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Abstract: Robots gradually have the ability to plan grasping actions in unknown scenes by learning
the manipulation of typical scenes. The grasping pose estimation method, as a kind of end-to-end
method, has rapidly developed in recent years because of its good generalization. In this paper, we
present a grasping pose estimation method for robots based on convolutional neural networks. In
this method, a convolutional neural network model was employed, which can output the grasping
success rate, approach angle, and gripper opening width for the input voxel. The grasping dataset
was produced, and the model was trained in the physical simulator. A position optimization of the
robotic grasping was proposed according to the distribution of the object centroid to improve the
grasping success rate. An experimental platform for robot grasping was established, and 11 common
everyday objects were selected for the experiments. Grasping experiments involving the eleven
objects individually, multiple objects, as well as a dark environment without illumination, were
performed. The results show that the method has the adaptability to grasp different geometric objects,
including irregular shapes, and it is not influenced by lighting conditions. The total grasping success
rate was 88.2% for the individual objects and 81.1% for the cluttered scene.

Keywords: robot grasping; pose estimation; convolutional neural network; deep learning

1. Introduction

Traditional robotic grasping mostly performs repetitive actions, and the end pose of
the robot is obtained through manual teaching or kinematic derivation. It is relatively
mature and widely applied in environments with certain pose objects. However, the robot
is limited by the external objects and the environment. As more complex application scenes
such as logistics sorting and service robots have been required, situations with various
poses of objects and inevitable stacking occlusions have appeared. As the perception ability
of robots has been greatly improved, the robot can autonomously plan the manipulation of
actions based on the perceived environmental information. By learning the operation of
typical scenes, the robot has adaptability in unknown scenes, analyzes unknown scenes by
using known frameworks, and plans grasping actions autonomously; so, the robot is no
longer bound by the constraints of traditional scenes.

There are two main kinds of methods for the robot grasping task. One is based on the
pose of the object, which requires the robot to have some prior knowledge. Suitable grasp-
ing poses can be provided in advance for different types of objects; so, the issue of robot
grasping can be transformed into the classification and pose estimation of the object [1]. The
idea of the traditional 6D pose estimation method for objects is to match the feature informa-
tion of the object between the scene and the known template. Point Feature Histograms [2],
Fast Point Feature Histograms [3], Point Pair Features [4], and the linemod method [5]
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are the representative feature description methods. With significant breakthroughs in
deep learning in computer vision, scholars have extended two-dimensional images to
three-dimensional objects, and convolutional neural networks (CNN) have achieved many
research results in object pose estimation. Representative methods have been proposed,
like the SSD-6D method [6], the Pose CNN method [7], the Real-Time Seamless Single
Shot 6D method [8], the DenseFusion method [9], the PVN3D method [10], and the FFB6D
method [11]. For objects in the dataset, the above methods can accurately estimate the
pose of the object and grasp the object, combining prior knowledge. However, the object
pose estimation method has poor generalization for unknown objects that do not exist in
the dataset.

The other method is an end-to-end method with a better generalization, which directly
processes the input image or point cloud to obtain a suitable grasping pose. Jiang et al. [12]
proposed to determine the graspable position as a directional rectangle. Six-dimensional
grasping is simplified and becomes grasping on the plane; so, the grasping modeling is
directly carried out on the input RGB image. Furthermore, not only color images but
also three-dimensional point clouds are considered to obtain appropriate grasping poses.
Ten Pas et al. [13] proposed to detect grasping poses in point clouds. This method takes
the point cloud as input and randomly generates N candidate grasping poses near the
object. The neural network scores each candidate grasping pose and outputs whether it is a
suitable grasping prediction. This method is able to generate candidate grasping poses on
arbitrary visible surfaces. The GG-CNN method proposed by Morrison et al. [14] outputs
the appropriate grasping pose and grasping quality at each position in the input depth map,
in order to overcome the limitations of deep learning in six-dimensional grasping. The
PointnetGPD method proposed by Liang et al. [15] performs grasping actions on random
samples and scores grasping effects based on force closure and grasping space.

