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Abstract: Disabled pedestrians are among the most vulnerable groups in road traffic. Using technol-
ogy to assist this vulnerable group could be instrumental in reducing the mobility challenges they
face daily. On the one hand, the automotive industry is focusing its efforts on car automation. On
the other hand, in recent years, assistive technology has been promoted as a tool for consolidating
the functional independence of people with disabilities. However, the success of these technologies
depends on how well they help self-driving cars interact with disabled pedestrians. This paper pro-
poses an architecture to facilitate interaction between disabled pedestrians and self-driving cars based
on deep learning and 802.11p wireless technology. Through the application of assistive technology,
we can locate the pedestrian with a disability within the road traffic ecosystem, and we define a set
of functionalities for the identification of hand gestures of people with disabilities. These functions
enable pedestrians with disabilities to express their intentions, improving their confidence and safety
level in tasks within the road ecosystem, such as crossing the street.

Keywords: deep learning; neural networks; pedestrians; pedestrians with disabilities; recurrent
neural networks; road users; self-driving cars

1. Introduction

According to the World Health Organization (WHO), road traffic injuries are a severe
public health problem worldwide. WHO data show that approximately 1.35 million people
die in road traffic crashes, and 20–50 million suffer some form of non-fatal injury [1]. More
than 90% of road deaths occur in third-world or developing countries, and more than half
involve vulnerable road users.

The term vulnerable road users (VRUs) refers to unprotected users within the road
environment, including cyclists, pedestrians, motorcyclists, and people using transport
devices to move their bodies [2]. The WHO explicitly states that older adults, children,
and people with disabilities are the road users with the highest risk of being involved in a
road accident [3].

Data released by the WHO in 2022 established that 1.3 billion people worldwide have
some significant disability. Furthermore, 45 million people worldwide are blind or visually
impaired, and 45 million are deaf [4]. In addition, around 87% of people with disabilities
live in developing countries.

Factors such as crossing decisions and walking speed are pedestrians’ most stud-
ied risk factors [3]. The studies show that it is the actions and decisions of the disabled
pedestrian rather than environmental or social characteristics that pose the most signifi-
cant risk [4]. Studying these factors has contributed to understanding how people move
and has helped to define the way forward for designing more inclusive and functionally
valuable environments.
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The automotive industry focuses on creating vehicles with systems that provide greater
intelligence to have a fully autonomous car as the final product. Organizations such as the
National Highway Traffic Safety Administration (NHTSA) and the Society of Automotive
Engineers (SAE) define five levels of vehicle automation (Figure 1), ranging from zero,
where the driver has complete control of driving tasks, to five, where the vehicle uses
automation systems to perform driving tasks without human intervention [5].
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The goals of self-driving cars are to reduce traffic accidents, congestion, and pollution
levels substantially and to reduce transportation costs. Although there are still techni-
cal challenges to be solved, self-driving cars’ real success or failure is related to social
acceptance and integration into the road traffic ecosystem [6,7]. According to Kaur and
Rampersad, reliability and trust are two of the main concerns of people when using self-
driving cars [8]. Reliability refers to the ability of the car to overcome unexpected situations,
while trust relates to safeguarding a car’s safety. Replacing human drivers with autonomous
control systems could also create a severe social interaction problem: constant interaction
between pedestrians and self-driving cars is required to ensure smooth and safe traffic
flow, especially at pedestrian crossings. We can identify several interaction tasks between
the self-driving car and disabled pedestrians, such as pedestrian identification, pedestrian
movement prediction, pedestrian behavior analysis, car–pedestrian communication, and
car–pedestrian feedback. There are also tasks related to car-to-car communication to inform
about pedestrian and car agreement dissemination using broadcasting mechanisms and
edge computing.

A self-driving car must be able to handle obstacles to navigate safely through the vial
traffic zone. Therefore, VRU detection is a major task to be performed by self-driving cars
to significantly reduce the probability of accidents within the vehicular traffic ecosystem [9].
The authors in [10] classify VRUs into six categories: (i) distracted road users, (ii) road users
inside the vehicle, (iii) special road users, (iv) users of transport devices, (v) animals, and
(vi) road users with disabilities (Table 1).

The latter category represents a particular type of pedestrian moving within the
road environment who has a disability (such as blind people, deaf people, and people in
wheelchairs, among others). This category is referred to as Disabled VRU (D-VRU). We
believe self-driving cars will open many possibilities for people with disabilities (indepen-
dence, with the improvement in quality of life that this represents) by explicitly interacting
with them to enhance their mobility, independence, and confidence when crossing roads.

A key element for pedestrians with disabilities to feel safe within the vehicular traffic
ecosystem will depend on the ability to communicate with vehicles and how well both
parties understand such interaction. Hence, a comprehensive communication framework is
needed to define the interaction between pedestrians and self-driving vehicles and between
self-driving vehicles. Such a framework should include modules for detecting D-VRU,
communication mechanisms for the interaction between D-VRUs and self-driving vehicles,
and networking communication between vehicles using wireless technology.
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Table 1. Categories of vulnerable road users.

Category Description

Distracted road users

A type of pedestrian walking on the road but is distracted
by an additional activity (such as using a cell phone,
conversing with another person, or thinking about

something else).

Road users inside the vehicle Category refers to the occupants of an automated or a
conventional vehicle.

Special road users Pedestrians with very low walking speeds, such as older
people and children, are included in this category.

Users of transport devices
Users who use transport devices such as skates, scooters,
roller skis or skates, and kick sleds or kick sleds equipped

with wheels.

