3 and nm = 5). The detailed definitions
of the KUKA youBot model can be found in [18].
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3. Trajectory Tracking Problem

Let qd(t) and ηd(t) be the desired position and velocity vectors, namely,

qd(t) =
[
q1d q2d · · · qnd

]ᵀ
=
[
xd yd θd φ1d · · · φnmd

]ᵀ (21)

ηd(t) = Sᵀ(qd)q̇d =
[
η1d η2d · · · η(n−1)d

]ᵀ
=
[
vd θ̇d φ̇1d · · · φ̇nmd

]ᵀ, (22)

to satisfy the non-holonomic constraint, in terms of desired values, we obtain

θd = tan−1
(

ẏd
ẋd

)
, (23)

the mobile velocity references are:

vd =
√

ẋ2
d + ẏ2

d, θ̇d =
ẋdÿd − ẍdẏd

v2
d

. (24)

The desired trajectories are designed to be smooth functions, i.e., at least twice differen-
tiable and considering that vd 6= 0.

Let us define the position and velocity error vectors:

eq = qd − q =
[
ex ey eθ eφ1 · · · eφnm

]ᵀ (25)

eη = ηd − η =
[
ev ėθ ėφ1 · · · ėφnm

]ᵀ. (26)

For a differential robot, the trajectory tracking problem can be solved by using a
leader-follower scheme, where the leader is proposed to be a virtual robot, and it describes,
ideally, the desired trajectory. The objective is that the actual robot converges with the
virtual robot [19]. This is represented in Figure 5.

Figure 5. Relative errors on differential robot local frame in a leader-follower scheme.

The trajectory tracking error vector, in the actual robot local frame, with respect to the
virtual robot, is defined as follows:

er =

erx

ery

eθ

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

ᵀxd − x
yd − y
θd − θ

. (27)

For an MMR with no interaction with the environment, the generalized trajectory
tracking control law is proposed as:

τred = P−1(q)H(q)
[
I−1(q, η) + η̇d + Kpeη + U(q, qd, ηd) + G∗(q) + Ff

∗(q, q̇)
]
∈ Rn−1. (28)
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where:
U(q, qd, ηd) =

[
u1 u2 · · · un−1

]ᵀ
u1 = k1erx

u2 = k2vd
sin eθ

eθ
ery + k3eθ

u3 = k4eφ1
...

un−1 = kneφnm

P(q) = Sᵀ(q)B(q), H(q) = D̄(q), I−1(q, η) = D̄−1(q)C̄(q, q̇)η

G∗(q) = D̄−1(q)Ḡ(q), Ff
∗(q, q̇) = D̄−1(q)F̄f(q, q̇).

With gains:

ki > 0, i = 1, . . . , n.

Kp = diag{kp1 kp2 . . . kpn−1} > 0 ∈ R(n−1)×(n−1) is a diagonal positive definite
matrix, U(q, qd, ηd) is the vector in charge of correcting the position error, G∗(q) is the
gravity compensation term, and Ff

∗(q, q̇) compensates friction effects.
The block diagram of the controlled system is shown in Figure 6.

Figure 6. Proposed control block diagram for MMR.

3.1. Closed-Loop Dynamics

Let

eΓ =

[
eβ

eµ

]
, (29)

be the complete error vector. Where the mobile platform error vector is represented by eβ,
and the manipulator error vector is denoted by eµ, i.e.,

eβ =
[
erx ery eθ ėθ ev

]ᵀ (30)

eµ =
[
eφ1 ėφ1 eφ2 ėφ2 · · · eφnm ėφnm

]ᵀ. (31)

The closed-loop dynamics are obtained by substituting (28) into the reduced model (13);
for the manipulator, we obtain:

ëφi + kpi+2 ėφi + ki+3eφi = 0, i = 1, · · · , nm, (32)

(32) represents a set of nm linear and decoupled systems. Considering kpi+2 , ki+3 > 0, it is
easy to prove asymptotic stability for states

[
eφi ėφi

]ᵀ at the origin, i.e.,
[
eφi ėφi

]ᵀ −→[
0 0

]ᵀ as t −→ ∞, corresponding to the manipulator angular positions and velocities.
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However, it is not that clear for the mobile base, whose closed-loop dynamics are repre-
sented by the set of equations:{

ėv + kp1 ev + k1erx = 0

ëθ + kp2 ėθ + k2vd
sin(eθ)

eθ
ery + k3eθ = 0.