The above grasping pose estimation methods are also trained for specific datasets. Al-
though they have certain generalization capabilities, their accuracy for unknown objects is
still greatly reduced compared to known objects. Since the learning-based methods heavily
rely on the scale of the training dataset, which can be tedious for human to collect from
physical grasping experiments, researchers from NVIDIA proposed the 6-DoF graspnet
method [16,17]. The dataset is completely generated by using a physical simulator. For the
input point cloud, the grab samples are randomly selected by the variational autoencoder,
and the grab sampling evaluation model is used to evaluate and optimize. The method has
an 88% grasping success rate across different appearance size scales. Another prominent
work of such data-driven learning is the Dexterity Network (Dex-Net) series [18–21]. In
Dex-Net 1.0, cloud computation and big data are firstly employed to accelerate the object
classification task based on a Multi-View Convolutional Neural Network. Later, Dex-Net 2.0
and 3.0 are extended to use a Grasping-Quality Convolutional Neural Network (GQCNN)
for a parallel-jaw gripper and vacuum suction cup separately, and achieve grasping success
rate over 90% and 82% each, but they still take more than 2.5 s and 3.0 s to plan grasps.
The next version, 4.0, combines previous work and introduces an “ambidextrous” policy
learning method to enable the intelligent switch of end-of-arm tools (EoAT), which leads
to 93% successful grasping. Methods based on deep learning have high requirements for
computational ability. Although accurate results can be obtained, it is difficult to meet the
real-time requirements for the ordinary hardware, and also, they are not robust enough to
handle complex real-world conditions.

One important research field concentrates on the robustness of grasp and pick algo-
rithms in uncontrolled cluttered environments where there are package piles and partial
occlusion, in order to deploy robotic grasping in industrial applications. The learned pick
quality system used in the Robin induction fleet of Amazon.com, Inc. (Seattle, USA) [22] is
regarded as the first large-scale deployment of such a method in real production system
and nowadays can sort several million packages per day. Its shallow machine learning
model trained on historical pick outcomes makes full use of prior experience to learn which
feathers are most important for prediction, and to rank and determine the most promising
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picks based upon that very effectively. The VGN method [23] proposed by ETH Zurich
represents a breakthrough in computing speed. This method does not select point clouds
as input but converts objects into 3D voxels and uses the voxels as the input of the CNN
model. The method has an 80% grasping success rate. Meanwhile, each planning only takes
10 ms in this method, and a real-time grasping pose estimation of the robot can be possible.
The corresponding dataset production rule in the VGN method is to attempt to capture
the six fixed directions of the point cloud’s outer normal. Although the dataset generated
in this way can be successfully captured in a simulation environment, the corresponding
grasping pose may not be reasonable and stable.

In this paper, we present a stable grasping pose estimation method for robots, in which
a CNN model for grasping pose estimation is based on the VGN model. This model can
output the grasping success rate, approach angle, and gripper opening width for each voxel
in the scene to be captured. The grasping dataset was produced based on common sense,
and the model was trained in the physical simulator. In addition, a position optimization
of the robotic grasping is proposed according to the distribution of the object centroid in
order to improve the success rate of the robotic grasping.

The remainder of this paper is organized as follows. Section 2 presents the grasping
pose estimation method for robots based on the CNN model. Section 3 explains the grasping
experiments and results. Finally, conclusions are provided in Section 4.

2. Method
2.1. Architecture of the CNN Model for Grasping Pose Estimation

The purpose of the convolutional neural network (CNN) model of the grasping
pose estimation in this paper is to establish a mapping relationship that can output the
grasping success rate, approach angle, and gripper opening width at each voxel grid for
an arbitrary input 3D voxel space by training the dataset and optimizing the parameters.
The architecture of the CNN model is shown in Figure 1. Three-dimensional convolutional
layers are employed as the basic structure in this architecture.
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Figure 1. The architecture of the CNN model for grasping pose estimation.

For the encoding section of the model, a perception module consisting of 3 convo-
lutional layers with 16, 32, and 64 filters, maps the input volume V to a feature map of
dimension 64 × 53. ReLu (Rectified Linear Unit) is employed as the activation function to
improve the nonlinear fitting ability of the model.