Animals Refer to animals within the driving zone, including dogs,
horses, and cats.

Road users with disabilities People who move within the driving zone and have a
disability, such as blindness, deafness, or wheelchair users.

Current efforts have focused on applying technology to assist these people, giving rise
to Assistive Technology (AT). According to the Assistive Technology Industry Association
(ATiA), AT refers to any equipment, item, software program, or product that enhances
the capabilities and functionalities of people with a disability [11]. The WHO states that
AT focuses on enabling people to live independently, healthily, and productively and to
integrate into society more naturally. AT can be applied to different areas such as health,
education, or sports.

This paper proposes an architecture that integrates assistive technologies into the road
traffic ecosystem. The goal is to increase the safety, security, and confidence of D-VRUs
when crossing pedestrian crosswalks. The vision towards integrating AT with autonomous
cars leads us to define the Assistive Self-Driving Car (ASC) concept.

This paper explores integrating machine learning and wireless technologies to detect
disabled pedestrians. To detect and identify D-VRUs, neural network (NN) models and
wearable devices based on wireless technologies are used to establish direct communication
between D-VRUs and self-driving vehicles.

We further extend the interaction between D-VRUs and self-driving cars by designing
and testing an NN-based model for identifying different hand gestures to express the
intentions of actions from the D-VRU to the self-driving car. This vital step has not been
thoroughly studied. The primary purpose is to achieve a higher level of agreement between
D-VRUs and self-driving cars, giving confidence to pedestrians in their actions and therefore
improving self-driving cars’ acceptance level in our modern society.

The main contributions of this paper are as follows:

• The definition of the ASC framework is composed of modules for D-VRU recognition,
hand gesture interaction and its corresponding feedback, and a network architecture
for self-driving car interaction.

• The definition, challenges, and requirements for an ASC to improve its interaction
with D-VRUs.

• A mechanism based on NN and a wearable device that accurately identifies pedestri-
ans with disabilities and their specific type of impairment to enable interaction with
the pedestrian through an appropriate interface for feedback.

• An algorithm based on recurrent NN that identifies hand gestures as a means for the
interaction between the D-VRU and the self-driving assistive car.

This paper is structured as follows: Section 2 overviews the assistive self-driving car
concept. Section 3 includes a state-of-the-art literature review of pedestrian–self-driving car
interactions. Section 4 describes the interaction process between assistive self-driving cars
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and D-VRUs and some solutions to perform the interaction process. Finally, we present our
conclusions and future work.

2. State of the Art

Pedestrian–vehicle interaction is a topic that has been under study for the past years
in the context of intelligent vehicle environments. As a result, many surveys have been
published on pedestrian detection within vehicle environments, using different sensors,
cameras, and artificial intelligence algorithms [12–16].

This section discusses how pedestrian–car interactions occur in the current road-
driving ecosystem. We then analyze how this interaction will change as self-driving cars
integrate into the road-driving ecosystem. Finally, we describe some requirements that
must be met for the interaction between D-VRUs and ASCs.

2.1. Current Pedestrian–Car Communication

In a typical road traffic environment, the communication between pedestrians and car
drivers is based on informal communication including making eye contact, facial expres-
sions, hand gestures, and even specific car horn sounds. Such everyday communications
allow pedestrians and drivers to infer, based on the experiences of both parties, the set of
required actions to follow to avoid accidents [17]. This non-verbal communication indicates
the vehicle’s movements (stop and give way to the pedestrian, continue driving, etc.) and
the pedestrian’s actions (stop, cross the street, etc.) to avoid a possible eventuality. Gener-
ally, in countries where road-crossing regulations are permissive, the pedestrian attempts
to make eye contact with the driver to identify that the driver has already detected them.
With this informal communication, the pedestrian can cross the street more safely and
securely, considering that the probability of suffering an eventuality is almost zero.

However, the same informal communication mode does not work with people with
disabilities. A blind person, for example, would not be able to make eye contact with the
vehicle’s driver. If the driver honks the horn, the blind pedestrian will not know whether
the sound is meant for them to cross the road or wait for the car to pass. It is necessary to
develop friendly mechanisms for disabled pedestrians to help them safely move through
the road ecosystem.

The road-driving ecosystem is evolving rapidly; consequently, automated vehicles
are starting to take to the roads. In this new road-driving environment, traditional (non-
automated) cars, semi-automated cars, and VRUs will be circulating and will impact the
current mode of interaction. As the level of automation advances, the interaction process
will change. While some researchers believe that informal communication will disappear
as self-driving cars are integrated into the road ecosystem, others further acknowledge that
the disappearance of informal communication will increase distrust of self-driving cars [18].
Informal communication should not be outdated but adapted to the new conditions of
vehicle intelligence. More robust, safer, and more accessible forms of communication need
to be developed to enable two-way communication between self-driving cars and D-VRUs.
At the same time, these new forms of communication will need to be inclusive so that every
pedestrian can move safely in the road environment.