(33)

3.2. Error Dynamics

Using Equations (25)–(27) and (2), it is possible to obtain:

ėx = ẋd + (ev − vd) cos(θd − eθ)

ėy = ẏd + (ev − vd) sin(θd − eθ)

ėrx = vd cos(eθ) +
(
θ̇d − ėθ

)
ery + ev − vd

ėry =
(
ėθ − θ̇d

)
erx + vd sin(eθ)

ėθ = eη2

ėφi = eηi+2 , i = 1, . . . , nm.

(34)

The so-called error dynamics conforms the set of Equations (32)–(34).

3.3. Stability Analysis

Note that there is no need to prove stability for the manipulator due to the linearization
achieved in the closed-loop dynamics section, see Section 3.1 (in any case, we provide some
proof of this in Appendix A). In the following, the mobile base stability is proven.

Let V
(
eβ

)
be the proposed Lyapunov candidate function:

V
(
eβ

)
,

1
2

k1

(
e2

rx + e2
ry

)
+

1
2

(
k3e2

θ + ė2
θ + e2

v

)
. (35)

The time derivative of (35), considering the error dynamics, can be written as:

V̇
(
eβ

)
= k1vderx (cos(eθ)− 1) + k1vdery sin(eθ)− k2vd

sin(eθ)

eθ
ėθery − kp2 ė2

θ − kp1 e2
v. (36)

The goal is to prove:

V̇
(
eβ

)
≤ ‖k1vderx (cos(eθ)− 1)‖+

∥∥∥k1vdery sin(eθ)
∥∥∥+ ∥∥∥∥k2vd

sin(eθ)

eθ
ėθery

∥∥∥∥− kp2

∥∥∥ė2
θ

∥∥∥− kp1

∥∥∥e2
v

∥∥∥ ≤ 0. (37)

Using that

‖erx‖ ≤
∥∥eβ

∥∥,
∥∥∥ery

∥∥∥ ≤ ∥∥eβ

∥∥, ‖ėθ‖ ≤
∥∥eβ

∥∥, ‖ev‖ ≤
∥∥eβ

∥∥,

an upper bound is found for every term in (37), i.e.,

k1‖vd‖‖erx‖‖cos(eθ)− 1‖ ≤ 2k1‖vd‖
∥∥eβ

∥∥
k1‖vd‖

∥∥∥ery

∥∥∥‖sin(eθ)‖ ≤ k1‖vd‖
∥∥eβ

∥∥
k2

∥∥∥∥vd
sin(eθ)

eθ
ėθery

∥∥∥∥ ≤ k2‖vd‖
∥∥eβ

∥∥2

kp2

∥∥∥ė2
θ

∥∥∥ ≤ kp2

∥∥eβ

∥∥2

kp1

∥∥∥e2
v

∥∥∥ ≤ kp1

∥∥eβ

∥∥2
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Then, (37) is re-written as:

V̇
(
eβ

)
≤ 3k1‖vd‖

∥∥eβ

∥∥+ (k2‖vd‖ − kp2 − kp1

)∥∥eβ

∥∥2 (38)

To assure that V̇
(
eβ

)
≤ 0, the following conditions are established:

Condition 1. Gains can be chosen such that:

k2‖vd‖ − kp2 − kp1 < 0. (39)

Condition 2. From the right hand side of (38), and considering that Condition 1 is satisfied, we
have to assure that the right term is greater than the left term in magnitude; this yields an interval
for the mobile base error vector norm of

‖eβ‖ ≤
3k1‖vd‖

kp2 + kp1 − k2‖vd‖
. (40)

In conclusion, we cannot guarantee asymptotic stability but rather we have an upper
bound for the mobile base error norm by a positive quantity; this is termed UUB stability [20],
p. 85.