For the decoding section of the model, the neural network consists of 3 convolutional
layers interleaved with 2× bilinear upsampling, followed by three separate heads for
predicting the grasping success rate, approach angle, and gripper opening width.



Machines 2023, 11, 974 4 of 16

2.2. Loss Function of the CNN Model

For the value of the grasping success rate, the labels of the data contain two types of
0 and 1, which are failure and success, respectively. The output should be in the interval
[0, 1]. The closer the value is to 1, the higher the success rate of grasping at this pose.
Therefore, the binary cross-entropy loss can be considered as the loss function of the
grasping success task, as shown in Equation (1). It has been proved to have a fine training
effect in the binary classification task.

Lq = −
N

∑
i=1

(q̂i log(qi) + (1− q̂i) log(1− qi)) (1)

Here, N is the batch size, q̂i is the actual label of the input data, and qi is the predictive
value of the model.

For the approach angle, Quaternion is employed to represent angle information. The
inner product of the Quaternion represents the cosine value of the angle between two
vectors in a four-dimensional space. When the two vectors are consistent, the cosine value
of the angle is 1, and the corresponding loss is 0. Otherwise, the corresponding loss value
will be larger when the two approach angles have a significant difference. The loss function
of pose is shown in Equation (2).

Lr = 1− (r̂ · r) (2)

Here, r̂ is the actual label of the Quaternion, and r is the predictive value of the model.
However, there is a specific situation due to the symmetry of a parallel-jaw gripper. A

configuration rotated 180◦ around the gripper’s wrist axis corresponds effectively to the
same grasp but leads to inconsistent loss signals as the model is penalized for regressing
to one of the two alternative 3D rotations. Therefore, it is necessary to determine the
corresponding situation when it rotates 180◦ around the gripper’s wrist axis, and the
minimum value of these two values should be the actual output, as shown in Equation (3).

Lr = min(1− (r̂ · r), 1− (r̂ · rπ)) (3)

For predicting the gripper opening width, the mean square error is used as the loss
function. When the two values are consistent, the corresponding output is 0; otherwise, the
corresponding loss will be larger, as shown in Equation (4).

Lw = (ŵ− w)2 (4)

Here, ŵ is the actual opening width of the gripper, and w is the predictive output of the
gripper opening width.

Combining the above three tasks, the overall loss function value is determined by the
above loss functions Lq, Lr, and Lw. Among the three kinds of losses, the grasping success
rate is the basic representation for deciding the generated grasping pose. Therefore, the
predicted value of the grasping success rate is employed as the proportional coefficient
of the other two loss functions. In addition, the ranges of the loss functions Lq and Lr
are within [0, 1], and a proportional coefficient is used for the loss function of the gripper
opening width, in order to ensure the same order of magnitude for the output value of the
three loss functions, as shown in Equation (5).

Loss = Lq + q(Lr + kLw) (5)

2.3. Grasping Dataset and Model Training

In this work, a dataset for the CNN model was created, because the model’s input
is a 3D voxel grid. The grasping dataset based on virtual 3D objects in the simulation
environment can contribute to improve the generalization ability of the model. Thus, based
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on the simulation physics engine of PyBullet, a 6-DoF grasping dataset with approximately
200,000 times grasping attempts was created considering both the gripper pose and the
force between the gripper and the object.

The objects to be grasped in this dataset are 3D models with regular geometric shapes
such as cuboids and cylinders. These 3D models are the regularized expression of the
objects in daily life, as shown in Figure 2. In a simulation environment, n kinds of ran-
dom object models, after being arbitrarily scaled and rotated, constitute a stacking scene.
Grasping attempts were performed 60 times in each scene, until 200,000 grasping attempts
were generated.
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The setting rule of the grasping dataset is based on common sense in daily life. For
two-finger grasping, people are accustomed to approaching the surface of an object in the
direction of its normal, and the surface normal of the object is located on the line connecting
the contact points of two fingers. In addition, the grasping position is located near the
center of mass of the object in general. This kind of object grasping is stable and meets
the force closure conditions. Therefore, the grasping pose can be determined through the
above rule in the simulation.