2.2. Pedestrian–Self-Driving Car Communication

The ability to interact with pedestrians is one factor determining the success of self-
driving cars. However, research focused on creating mechanisms to facilitate the interaction
between self-driving cars and pedestrians is still in its early stages. Poor communication
between self-driving cars and pedestrians can have fatal consequences. For example,
suppose the vehicle knows what the pedestrians intend to do. In that case, the car can
react and avoid colliding with the pedestrian and potentially causing severe damage to the
pedestrian, including loss of life. The absence of a driver in an automated vehicle makes
pedestrians wary of not knowing what the self-driving car will do [19,20].
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Most interaction efforts have focused on sending messages from self-driving cars to
pedestrians. These messages inform the pedestrian of the action to be taken. The interaction
technologies developed have been classified into three categories: (i) visual, (ii) acoustic,
and (iii) anthropomorphic interfaces [21]. Some works have proposed the development of
visual interfaces, such as LED strips [22–24], screens displaying text or icons [25–27], and
holograms or projections. All these interfaces are an attempt to communicate the action
to the pedestrian. More research extends the functionality of visual interfaces to include
acoustic devices that help convey the message to those with visual impairments [28,29].
Anthropomorphic interfaces attempt to inform pedestrians of actions to be taken by using
human characteristics (simulating eyes to represent eye contact with the pedestrian) [30–32].

However, more progress has yet to be made in proposing a way for pedestrians to
communicate with self-driving cars. One of the critical issues will be the car’s understand-
ing of pedestrians’ intentions. To successfully communicate from pedestrian to self-driving
car, the self-driving car must be trained to correctly understand the pedestrian’s messages.
Several papers consider the posture [33–35], the position of the head [36,37], and the tra-
jectory and kinematics of the pedestrian [38,39]. The main problem with these methods
is that they rely on implicit communication. The self-driving car makes inferences about
the pedestrian’s intentions based on the pedestrian’s actions in this type of communica-
tion. This work focuses on explicit communication among pedestrians and self-driving
cars using simple hardware devices that use IEEE 802.11p radio. The self-driving car
then broadcasts pedestrian alerts and information to nearby self-driving cars in a privacy-
aware manner while supporting hand gestures to express the pedestrian’s intention to use
the intersection.

2.3. Requirements for Pedestrian–Self-Driving Car Communication

For the two-way communication mechanism of communication between self-driving
cars and pedestrians to succeed, several essential requirements must be satisfied (such
as being a simple, adaptable, safe, and secure mechanism, among others). The authors
in [40] mention that for the self-driving car to communicate with the pedestrian, there are
two essential steps that the car needs to perform. The first step focuses on detecting and
identifying pedestrians circulating within the travel environment of the self-driving car.
The second stage describes that autonomous cars will have to notify pedestrians what
action the car will take. Based on the stages defined by the authors in [40], additional
ones will be necessary for the specific case of the interaction process between the ASC and
D-VRU, which we present in Figure 2.
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2.4. Pedestrian Detection

As part of the autonomous navigation functions of ASCs, detecting all objects or
obstacles within the car’s travel environment is essential. Object detection will allow the
self-driving car to calculate its trajectory or establish the action to be taken to avoid a
situation that may endanger or put the people around it at risk. The main task of the ASC is
to detect objects, calculate their distance, identify their position, and keep a comprehensive
record of all things (static and moving). However, object detection and classification are
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challenging, as it demands a high level of processing for a large amount of data. Therefore,
machine learning and deep learning technologies are used for such tasks.

In the context of ASCs, there are two main mechanisms to detect and classify objects:
feature extraction and object classification. Feature extraction is performing dimensionality
reduction of data so that raw input data is divided and reduced to create smaller groups
that are easier to process. This process optimizes detecting features such as shapes, angles,
or movement in digital images or videos. Some of the current methods used in feature
extraction include the Histogram of Oriented Gradients [41–43], Local Binary Pattern [44–46],
Deformable Part Model [47–49], and Aggregate Channel Feature (ACF) [50–52].

Different types of deep learning (DL)-based algorithms detect and classify VRUs. DL
models, specifically Convolutional Neural Networks (CNNs), can obtain classification rates
with up to 100% accuracy [53]. Region-based algorithms define candidate areas or regions
where the object is expected to be and then apply a CNN model to obtain a detection box.
Within such network models, Regional Convolutional Neural Networks (R-CNNs) [54,55],
Fast and Faster R-CNNs [56,57], and Mask Region-based CNNs [58,59] are being used.

Additionally, regression-based algorithms do not employ the concept of regions. Still,
the input image is only processed once, and the category and the target border can be
regressed on multiple image positions. Algorithms within this category are You Only
Look Once (YOLO) [60], Single-Shot MultiBox Detector (SSD) [61], and RetinaNet [62].
YOLO is one of the most widely used models for real-time object detection, allowing faster
detection than other models with video up to 30 frames per second at the cost of sacrificing
detection accuracy.

3. Materials and Methods

This section details our assistive interaction mechanism between self-driving cars and
D-VRUs.

3.1. Assistive Self-Driving Cars

Reducing the number of road accidents is one of the main goals of assistive self-
driving cars. Achieving this objective requires that autonomous vehicles implement a set
of capabilities that enable them to detect and identify the intentions of pedestrians.

Self-driving cars should have a mechanism for expressing their intentions to create a
safer pedestrian environment. Modern cars are equipped with assistance systems known
as ADASs (Advanced Driver Assistance Systems), which have the ability to recognize
pedestrians in general, without making specific discriminations as to whether they are
disabled or not. Therefore, current systems cannot provide an assistive environment that
facilitates interaction between the car and a disabled pedestrian. Considering the preceding,
we propose integrating assistive technologies into autonomous cars.

The self-driving car defines a technical and functional architecture to structure inte-
gration between hardware and software within a car and the processing block of all the
tasks such a vehicle must perform to work efficiently. The autonomous car control tasks
are classified into (i) perception, (ii) planning and decision, and (iii) motion and control.

The perception block creates a representative model of the travel environment based
on all the data collected from the different sensors included in the self-driving car (Li-
DAR, cameras, ultrasonic, and radar), static data (digital maps, rulers, and routes), and
environmental conditions (weather conditions and real-time location).