Furthermore, (40) denotes a compact set, which can be made arbitrarily large by
adjusting the control gains, where the system will be stable. Therefore, semiglobal stabilization
is achieved [20], pp. 198–199.

4. Synchronization Problem

Two robots A and B in a master–slave configuration, being A the “Master” and B the
“Slave”, are considered, see Figure 7.

Figure 7. Master–slave scheme.

Let σd,i(t) =
[
qᵀ

d,i ηᵀ
d,i

]ᵀ
and σi(t) =

[
qᵀ

i ηᵀ
i
]ᵀ be desired and actual trajectories for

the i-th robot, respectively, where:

qd,i =



xd,i
yd,i
θd,i

φ1d,i
...

φnmd,i


, qi =



xi
yi
θi

φ1,i
...

φnm ,i


, ηd,i =


vd,i
θ̇d,i
φ̇1d,i

...
φ̇nmd,i

, ηi =


vi
θ̇i

φ̇1,i
...

φ̇nm ,i

, for i = A, B. (41)
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In this configuration, the master robot A is controlled independently of the movement
of the slave robot B. For the master robot, the trajectory tracking controller posted in the
previous section is used for tracking the desired trajectory σd,A. Meanwhile, the slave
reference is formed as a function of the master actual trajectories, i.e.,

σd,B(t) = f (σA(t)), (42)

this constitutes a uni-directional information flow (information is passed from master to
slave but not viceversa). In order to ensure feedback to the master, coupling errors for the
i-th robot with respect to the j-th robot are defined:

jεi ∈ Rn =



jecx ,i
jecy ,i
jecθ ,i

jecφ1 ,i
jecφ2 ,i

...
jecφnm ,i


=



erx ,i − erx ,j
ery ,i − ery ,j
eθ,i − eθ,j

eφ1,i − eφ1,j
eφ2,i − eφ2,j

...
eφnm ,i − eφnm ,j


, i 6= j. (43)

In a general framework, with more than two robots in the system, let us define Υ as
the set of robots in the whole system; Ωi ⊂ Υ is the subset in which the i-th robot and
its neighbors with whom it shares information are found, and let Ni be the number of
elements in Ωi, i.e., card(Ωi) = Ni, with card(Ωi) ≤ card(Υ). Therefore, the proposed
synchronization control strategy for the i-th robot is defined as:

τred,i = P−1(qi)H(qi)

[
I−1(qi, ηi) + η̇d,i + Kpeηi + G∗(qi) + F∗f (qi, q̇i) + U(qi, qd,i, ηd,i) +

Ni

∑
j∈Ωi

jUs,i

]
, i 6= j. (44)

where:
jUs,i ∈ Rn−1 = Λi

(
eqi

) jCi
jεi (45)

Λi
(
eqi

)
∈ R(n−1)×n =

 1 0 0 01×nm

0
sin(eθ,i)

eθ,i
1 01×nm

0nm×1 0nm×1 0nm×1 1nm×nm


jCi ∈ Rn×n = diag{ jCx,i

jCy,i
jCθ,i

jCφ1,i · · · jCφnm ,i }
eqi = qd,i − qi

eηi = ηd,i − ηi.

jUs,i is the term that contains the static couplings for the i-th robot with respect to
the j-th robot; this term is in charge to achieve synchronization. jCi is the positive definite
diagonal matrix of synchronization control gains for the i-th robot; eqi and eηi are the
position and velocity error vectors for the i-th robot, respectively. The remaining terms are
defined in (28) with respect to the i-th robot and are similar for the j-th one.

The provided synchronization strategy allows one to design networks of robots work-
ing together in different configurations. For the sake of clarity, in this paper only the
cooperative manipulation with two robots is kept; the synchronization scheme is shown
in Figure 8, where eri , i = A, B are the relative errors for the mobile base of the i-th robot,
see (27). In the following, the MMR position errors are used to obtain the coupling errors,
and both errors allow us to compute the control (44) for the i-th robot.
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In the next section, firstly, the control performance for one MMR is experimentally
tested for the trajectory tracking problem; subsequently, the master–slave scheme, using two
MMRs for the synchronization problem, is simulated under the paradigm of cooperative
manipulation, considering a virtual object.