As shown in Figure 2, taking the cuboid as an example, the directions of its coordinate
system represent the directions of three surface normals. The object posture is random
in the scene. When the coordinate axis of the object points to a positive component, the
z-axis direction of the grasping is the opposite of the object coordinate axis. Otherwise, the
z-axis of the grasping and the object coordinate axis are in the same direction. Therefore,
the z-axis, y-axis, and x-axis directions of the grasping are determined first. To improve
the generalization of the dataset and consider the possible situations, a rotation of the
gripper around its y-axis could be allowed, which is ry ∼ N(0, π/18). The offset distances
dz ∼ U(0.015− lz/2, 0.035− lz/2) of the gripper along the z-axis, which are related to the
geometric size of the object and depth of the gripper, could be allowed and are determined
by the simulation experiments. In addition, an offset distance of the gripper along the x-axis
is allowed, which is dx ∼ N(0, l/6). Similarly, the setting rules of the grasping dataset for
cuboid, cylinder, tri-prism, and hemicylinder are shown in Figure 2 and Appendix A.

In each scene of the simulation, grasping attempts for all objects were performed in
accordance with the above grasping rules. In the entire grasping process, if the object
was grasped and displaced successfully, and the gripper did not collide with other objects
or boundaries, the grasping pose was marked as a positive label. Otherwise, with the
occurrence of a collision or the failure to displace the object, the grasping pose was marked
as a negative label. The ratio of positive labels to negative labels in the generated dataset is
approximately 1:3.
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Based on the established dataset, the training for the CNN model was performed.
The CPU of the hardware platform used in the training process was Intel i7-10700 (Santa
Clara, CA, USA), and the graphics card was NVIDIA’s GTX1650 (Santa Clara, CA, USA).
Meanwhile, the operating system was 64-bit Windows 10, and the programming language
of the application was Python 3.8. The deep learning framework was built based on
PyTorch-ignite-0.4.6.

The data used for training and testing were randomly selected from the dataset in a
9:1 ratio. The Adam (Adaptive Moment Estimation) optimizer was employed to update
the parameters in backpropagation during the training process. Meanwhile, the learning
rate was set to 0.0003. In order to improve the training efficiency, the batch size was set to
48, and 30 epochs were performed on the training samples. The losses during the training
process were calculated by Equation (5) and are shown in Figure 3. The loss in the initial
epochs of training decreased rapidly and gradually converged to a smaller value. The
effectiveness of the trained CNN model was verified.
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Figure 3. The losses during the training process.

After each epoch, the testing dataset was input into the trained CNN model and
compared with the outputs. The accuracy was calculated by Equation (6) and is shown
in Figure 4. The accuracy of the testing dataset in the initial epochs of training increased
rapidly and gradually stabilized around 0.95.

acc =
TP + TN

TP + TN + FP + FN
(6)

Here, TP represents that the label is positive, and the prediction result is also positive; TN
represents that the label is negative, and the prediction result is also negative; FP represents
that the label is negative, but the prediction result is positive; and FN represents that the
label is positive, but the prediction result is negative.
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2.4. Optimization of the Grasping Pose Estimation Method

The grasping position has a significant impact on the grasping results. Taking a cuboid
object as an example, the outputs of the CNN model show that the surfaces of the cuboid are
probability positions that can be successfully grasped. However, when the line connecting
the two grasping points of the fingers and the object is perpendicular to and intersects with
the gravity direction of the object, the friction force between the gripper and the object can
be equivalent to a force acting on the center of mass of the object. And the friction force
only needs to balance the object’s own gravity in this situation. Otherwise, a torque causing
object rotation will be generated inevitably, and the grasping success rate will be obviously
reduced [24], as shown in Figure 5. Therefore, the optimal grasping position should be
located near the centroid of the object.
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Therefore, the DBSCAN (density-based spatial clustering of applications with noise)
method [25] was employed to determine the centroid position of the object. By clustering
the scene point cloud, each object was classified as a separate category, and then the centroid
position of each category was determined. In addition, the RANSAC (random sampling
consensus) method [26] for the plane segmentation was employed to avoid the influence of
the ground point cloud on the clustering.