The planning and decision block oversees generating a real-time safe and efficient
navigation action plan. To create the plan, the self-driving car combines the representative
model developed in the perception block with environmental data such as destination
points, digital maps, and traffic rules.

The vehicle motion and control block must execute the trajectory generated by the
previous blocks using motion commands that control the self-driving car actuators.

There are three requirements that the self-driving assisted car must meet to be able
to communicate correctly with disabled pedestrians: (i) identify the different types of dis-
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abilities, (ii) locate the global position of the disabled person, and (iii) define an interaction
mechanism for this situation.

The first requirement is extending the pedestrian detection capabilities by identifying
pedestrians to better respond to each pedestrian’s situation. Identifying the specific type of
disability will allow the autonomous car to select the most appropriate medium or interface
to communicate with the pedestrian. The second requirement is focused on locating the
global position of the pedestrian with a disability, which is essential for the self-driving car
to respond to the pedestrian’s needs in the best possible way. Lastly, the third requirement
defines a series of interaction mechanisms among self-driving cars, pedestrians with a
disability, and other self-driving cars. The idea is to define a framework in which D-
VRUs and self-driving cars interact to determine a set of actions or steps each participant
is to follow.

3.2. Scenario

In this work, a specific scenario was defined to illustrate the operation of the proposed
assistive system. The example scenario is shown in Figure 3.
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The scenario analyzes the process of a D-VRU trying to cross the road. In this scenario,
the D-VRU, communicating through their handheld device, sends a series of messages to
enable the self-driving car to detect their presence within its driving environment. The self-
driving car identifies the type of disability of the pedestrian. Next, it identifies the intention
of the pedestrian based on the analysis of the hand gestures made by the pedestrian with
a disability. Finally, it provides different adaptive responses depending on the disability.
Then, based on the signals emitted by the pedestrian’s wearable device, the self-driving car
can make a targeted response to improve the assistance provided to the pedestrian.

3.3. Proposed Architecture

Our proposal incorporates assistive technology into self-driving vehicles and D-VRUs,
creating the assistive self-driving car concept.

The D-VRU’s information is very sensitive and must be protected from theft or unde-
sired sharing. For this reason, we propose an architecture based on federated learning [63]
where each user can decide whether to share information with the central node, which,
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in this case, is the autonomous vehicle. The data is anonymously transmitted; at the
destination, even the transmitter’s source is anonymized. In this decentralized approach,
the model is trained locally using the raw data on edge devices (D-VRU smartphones
or handheld devices). These devices have significantly higher latency, lower-throughput
connections, and are only intermittently available for training.

The key idea is that the data and model are both maintained locally at the mobile
device or the handheld of the D-VRU, and only the learning configuration parameters
are shared between the local nodes and the vehicles to generate a global model shared by
all nodes.

The architecture consists of three essential layers, as shown in Figure 4.
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3.3.1. Communication Layer

The communication layer regulates the exchange of messages between the self-driving
car and the D-VRU. When there is a D-VRU on the road, their mobile devices periodically
share location data via broadcast with the rest of the users, the vehicles, and the road
infrastructures. With each location, the autonomous vehicle receives the D-VRU control
point when the global model is activated.

If the D-VRU cannot or prefers not to use a mobile device, then the pedestrian with
a disability can wear a handheld device that incorporates 802.11p technology. The self-
driving car will be equipped with 802.11p communications technology. This proposal
defines procedures and messages for identifying VRUs using an 802.11p wireless device
(smartphone or handheld device). It also establishes a set of messages that will be ex-
changed between all the elements that make up the proposed architecture, allowing the
location and identification of the type of disability of the D-VRU (see Section 3.3).

3.3.2. Processing Layer

The processing layer provides intelligence to the architecture proposal, treating each
D-VRU’s model as a whole entity. This layer is responsible for identifying and interpreting
the D-VRU’s intentions to respond with the interface best suited to their disabilities. Using
federated learning, we generate effective personalized model parameters for each D-VRU.
Afterwards, the processing layer evaluates the information from different D-VRUs in similar
contexts to achieve customized model aggregation.

The processing layer takes, as input, images of the driving environment captured by
a camera located in the front of the vehicle, processes the images in real-time to detect
the D-VRU’s hand gestures, interprets the D-VRU’s intention, and reports the obtained
result to the interaction layer, which includes (1) the type of disability of the D-VRU, (2) the
D-VRU’s intention, and (3) the D-VRU’s location.
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3.3.3. Interaction Layer

All road users negotiate with other road users to achieve their social-traffic goals. In
the traffic ecosystem we analyze, where autonomous vehicles will become part of our daily
lives, the D-VRUs require special attention through new communications protocols. The
interaction layer works with any pair of agents occupying a region of interest in the traffic
system simultaneously. It disappears once any agents move outside of the area of interest.
The interaction layer has a mechanism for filtering the appropriate message between both
agents based on the results obtained by the previous layers. Having the core of each model
at the D-VRU device makes for fewer iterations of high-quality updates to produce a good
model, which means training the models can use much less communication.

This layer can choose visual communication if it detects someone who is deaf or hard of
hearing, audio interaction if the interaction layer detects someone who is visually impaired,
or mixed interaction if it detects several people with different types of disabilities. Storing
D-VRU data in the cloud is unnecessary, and we also preserve privacy using aggregation
protocols of federated learning [64].