Figure 8. Bi-directional flow information between two KUKA youBot robots.

5. Results
5.1. Trajectory Tracking Experimental Results

Communication with KUKA youBot is achieved using a TCP/IP protocol, through
sockets. This allowed us to have active communication between a server (external computer)
and a client (KUKA youBot), see Figure 9. KUKA youBot uses Ubuntu 12.04 LTS as OS,
and the programming language used in the external computer was C++. The sampling
time was found to be of 2.8 ms, which is small enough to consider feasible the use of the
equations of the continuous system in the discrete domain.

Figure 9. Communication with KUKA youBot.

It is actually possible to control the KUKA youBot dynamically, i.e., the robot receives
torque commands from the external computer and sends information about its positions
and velocities, measured on a frame established by the robot itself, that we denoted as frame
{m}, as feedback. To obtain the states needed for computing the control τred, a coordinate
transformation was made.

Considering Figure 10, we defined (xi, yi, ϑi) as the initial pose for the KUKA youBot
mobile base on the inertial frame {0}. The initial pose for the KUKA youBot mobile base
is constant (i.e., (xi, yi, ϑi) are not time-varying), where the robot defines its own inertial
frame named {m}.

The robot sends the states (xm, ym, θm) to the computer, which correspond to the
position and orientation for the mobile base on the horizontal plane measured with respect
to {m}, and to longitudinal and angular velocity (v, θ̇m) and (φi, φ̇i), respectively, with
i = 1, . . . , 5 for the manipulator angular positions and velocities.
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Figure 10. Inertial frames and coordinates relationship.

To obtain the states measured on inertial frame {0}, the next transformation was consid-
ered: 

x = xi + xm cos ϑi − ym sin ϑi

y = yi + ym cos ϑi + xm sin ϑi

ẋ = ẋm cos ϑi − ẏm sin ϑi

ẏ = ẏm cos ϑi + ẋm sin ϑi

θ = ϑi + θm

θ̇ = θ̇m.

(46)

where:
ẋm = v cos(θm), ẏm = v sin(θm).

According with the first assumption made on Section 2.3 for the mobile base, namely,
the two wheels of each side rotate at the same speed; the next torques relation is considered, see
Figure 11:

τr0 = τr2 = −τi
2

, τr1 = τr3 =
τd
2

. (47)

Figure 11. Torque positive directions on robot wheels.
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Control actions were bounded (in code) as follows:

−10 [N ·m] ≤ τd, τi, τ5 ≤ 10 [N ·m]

−15 [N ·m] ≤ τ1, τ2, τ3, τ4 ≤ 15 [N ·m].

The desired trajectory is defined as a circle with center at (xc, yc) = (−1, 0), radius
rd = 1 for the mobile base, and radius re f = 1.3 for the end-effector, i.e.,


δ(t) = 2π

t f
t− sin

(
2π
t f

t
)

xd(t) = xc + rd cos(δ(t))
yd(t) = yc + rd sin(δ(t))

,



δe f (t) = δ(t) + sin−1
(

Lx
re f

)
xe fd

(t) = xc + re f cos
(

δe f (t)
)

ye fd
(t) = yc + re f sin

(
δe f (t)

)
ze fd

(t) = 0.46.

(48)

This planning was thought for a time t f = 24 s.
θd is computed as follows:

θd(t) =


π/2 + 2πnc, if ẋd, ẏd = 0

atan2(ẏd, ẋd) + 2πnc, if (ẏd > 0) and (ẋd < 0)
atan2(ẏd, ẋd) + 2π + 2πnc, if (ẏd < 0) or (ẋd, ẏd > 0).

(49)

where nc is the number of cycles given by the mobile base. For this experiment, just one
cycle is considered, and this counter takes the value of nc = 1 at the end of the trajectory,
i.e., at t = t f .