For the RANSAC method of the plane segmentation, the corresponding plane model
can be expressed as Equation (7).

ax + by + cz + d = 0 (7)

Let us assume that we have a point cloud P =
{

pi ∈ R3, i = 1, 2 · · ·N
}

with N-many
points, and that the number of samples in the minimum sampling set S is 3. Firstly, a mini-
mum sampling set is randomly selected from the point cloud and input into Equation (7)
to obtain a plane model M. For all other points in the point cloud, if the distance from the
point to the plane is less than the threshold, the point is in the plane; otherwise, the point is
out of the plane as an abnormal point. The normal point set in the point cloud for the plane
model and the abnormal point set are distinguished. In addition, the least squares method
was used to perform fitting on the normal point set to obtain a new model M*. Iterative
optimization of the plane model was repeated until it met the deduction conditions. It
is worth emphasizing that the RANSAC method has limitations due to its reliance on
threshold setting, specifically for real-world applications where the features of various
object are less distinctive, such as piles of deformable polybags or semi-rigid containers.

To avoid the influence of the ground point cloud on the clustering, the threshold for
plane segmentation was set to 10 mm, and the maximum number of iterations was 100. The
3D voxel information of the scene and objects was converted into point cloud information.
As shown in Figure 6, the yellow point cloud represents the segmented plane point cloud,
and the red represents the point cloud of the out-of-plane object.
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Figure 6. The results of plane segmentation. (a) Original image; (b) plane segmentation.

The DBSCAN method is a density-based clustering algorithm. By setting a range
and the minimum number of points in the neighborhood, several high-density regions
in the point cloud were set to continuously search. The range of the neighborhood was
set to 0.02 m, and the minimum number of points in the neighborhood was set to 100,
after experimental attempts. Meanwhile, in order to prevent the nonuniform density of
some areas due to the camera visual field, each point cloud cluster was required to contain
at least 500 points to be identified as a category. The results are shown in Figure 7. It is
worth emphasizing that the RANSAC method has limitations segmenting the objects with
occlusions and overlaps.

Machines 2023, 11, x FOR PEER REVIEW 8 of 16 
 

 

the point to the plane is less than the threshold, the point is in the plane; otherwise, the 
point is out of the plane as an abnormal point. The normal point set in the point cloud for 
the plane model and the abnormal point set are distinguished. In addition, the least 
squares method was used to perform fitting on the normal point set to obtain a new model 
M*. Iterative optimization of the plane model was repeated until it met the deduction con-
ditions. It is worth emphasizing that the RANSAC method has limitations due to its reli-
ance on threshold setting, specifically for real-world applications where the features of 
various object are less distinctive, such as piles of deformable polybags or semi-rigid con-
tainers. 

To avoid the influence of the ground point cloud on the clustering, the threshold for 
plane segmentation was set to 10 mm, and the maximum number of iterations was 100. 
The 3D voxel information of the scene and objects was converted into point cloud infor-
mation. As shown in Figure 6, the yellow point cloud represents the segmented plane 
point cloud, and the red represents the point cloud of the out-of-plane object. 

  
(a) (b) 

Figure 6. The results of plane segmentation. (a) Original image; (b) plane segmentation. 

The DBSCAN method is a density-based clustering algorithm. By setting a range and 
the minimum number of points in the neighborhood, several high-density regions in the 
point cloud were set to continuously search. The range of the neighborhood was set to 
0.02 m, and the minimum number of points in the neighborhood was set to 100, after ex-
perimental attempts. Meanwhile, in order to prevent the nonuniform density of some ar-
eas due to the camera visual field, each point cloud cluster was required to contain at least 
500 points to be identified as a category. The results are shown in Figure 7. It is worth 
emphasizing that the RANSAC method has limitations segmenting the objects with oc-
clusions and overlaps. 

  
(a) (b) 

Figure 7. The results of point cloud clustering. (a) Original image; (b) point cloud clustering. 

For the case of multiple objects, the grasping order was according to the centroid 
positions of objects, considering a top-down grasping approach. Based on the grasping 
success rate at each position, all grasping poses with a success rate larger than the thresh-
old 0.9ε =  were output. Then, the distances between the successful grasping poses and 
the centroids of the objects were calculated using Equation (8). All grasping poses were 
sorted according to the value. 