An important aspect to consider for ensuring the safety of the system is redundancy.
According to our proposed architecture, the different layers in which our system is based
interact with each other to provide feedback. In this sense, the decisions made at one
layer are based on the contextual information provided by other layers. For example,
the processing layer employs different algorithms for the detection and identification of
D-VRUs and hand gestures for interacting with the vehicle once the pedestrian is detected.
This layer, however, indirectly depends on the communication and interaction layers
because the vehicle receives notifications through broadcast messages sent using IEEE
802.11p technology. Furthermore, it requires the interaction with one or more interfaces
equipped on the vehicle used to interact with the pedestrian. If for some reason the D-VRU
wireless device stops sending broadcasts, the redundancy in the feedback of the systems
allows the system to continue working by using only the detection and identification layers.
Likewise, if for some reason the video-capturing devices stop working properly in the
vehicle, it is possible to continue the interaction with the pedestrian through the IEEE
802.11p technology to come to an agreement.

It is also possible to include processing service redundancy. Along with the commu-
nication, detection, and interaction processes in the vehicle, the information gathered by
all sensors can be sent and processed in edge servers. By employing edge computing, all
decisions processed in the vehicle can be corroborated by the output of the same algorithms
running on a cloud server with the same contextual information. This helps in enhancing
the overall safety of the system.

3.3.4. Validation System

The purpose of this article is the definition of an architecture where pedestrians with
disabilities can be recognized, can interact with the intelligent vehicle, and can make
decisions jointly to improve the safety of both. To validate the proposed architecture,
different unit tests were performed, which are described below.

A first validation test was performed at the communication layer. This test consisted
of demonstrating the viability of the D-VRU device where a disabled pedestrian crosses
a two-way avenue. The test was developed using the Veins simulator [65]. The D-VRU
device periodically sends broadcast messages to nearby vehicles to identify itself as a
disabled passerby using IEEE 802.11p technology. Specifically, inside Veins a pedestrian
was generated that moves at a speed of 2 km per hour. Also, eight vehicles are generated
sequentially at different time intervals with the purpose of defining a platoon lead vehicle
which first receives the message from the D-VRU, calculates the distance from the pedes-
trian, and begins to slow down to avoid a collision. In addition, the vehicle also begins to
send periodic messages to the other vehicles, which upon receiving the messages consider
the actions that the platoon lead vehicle has carried out to perform their own actions, such
as reducing speed depending on the distance from the vehicle, the pedestrian, and the
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platoon lead vehicle. The results were published in [66] where the test scenario is described
in greater detail.

A second and third validation test were performed at the processing layer. The second
test consisted of the use of machine learning techniques for the visual detection of disabled
pedestrians through video cameras and the detection and identification as vulnerable
depending on their aids such as guide dogs or canes. Section 3.6 shows this process in
detail. The third test was carried out on the interaction between the D-VRU and the vehicle
through hand gestures using deep learning for proper identification where the accuracy
of identifying the pedestrian’s intention is demonstrated. Section 3.7 shows this process
in detail.

3.4. D-VRU Device

A pedestrian with a disability will use his smartphone or a device equipped with
802.11p technology. The device will informatively process physiological and body move-
ment data without any personal information and share the information with the self-driving
car, allowing the car to fully identify the type of disability, the location, the speed, and the
direction of travel, among other things.

Message Structure

Three types of messages are defined for 802.11p communication: broadcast, notifica-
tion, and intent, as shown in Figure 5.
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The “broadcast” message is sent by the D-VRU periodically, every second, so that
ASCs driving near the D-VRU’s environment can identify the disabled pedestrian at an
early stage. The structure of this message type consists of several fields, described below.
First, an “ID” field represents the sender’s ID. The “MessageType” field indicates the type
of message that is being sent. In this case, its value is set to “broadcast”. The “Type” field
indicates the type of node that is sending the message. This type of message’s value is set to
“D-VRU”. The “Disability” field shows the pedestrian’s disability type, including blindness,
deafness, etc. The “Location” field contains the D-VRU’s location coordinates. Finally, the
“Speed” field reports the pedestrian’s speed. Speed and location can be calculated using
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applications used to measure driving performance, such as a GPS speedometer/mileage
app. To measure GPS accuracy, the USA government provides the GPS signal in space with
a global average user range rate error (URRE) of ≤0.006 m/sec over any 3 s interval, with
95% probability [67].

The ASC sends the notification message to other cars near its environment to inform
them of a D-VRU in the environment. This message has an “ID” field representing the
sender’s ID. The “MessageType” field specifies the message type. In this case, its value is
“notification”. The “Type” field indicates the kind of sender of the message. In this case, its
value is “vehicle”. Finally, the type of disability of the D-VRU detected in the environment
is indicated in the “Disability” field.

Once the car has identified the intention of the D-VRU, it sends an intent message
to indicate to the other cars what action the D-VRU will take. The other cars can then
take appropriate precautions to keep the mobility environment safe. The structure of
the message is like the “notification” message. However, a field is added to indicate the
intention of the D-VRU.

3.5. D-VRU/ASC Interaction Process

Figure 6 shows the interaction process between the self-driving car and the disabled
pedestrian. The interaction procedure generally works like this:
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1. The disabled pedestrian sends a “broadcast” message to assistive self-driving cars
near his environment every second.

2. Nearby ASCs receive and process the broadcast messages.
3. All ASCs receiving the “broadcast” message send “notification” messages so that

vehicles behind them out of range of the D-VRU’s broadcast message can be alerted to
the presence of a person with a disability. The “notification” message informs vehicles
out of range of the presence of a person with a disability at the intersection. To extend
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the range of the notification, the receiving vehicles forward the message. After three
hops, the message is discarded.