Notice that the proposed trajectory starts and finishes with vd = 0. To avoid singu-
larities for θ̇d(t) in (24), it is possible to set θ̇d(t) = 0 when vd(t) = 0 artificially, in code;
however, we cannot expect the stability condition (40) to be satisfied when this happens,
see Figure 12.

The end-effector desired orientations are defined as:

ψe fd
(t) =

π

2
, ζe fd

(t) = θd −
π

2
. (50)

All the initial conditions were set to 0, except for θ(0) = π/2.
Finally, with the parameters shown in Table A1 (these parameters are not exactly

known; uncertainties exist, and some of them where calculated or supposed), and control
gains are shown in Table 1; performance charts were obtained, see Figure 13.

The video of the experiment is shown in the following link: https://drive.google.com/
file/d/1We9XsklA2-GLTUxg973DUmGcWTJm1zAz/view, accessed on 7 Septembre 2023.

Table 1. Trajectory tracking control gains.

k1 k2 k3 k4 k5 k6 k7 k8 kp1 kp2 kp3 kp4 kp5 kp6 kp7

700 555 300 1000 1000 2000 2500 100 400 720 350 350 350 350 350

(a) Condition 1 (b) Condition 2

Figure 12. Stability conditions: numerical verification.

https://drive.google.com/file/d/1We9XsklA2-GLTUxg973DUmGcWTJm1zAz/view
https://drive.google.com/file/d/1We9XsklA2-GLTUxg973DUmGcWTJm1zAz/view
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(a) Position errors, eq(t). (b) Position errors (Zoom in), eq(t).

(c) Velocity errors, eη(t). (d) Velocity errors (Zoom in), eη(t).

(e) Control, τred(t). (f) Non-holonomic constraint.

(g) Trajectories on horizontal plane. (h) Trajectories on 3D space.

Figure 13. KUKA youBot performance.

5.2. Synchronization: Numerical Simulations

In this simulation, two KUKA youBot robots (A and B) with n = 8 DoF, being A the
master and B the slave, are considered. Coupling errors shown in (43) and control (44) with
i, j = A, B were used.

The task is about manipulating a 20 cm side length virtual box along a circular trajec-
tory, i.e., robots have to guarantee the grip of an object maintaining the distance among the
end-effectors while the trajectory is executed. Emphasizing on the word virtual, in this work,
the interaction with the environment is neglected, and the term Je

ᵀ(q)hr, in models (6) and
(13), is considered zero.

The trajectory planning is defined by four stages:
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• The first stage: The robot mobile base describes a straight line until the box position
is reached, and the manipulator is positioned in front of the object.

• The second stage: In this stage, the end-effector makes contact with the object in a
smooth manner. It is considered a punctual grip (without friction); thus, a perpendicu-
lar grip with the object is required.

• The third stage: This stage is about maintaining the position for a few seconds in
order to wait for the effects of tapping that may exist between the object and the
end-effector to pass, and for the grip to reach a point of stability.

• The fourth stage: The robots generate the desired circle.

The object position is considered at (4.5, 2, 0.46) on frame {0}, and the initial position
of the mobile base is at (4.5, 0). The trajectory planning is defined as follows:

The first stage, 0 ≤ t ≤ 8 s:
For robot A, the desired trajectories are defined as:


p1(t) = − 5t7

524288 + 35t6

131072 −
21t5

8192 + 35t4

4096

xd,A(t) = 4
yd,A(t) = (2− Lx)p1(t)

,



xe fd ,A(t = 8) = 4.35
ye fd ,A(t = 8) = yd,A(t = 8) + Lx

ze fd ,A(t = 8) = 0.46
ψe fd ,A(t = 8) = π

2

ζe fd ,A(t = 8) = 0.

(51)

To obtain reasonable control actions in the manipulator, the function p1(t) is used to
interpolate the trajectory from the initial point to the last, softly, for every link, i.e.,

φ1d,A(t) = π
2 p1(t)

φ2d,A(t) = −0.222635p1(t)
φ3d,A(t) = 1.63105p1(t)
φ4d,A(t) = 0.162383p1(t).