2 2 2
1 2 3( ) ( ) ( ) /i i c i c i c ix x y y z z qρ λ λ λ= − + − + −  (8)

Figure 7. The results of point cloud clustering. (a) Original image; (b) point cloud clustering.

For the case of multiple objects, the grasping order was according to the centroid
positions of objects, considering a top-down grasping approach. Based on the grasping
success rate at each position, all grasping poses with a success rate larger than the threshold
ε = 0.9 were output. Then, the distances between the successful grasping poses and the
centroids of the objects were calculated using Equation (8). All grasping poses were sorted
according to the value.

ρi =

√
λ1(xi − xc)

2 + λ2(yi − yc)
2 + λ3(zi − zc)

2/qi (8)

Here, λ1 = 0.45, λ2 = 0.45, λ3 = 0.1, qi is the value of the grasping success rate for
each pose, (xi, yi, zi) are the grasp position coordinates, and (xc, yc, zc) are the centroid
position coordinates.

3. Experiments and Results
3.1. Experimental Platform

An experimental platform was established as shown in Figure 8. The experimental
platform was based on the Kinova Gen2 robot (Boisbriand, QC, Canada), and the two-
finger gripper was MicoHand (Boisbriand, QC, Canada). The visual sensor was the Intel
RealSense D435i (Santa Clara, CA, USA). The configuration of the host PC was the same
as that used in the CNN model training in Section 2.4. In addition, the simulation was
performed synchronously based on the V-rep.
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Figure 8. The experimental platform for the robot grasping.

The experimental process of each grasping task is shown in Figure 9. The experimen-
tal system mainly consisted of four parts: visual perception, grasping planning, action
execution, and visualization. The depth camera was used to obtain the color and depth
maps in real time, with the depth map used for scene reconstruction and the color map
used to visualize the camera’s perspective. For each grasping task, the first step was to
perform a 3D scene reconstruction using multi-views fusion. The robot with the camera
was controlled to reach the designated position in sequence, and after completing the
observation tasks of three views, the voxel grids containing 3D scene information were
generated. Then, the voxel grids were input into the trained CNN model. And, after
optimizing the output results of the CNN model, the final grasping pose was obtained.
Finally, coordinate conversion was performed, and the robot completed the subsequent
grasping action.
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3.2. Single-Object Grasping Experiments

Eleven common everyday objects were selected for grasping experiments, including
objects with regular geometric shapes, such as a milk carton with a rectangular shape, a
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coffee can with a cylindrical geometric shape, and some objects with special shapes such as
duck toys and special parts.

For the single-object grasping experiment, the grasping success rate was used for the
evaluation. The whole grasping process was as follows: the robot moved to the three-
observation perspective for scene reconstruction, planned the grasping pose of the end
of the robot, moved to the designated pose for grasping, and placed the object in the
designated position, as shown in Figure 10. If the object was not grabbed successfully or
the object fell during the movement, the grasping process failed.
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Firstly, grasping experiments were performed on the two regular objects, cuboid and
cylinder. According to the above process, grasping attempts were performed 100 times for
each type of object. In these experiments, the poses of the object were randomly chosen. The
side length of the cuboid exceeded the limit of the gripper opening width in the situations
of the flat placements. Therefore, these cases were removed, and the number of times the
grasping task was completed for each viable attempt was recorded, as shown in Table 1.

Table 1. Results of the regularly shaped object grasping experiments.

Object Number of
Grasping Attempts

Number of
Viable Grasping Attempts

Number of
Successes

Grasping
Success Rate

Cuboid 100 90 86 95.6%
Cylinder 100 100 95 95%

Total 200 190 181 95.3%

A 95.6% and 95% grasping success rate was obtained for cuboid and cylinder, re-
spectively. Overall, this method had a 95.3% grasping success rate for these two types
of objects.

Further, grasping experiments were carried out 10 times on 11 kinds of objects, as
shown in Figures 11 and 12, and Video S1. The results of each grasping experiment were
counted, as shown in Table 2.
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Table 2. Results of the single-object grasping experiments.