4. When the car detects the D-VRU, the hand gesture recognition process starts to
identify the pedestrian’s intention.

5. When the ASC detects the intent of the D-VRU, it sends an “intent” message to nearby
vehicles. This message indicates what action the pedestrian will take.

6. The ASC chooses the interaction interface that best suits the physical conditions of the
D-VRU.

7. Finally, the ASC notifies the D-VRU, via the appropriate interface, of the action to be
taken to establish a secure environment.

An important point to note is that since each D-VRU sends its own broadcast message,
it is possible to have multiple D-VRUs with different limitations at the crosswalk The ASCs
can process all messages and communicate with each D-VRU through the interface best
suited to the limitations of each disabled person.

3.6. D-VRU Detection Algorithm

A YOLO-based network expanded the self-driving car detection models while in-
tegrating the assistive concept into the detection process. In this case, as an example of
how to integrate the assistive concept into the self-driving car environment, the model
detects blind people or those in wheelchairs. For blind people, the detection process seeks
a cane or a guide dog as a specific characteristic for this type of pedestrian. In addition,
the model training process used three free and available datasets. The first is composed of
155 images [68], the second is composed of 514 images [69], and the third dataset contains
9308 images [70]. In addition, 23 images were obtained from the Internet to create an
experimental dataset of 10,000 images. All images from the testing dataset were later
exported into the YOLO7 format to train the model to detect pedestrians using canes and
pedestrians using wheelchairs. After training the model, detection tests were performed
with images from the Internet. Figure 7 shows the results of the detection process obtained
by the algorithm used.
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3.7. Hand Gesture Detection Algorithm

For assistive technologies to be successful and become a reality, it is necessary to
correctly identify the action (pedestrian intention from now on) that the D-VRU intends
to perform as fast and efficiently as possible. We believe defining an inclusive mechanism
that allows complete interaction between D-VRUs and ASCs is necessary while preserving
both parties’ privacy. In addition, the self-driving car must understand pedestrian commu-
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nication within the vehicular environment. In vehicle intelligence, neural networks have
become essential for pedestrian intent detection.

Pedestrian intention detection efforts have focused on the study of pose estimation
and direction of motion [71–73]. Pedestrians should be able to communicate with the
self-driving car through hand gestures. Hand gestures help pedestrians and drivers com-
municate non-verbally. For example, in some countries, hand gestures are considered
traffic rules. Drivers use them to indicate their intentions when a tail or brake light is not
working [74,75]. The ASC should be able to detect the hand movements of a pedestrian
near a crosswalk and interpret the pedestrian signals to determine the pedestrian’s intent.
Analyzing the sequence of hand movements is required to identify and classify the signal.

The use of hand gestures to communicate with autonomous cars has been worked on
in [76], where the authors proposed the GLADAS system, a deep learning-based system that
they evaluated by virtual simulation. This system obtained 94.56% and 85.91% accuracy in
the F1 score metric.

However, this proposal was not applied to a real gesture identification scenario. There-
fore, our proposal develops a model for a real-life environment. To test communication
using a sign model, we defined four specific signs to identify the pedestrian’s intention of
“stop”, “I want to cross”, “you cross”, and “I will cross first” (Figure 8).

Machines 2023, 11, x FOR PEER REVIEW 14 of 23 
 

 

[74,75]. The ASC should be able to detect the hand movements of a pedestrian near a 
crosswalk and interpret the pedestrian signals to determine the pedestrian’s intent. Ana-
lyzing the sequence of hand movements is required to identify and classify the signal. 

The use of hand gestures to communicate with autonomous cars has been worked on 
in [76], where the authors proposed the GLADAS system, a deep learning-based system 
that they evaluated by virtual simulation. This system obtained 94.56% and 85.91% accu-
racy in the F1 score metric. 

However, this proposal was not applied to a real gesture identification scenario. 
Therefore, our proposal develops a model for a real-life environment. To test communi-
cation using a sign model, we defined four specific signs to identify the pedestrian’s in-
tention of “stop”, “I want to cross”, “you cross”, and “I will cross first” (Figure 8). 

 
Figure 8. Representation of the signals used for communication between ASC and D-VRU. 

Deep learning is one of the techniques used for pattern identification. Specifically, 
recurrent neural networks are a class of networks used to process and obtain information 
from sequential data [77–79]. Neural networks have an activation function that only acts 
in one direction, from the input layer to the output layer, which prevents it from remem-
bering previous values. A recurrent neural network (RNN) is similar but includes connec-
tions that point “backward” allowing feedback between neurons within the layers. Unlike 
other neural networks, which process one piece of data at a time, RNNs can process se-
quences of data (videos, conversations, and texts) but are not used to classify a particular 
piece of data [80–82]. Instead, they can generate new sequences and incorporate feedback, 
which creates temporality, allowing the network to have memory. 

Recurrent neural networks use the concept of recurrence to generate an output (re-
ferred to as activation). The generated and recurring inputs use a “temporary memory” 
to obtain the desired output. One of the most widely used recurrent networks is LSTM 
(long short-term memory), which “remembers” a relevant piece of data in the sequence 
and preserves it for several moments, allowing them to have both short-term and long-
term memory [83]. 

This work proposes a model based on the LSTM network to detect the defined hand 
gestures that may enable ASC and D-VRU communication. Although hand gestures may 
vary depending on the country and culture, the idea is only to exemplify how gesture 
recognition is applied to self-driving cars and creating a model based on LSTM that allows 
the self-driving car to identify such gestures. 

Figure 8. Representation of the signals used for communication between ASC and D-VRU.