For robot B, the desired trajectories are defined as:

qd,B = Ws1,2,3
q qA + Qs1,2,3

q , ηd,B = Ws1,2,3
η ηA. (52)

where:

Ws1,2,3
q = diag{1 1 1 −1 1 1 1 1}, Ws1,2,3

η = diag{1 1 −1 1 1 1 1}, Qs1,2,3
q =

[
1 01×7

]ᵀ.

The second stage, 8 < t ≤ 12 s:
For robot A, the desired trajectories are defined as follows:

{
xd,A(t) = 4
yd,A(t) = 2− Lx

,



p2(t) = 35
( t

4 − 2
)4 − 84

( t
4 − 2

)5
+ 70

( t
4 − 2

)6 − 20
( t

4 − 2
)7

xe fd ,A(t) = (4.4 + ρd − 4.35)p2(t) + 4.35
ye fd ,A(t) = 2
ze fd ,A(t) = 0.46
ψe fd ,A(t) = π

2

ζe fd ,A(t) = 0.

(53)

where ρd is a desired penetration on the virtual object to guarantee the grip.
For robot B, the desired trajectories are defined as in Equation (52).
The third stage, 12 < t ≤ 20 s:
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For robot A, the desired trajectories are defined as follows:

{
xd,A(t) = 4
yd,A(t) = 2− Lx

,



xe fd ,A(t) = 4.4 + ρd

ye fd ,A(t) = 2
ze fd ,A(t) = 0.46
ψe fd ,A(t) = π

2

ζe fd ,A(t) = 0.

(54)

For robot B, the desired trajectories are defined as in Equation (52).
The fourth stage, 20 < t ≤ t f = 60 s:
For this stage, a circle with center at (xc, yc) = (3, 2− Lx) and radius rd,A = 1 m on

the horizontal plane for the robot A mobile base is considered, and the end-effector has a

radius re f ,A =
√

L2
x + (rd,A + 0.4 + ρd)

2. Therefore, the desired trajectories for robot A are
defined as:


δA(t) = 2π

(t f−20)
(t− 20)− sin

(
2π

(t f−20)
(t− 20)

)
xd,A(t) = xc + rd,A cos(δA(t))
yd,A(t) = yc + rd,A sin(δA(t))

,



δe f ,A(t) = δA(t) + sin−1
(

Lx
re f ,A

)
xe fd ,A(t) = xc + re f ,A cos

(
δe f ,A(t)

)
ye fd ,A(t) = yc + re f ,A sin

(
δe f ,A(t)

)
ze fd ,A(t) = 0.46
ψe fd ,A(t) = π

2

ζe fd ,A(t) = θd,A(t)− π
2 .

(55)

For the robot B mobile base, a circle with the same center (xc, yc) = (3, 2− Lx) but
with radius rd,B = rd,A + 1 is considered. The desired trajectories are defined as:

qd,B = Qs4
q + Ws4

q (qA −Qs4
q ), ηd,B = Ws4

η ηA. (56)

where:

Ws4
q = diag{ rd,B

rd,A

rd,B
rd,A

1 −1 1 1 1 1}, Ws4
η = diag{ rd,B

rd,A
1 −1 1 1 1 1}, Qs4

q =
[
xc yc 01×6

]ᵀ
In general, φ5d,A(t) = 0 for all t and θd,A(t) is computed using (49). The functions

p1(t) and p2(t) are soft polynomials, generated with the method based on Bezier curves
presented in [21], such that their first time-derivative at the beggining and at the end of the
trajectory is zero.

Initial conditions are considered as 0 for positions (qi(0)) and velocities (ηi(0)) for
both robots, i = A, B, except for the mobile base position: for robot A, (xA(0), yA(0),
θA(0)) = (4, 0, π/2) is considered; and for robot B, (xB(0), yB(0), θB(0)) = (5, 0, π/2).

The control gains for both robots A and B are shown in Table 2, and the coupling gains
are shown in Table 3. A desired penetration of ρd = 0.002 m on the object is considered.

Performance charts are shown in Figure 14, and trajectories are presented in Figure 15.
The simulation was animated on CoppeliaSim, and the video is shown in the next

link: https://drive.google.com/file/d/1Z4RWykuw5bglV7KKbzTZKf0beEjUXghi/view?
usp=sharing, accessed on 7 Septembre 2023.

Table 2. Control gains for robots A and B.

k1 k2 k3 k4 k5 k6 k7 k8 kp1 kp2 kp3 kp4 kp5 kp6 kp7

50 50 200 400 400 400 400 400 50 50 50 50 50 50 50

https://drive.google.com/file/d/1Z4RWykuw5bglV7KKbzTZKf0beEjUXghi/view?usp=sharing
https://drive.google.com/file/d/1Z4RWykuw5bglV7KKbzTZKf0beEjUXghi/view?usp=sharing
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Table 3. Coupling gains for robots A and B.

Cx,A Cy,A Cθ,A Cφ1,A Cφ2,A Cφ3,A Cφ4,A Cφ5,A Cx,B Cy,B Cθ,B Cφ1,B Cφ2,B Cφ3,B Cφ4,B Cφ5,B

200 200 200 200 200 200 200 200 800 800 800 800 800 800 800 800

(a)MMR A: Position states, qA(t) (b)MMR B: Position states, qB(t)

(c)MMR A: Velocity states, ηA(t) (d)MMR B: Velocity states, ηB(t)

(e) MMR A: Control, τred,A(t). (f) MMR B: Control, τred,B(t).

(g) Coupling errors, BεA = −AεB . (h) Distance between end-effectors.

Figure 14. KUKA youBot synchronization performance.
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(a) Trajectories on horizontal plane (b) Trajectories on 3D space

Figure 15. KUKA youBot trajectories.

6. Discussion

A non-linear control law for a n DoF MMR with semiglobal and UUB stability proper-
ties for solving the trajectory tracking problem, considering movement (kinematic) con-
straints, was designed and tested on the experimental platform KUKA youBot. Reasonable
control actions, the acomplishment of the non-holonomic constraint, and small position
and velocity errors were achieved with a maximum position error of 6 cm, see Figure 13,
even in the presence of parametric uncertainties and unmodeled dynamics. The stability
conditions were validated when vd 6= 0, see Figure 12; notice that condition 2 is violated
when vd = 0, as expected.

The trajectory tracking control designed was extended to the synchronization notion,
which is valid for both uni-directional or bi-directional information flow between robots,
and for any number of robots in a given network through static couplings considering a
master–slave configuration. Numerical simulation considering 2 KUKA youBot models
and a manipulation task using a 20 cm virtual box was developed in the CoppeliaSim
environment. From Figure 14, reasonable control actions and really small errors for both
robots can be observed. The grip of the box is guaranteed maintaining a distance between
the end-effectors of 19.6 cm, as expected, since the desired penetration (ρd) on the object of
2mm was considered of for each robot.

The generalized MMR model has been formulated considering the simplest friction
model viscous, i.e., f fi

= bqi q̇i is the i-th element of Ff(q, q̇) with bqi viscous friction
coefficients. Friction forces could be up to the 25% of the torque required to move a
manipulator [22], as future work is considered to use a more fit friction model as the
LuGre model.

Regarding the synchronization approach, experimental validation is expected for
future works. Moreover, adding velocity-level coupling terms and changing to dynamical
couplings instead of static couplings is also envisioned. In this work, we have supposed a
virtual box as a manipulated object to validate the synchronization control on simulation.
In the manipulation sense, when robots are interacting with their environment, the term
Je

ᵀ(q)hr in (6) and (13) becomes relevant for the dynamics of the system; to this end,
adding a force controller in the MMR’s end-effector print on the object for manipulation
purposes will be also desirable, leading to the design of a hybrid position/force controller.