Deep learning is one of the techniques used for pattern identification. Specifically,
recurrent neural networks are a class of networks used to process and obtain information
from sequential data [77–79]. Neural networks have an activation function that only acts in
one direction, from the input layer to the output layer, which prevents it from remembering
previous values. A recurrent neural network (RNN) is similar but includes connections
that point “backward” allowing feedback between neurons within the layers. Unlike other
neural networks, which process one piece of data at a time, RNNs can process sequences
of data (videos, conversations, and texts) but are not used to classify a particular piece of
data [80–82]. Instead, they can generate new sequences and incorporate feedback, which
creates temporality, allowing the network to have memory.

Recurrent neural networks use the concept of recurrence to generate an output (re-
ferred to as activation). The generated and recurring inputs use a “temporary mem-
ory” to obtain the desired output. One of the most widely used recurrent networks is
LSTM (long short-term memory), which “remembers” a relevant piece of data in the se-
quence and preserves it for several moments, allowing them to have both short-term and
long-term memory [83].
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This work proposes a model based on the LSTM network to detect the defined hand
gestures that may enable ASC and D-VRU communication. Although hand gestures may
vary depending on the country and culture, the idea is only to exemplify how gesture
recognition is applied to self-driving cars and creating a model based on LSTM that allows
the self-driving car to identify such gestures.

For the hand gesture detection model, the MediaPipe framework (MP) was used [83],
an open-source machine learning framework for creating models for face feature detection,
hand tracing, and object detection, among other things. MP Holistic makes use of the
MediaPipe models (pose, face mesh, and hands) to create 543 reference points related to
pose (33 points), face (with 468 points), and 21 reference points for each hand. We used
the tool for hand tracking, creating 21 3D landmarks with multi-hand support based on
high-performance palm detection and hand landmark modeling.

Routines extracted key points using MP. Subsequently, these routines collected the key
points of 400 sequences of each defined gesture, preprocessed the data, and created data
labels and features. The model for hand gesture identification design uses the LSTM-based
neural network. Figure 9 shows the structure of the developed network. The total number
of parameters used was 596,675.
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4. Results and Discussions

This section analyzes and discusses the results obtained in the performance evaluation
of the proposed model.
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4.1. Evaluation Metrics

One of the essential points for a classification process is the determination of the correct
estimator. These models must be evaluated to determine their effectiveness. Performance
evaluation metrics are based on the total number of true positives, true negatives, false
positives, and false negatives.

There are four performance metrics to evaluate the classification model’s effectiveness:
(I) accuracy, which reflects the model’s ability to predict all classes; (II) precision, which
shows the model’s ability to detect positive classes from all predicted positive classes;
(III) recall accuracy shows the model’s ability to detect positive classes of all current
positive classes, and (IV) F1 score represents the harmonic mean of precision and recall.
Generally, the input is the image containing the object(s) to be classified, and as output,
a class label is placed inside the image. The most widely used algorithms are logistic
regression, Naïve Bayes, stochastic gradient descent, k-nearest neighbors, decision trees,
random forests, and support vector machines [84].

4.2. Data Validation

Typically, the dataset is randomly split to generate one subset for training and another
for validation. In most models, 70 to 80% of the data is reserved for training and the
rest for validation. However, when the data is limited, this technique could be more
effective because some of the information in the data may be omitted during the training
phase, causing a bias in the results. K-folds are used to ensure that all dataset features are
considered during training. This technique is highly recommended, especially when there
is limited data. In this work, the k-fold technique was used. The k-value parameter was set
to 5 to split the dataset. Figure 10 shows the results of this evaluation.

Machines 2023, 11, x FOR PEER REVIEW 16 of 23 
 

 

There are four performance metrics to evaluate the classification model’s effective-
ness: (I) accuracy, which reflects the model’s ability to predict all classes; (II) precision, 
which shows the model’s ability to detect positive classes from all predicted positive clas-
ses; (III) recall accuracy shows the model’s ability to detect positive classes of all current 
positive classes, and (IV) F1 score represents the harmonic mean of precision and recall. 
Generally, the input is the image containing the object(s) to be classified, and as output, a 
class label is placed inside the image. The most widely used algorithms are logistic regres-
sion, Naïve Bayes, stochastic gradient descent, k-nearest neighbors, decision trees, ran-
dom forests, and support vector machines [84]. 

4.2. Data Validation 
Typically, the dataset is randomly split to generate one subset for training and an-

other for validation. In most models, 70 to 80% of the data is reserved for training and the 
rest for validation. However, when the data is limited, this technique could be more effec-
tive because some of the information in the data may be omitted during the training phase, 
causing a bias in the results. K-folds are used to ensure that all dataset features are con-
sidered during training. This technique is highly recommended, especially when there is 
limited data. In this work, the k-fold technique was used. The k-value parameter was set 
to 5 to split the dataset. Figure 10 shows the results of this evaluation. 

 
Figure 10. Results obtained from the data validation process: (a) accuracy, (b) precision, (c) recall, 
and (d) F1 score. 

Figure 10. Results obtained from the data validation process: (a) accuracy, (b) precision, (c) recall,
and (d) F1 score.



Machines 2023, 11, 967 16 of 21

The results are an indication of the stability of the model. Regarding accuracy, an
average value of 97.3% was obtained for the training phase, 96.9% for the validation phase,
and 96.7% for the test phase. For the precision metric, the mean values obtained were 97%
for training, 96.5% for validation, and 96.5% for testing. The recall measure’s mean values
were 0.989 for the training phase, 0.986 for the validation phase, and 0.984 for the test phase.
Finally, the F1 score parameter had values of 0.9797, 0.9756, and 0.9751 for the training,
validation, and test phases, respectively. Therefore, very similar behavior is observed with
all five folds in the different phases of the model, which shows that the model’s data are
accurate and not under- or over-fitted.