Finally, given the parametric uncertainties and non-modeled dynamics on the system,
adding an adaptation law or use a parameter estimator would address the robustness of
the controller.
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Appendix A. Manipulator Stability

Let us re-write the set of Equations (32) for a nm DoF manipulator as follows:

ëφi = −kpi+2 ėφi − ki+3eφi , i = 1, 2, . . . , nm. (A1)

With kpi+2 , ki+3 > 0 and
[
eφi ėφi

]T constituting the state-vector, where eφi is the
angular position error for the i-th link and ėφi the angular velocity error.

Then, let

V
(
eµ

)
,

1
2

ė2
φi
+

1
2

ki+3e2
φi

, (A2)

the proposed Lyapunov candidate function. Taking the time-derivative of Equation (A2)
along the trajectories of the system (A1), we obtain:

V̇
(
eµ

)
= −kpi+2 ė2

φi
≤ 0. (A3)

Since kpi+2 > 0, notice that V̇
(
eµ

)
= 0 only when ėφi = 0, but the position error vector

eφi could “get stuck” in any other value. In order to analyze this situation, consider the
system (A1) when ėφi = 0 —this implies having ëφi = 0; then, we obtain:

ki+3eφi = 0, i = 1, 2, . . . , nm. (A4)

Since ki+3 > 0, the only solution is eφi = 0. Thus, the only invariant set that satisfies
V̇ = 0 is the origin

[
eφi ėφi

]ᵀ
=
[
0 0

]ᵀ. Therefore, according to LaSalle, it can be
concluded that the system is globally asymptotically stable.
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Appendix B. Technical Data for KUKA youBot

Some technical data and parameters for KUKA youBot can be found at [23]; in this
paper, limitations on the arm angular positions and velocities have been considered, es-
pecially the limitation on the mobile base longitudinal velocity, v ≤ 0.8 m/s, which was
fundamental for the trajectory planning.

The parameters that were used for experimental validation are shown in Table A1:

Table A1. KUKA youBot physical parameters.

Parameter Value Parameter Value Parameter Value

mm [kg] 19.803 Lcb [m] 0.036 I2zz [kg ·m2] 0.0031631
mb [kg] 0.961 Lc1 [m] 0.058 I3xx [kg ·m2] 0.00041967
m1 [kg] 1.390 Lc2 [m] 0.11397 I3yy [kg ·m2] 0.00172767
m2 [kg] 1.318 Lc3 [m] 0.104 I3zz [kg ·m2] 0.0018468
m3 [kg] 0.821 Lc4 [m] 0.053 I4xx [kg ·m2] 0.0006610
m4 [kg] 0.769 Lc5 [m] 0.016 I4yy [kg ·m2] 0.0006764
m5 [kg] 0.906 rb [m] 0.033 I4zz [kg ·m2] 0.0010573
hb [m] 0.030 rc [m] 0.0255 I5xx [kg ·m2] 0.0005563
hc [m] 0.110 Lx [m] 0.151 I5yy [kg ·m2] 0.0003926
R [m] 0.050 Imxx [kg ·m2] 0.2657 I5zz [kg ·m2] 0.0002756
px [m] 0 Imyy [kg ·m2] 0.5875 bx [N s/m] 0.8
py [m] 0 Imzz [kg ·m2] 0.5875 by [N s/m] 0.8
pz [m] -0.001 Ibxx [kg ·m2] 0.00041515 bθ [N s/m] 0.7
L [m] 0.150 Ibyy [kg ·m2] 0.003553778 bφ1 [N s/m] 0.5
Lb [m] 0.072 Ibzz [kg ·m2] 0.00041515 bφ2 [N s/m] 0.5
L1 [m] 0.075 I1xx [kg ·m2] 0.0058821 bφ3 [N s/m] 0.5
L2 [m] 0.155 I1yy [kg ·m2] 0.0029525 bφ4 [N s/m] 0.5
L3 [m] 0.135 I1zz [kg ·m2] 0.0060091 bφ5 [N s/m] 0.5
L4 [m] 0.081 I2xx [kg ·m2] 0.0005843
L5 [m] 0.137 I2yy [kg ·m2] 0.0031145
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