4.3. ASC–D-VRU Interaction

Finally, the interaction process focuses on how the car will notify the pedestrian about
the intentions or actions to follow.

Interaction technologies fall into three categories. (i) Visual interfaces that allow
information display through text, icons, holograms, or projections. (ii) Acoustic signals to
transmit the message to visually impaired people. (iii) Anthropomorphic interfaces that
use human characteristics to communicate with the pedestrian to provide a sense of safety.
For example, some researchers propose simulating eye contact with pedestrians using an
interface that affects eye movement.

In recent years, work has been ongoing on developing human–computer interfaces for
self-driving cars. These interfaces are called external Human–Machine Interfaces (eHMIs)
and are installed outside the car.

Once the eHMI locates the disabled pedestrian, it proceeds to identify whether the
pedestrian communicates with the car through a series of hand gestures. Based on this
assessment, the pedestrian’s intention is recognized, and a series of measures improve the
functional capabilities of the disabled pedestrian when crossing. One of the first steps is the
selection of the most appropriate communication interface to notify the pedestrian with a
disability of the following action. The interface selection is directly related to the type of D-
VRU identified, for example, by using the acoustic interface when the detected pedestrian
is a blind person. In this case, the acoustic interface could allow the assistive self-driving
car to emit a voice message such as “after you”, “can cross”, or “stop” (Figure 11A). If the
type of pedestrian detected is a person in a wheelchair, then the self-driving car would use
the visual interface to display messages that could be text messages such as “may cross”,
“stop”, and “after you”. Messages are complemented with icons or holographic projections
to improve understanding of the text due to a lack of language knowledge or inability to
read (Figure 11B–D).

The proposal presented in this paper has the potential to make a significant difference
to the mobility and safety of people with disabilities in the road environment. However,
there may be a number of situations that may affect the performance of the proposed solu-
tion. For example, one of the problems of the proposal may be the inclusion problem. Let
us analyze the scenario in which many pedestrians are together with a disabled individual.
The proposal could detect the disabled person through the wireless communication process.
However, there may be a situation where the pedestrians obstruct the disabled person,
which hinders the interaction process between the ASC and the D-VRU. Therefore, this
proposal should be expanded to include safe and predictable ways for disabled people
to interact with other road users, such as drivers and cyclists, to avoid confusion and
dangerous situations. To inform other users of the intentions of the pedestrian with a
disability, clear and universally understood communication interfaces, such as light signals
or sounds, can be developed, which could reduce occlusion problems.



Machines 2023, 11, 967 17 of 21
Machines 2023, 11, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 11. Representation of technological interfaces: (A) acoustic interface to indicate the action to 
follow by the D-VRU, (B) acoustic and visual interface, (C) display on the front of the vehicle show-
ing information on what the D-VRU should do, and (D) projection of message on the road with 
visual elements to indicate to the D-VRU the option of “safe crossing”. 

The proposal presented in this paper has the potential to make a significant difference 
to the mobility and safety of people with disabilities in the road environment. However, 
there may be a number of situations that may affect the performance of the proposed so-
lution. For example, one of the problems of the proposal may be the inclusion problem. 
Let us analyze the scenario in which many pedestrians are together with a disabled indi-
vidual. The proposal could detect the disabled person through the wireless communica-
tion process. However, there may be a situation where the pedestrians obstruct the disa-
bled person, which hinders the interaction process between the ASC and the D-VRU. 
Therefore, this proposal should be expanded to include safe and predictable ways for dis-
abled people to interact with other road users, such as drivers and cyclists, to avoid con-
fusion and dangerous situations. To inform other users of the intentions of the pedestrian 
with a disability, clear and universally understood communication interfaces, such as 
light signals or sounds, can be developed, which could reduce occlusion problems. 

5. Conclusions 

Figure 11. Representation of technological interfaces: (A) acoustic interface to indicate the action to
follow by the D-VRU, (B) acoustic and visual interface, (C) display on the front of the vehicle showing
information on what the D-VRU should do, and (D) projection of message on the road with visual
elements to indicate to the D-VRU the option of “safe crossing”.

5. Conclusions

Self-driving cars will interact more closely with other human agents on social roads.
For this reason, having quantitative models to predict these interactive behaviors has be-
come increasingly important. This article analyzes the interaction process between disabled
people and self-driving cars. The idea is to integrate the concept of assistive technology
into the self-driving car environment, creating an assistive self-driving car that extends the
pedestrian detection capabilities to a process of identification of disabled people using deep
learning technology. A bi-directional interaction mechanism between pedestrians with
disabilities and the self-driving car was proposed. Through an algorithm based on recurrent
neural networks for hand gesture detection and external human–computer interfaces, a
bidirectional interaction to increase the safety and reliability of the disabled pedestrian to
perform activities within the road environment, such as crossing a street, was achieved.

Unlike other works proposed in the literature, this proposal does not require installing
or implementing additional infrastructure. Instead, it uses the processing capacity already
implemented in self-driving cars, saving investment costs and extending its coverage to
any area of the road traffic ecosystem. Furthermore, although the proposal focuses on
pedestrians with disabilities, all other pedestrians can use the hand gesture mechanism
to communicate with self-driving cars. As a commonly used communication mode in
today’s driving environment, it does not imply a cognitive burden for pedestrians to learn
something new.
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