Object Number of
Grasping Attempts

Number of
Successes

Success
Rate

Cuboid 10 9 90%
Milk carton 10 10 100%

Motor carton 10 10 100%
Shampoo bottle 10 8 80%

Roll of paper 10 10 100%
Coffee can 10 9 90%

Medicine bottle 10 8 80%
Measuring reel 10 10 100%

Sticky tape 10 7 70%
Duck toy 10 7 70%

Printed part 10 9 90%
Total 110 97 88.2%

Of the 110 experiments, the grasping tasks were completed successfully 97 times, and
the grasping success rate was 88.2%. For the failed experiments of the shampoo bottle,
which was approximately cuboid, the main reason was that the bottle nozzle disturbed the
motion planning. And for the failed experiments of the medicine bottle and sticky tape,
which were approximate to cylinders, the main reason was the objects slipping from the
two-finger gripper. The printed part and the duck toy had irregular shapes, with a 90%
and 70% grasping success rate, respectively. Some successful cases are shown in Figure 11,
and some of the typical failure cases are shown in Figure 12 and Video S4.
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Since the 3D reconstruction process only requires depth maps, lighting conditions
should not influence the grasping results in principle. To verify the adaptability of the
method to lighting conditions, random experiments were performed 10 times in a dark
environment without illumination. An infrared thermal camera was used to record the
grasping process, as shown in Figure 13 and Video S2. The results showed that the grasping
success rate was 90% in these experiments. The grasping pose estimation results of the
method were barely influenced by the lighting conditions in our experiment scenes.
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Figure 13. Experiments in a dark environment without illumination.

3.3. Multiple-Object Grasping Experiments

For the multiple-object grasping experiments, several objects were randomly selected,
and four multiple-object scenes were constructed, as shown in Figure 14 and Video S3.
In each scene, the robot repeated the grasping actions until all objects in the scene were
cleared. The numbers of objects and grasping attempts in each scene were counted, and
the grasping experiment for each scene was performed five times, as shown in Table 3.
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The overall grasping success rate of the algorithm was 81.1%, which was lower than
that of the single-object environment. In particular, the grasping success rate was 71.4%
in Scene IV. This is due to the mutual occlusion and stacking of multiple objects, which
interfered with the planning process of the algorithm. The stacking situation has an
influence on the determination of the centroid of the object, as it is difficult to segment
the point cloud of each object individually. The position of the centroid of the determined
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object may appear between the two objects, resulting in a grasping failure. In addition,
grasping failures because of the robot’s workspace limitation also occurred.

Table 3. Results of the multiple-object grasping experiments.

Scene Number of
Objects

Number of
Grasping Attempts

Number of
Successes

Success
Rate

Scene I 3 16 15 93.8%
Scene II 5 34 25 73.5%
Scene III 5 26 25 96.2%
Scene IV 5 35 25 71.4%

Total 18 111 90 81.1%

The proposed method was compared with VGN [23] in the consistent environment of
the multi-object grasping experiments. And a 2.8 percent higher overall success rate of the
proposed method was achieved, as shown in Table 4.

Table 4. Comparison of success rates between the proposed method and VGN [23] in the multiple-
object grasping experiments.

Scene
Number of

Objects
Number of
Successes

Proposed Method VGN [23]

Number of
Grasping
Attempts

Success
Rate

Number of
Grasping
Attempts

Success
Rate

Scene I 3 15 16 93.8% 16 93.8%
Scene II 5 25 34 73.5% 33 75.7%
Scene III 5 25 26 96.2% 30 83.3%
Scene IV 5 25 35 71.4% 36 69.4%

Total 18 90 111 81.1% 115 78.3%

Based on the above experiments, the method proposed in this paper demonstrates
good adaptability to grasping different geometric objects. In particular, for grasping slender
axis objects, it has a high success rate. The robot can grasp this kind of objects in different
positions and orientations, such as the milk carton and motor carton. Meanwhile, unknown
objects can be applied to the method, and the pose for grasping can be obtained. The robot
employing this method can grasp irregularly shaped objects, such as the duck toy and
printed part. The grasping results show that the method is successful in planning a pose
for grasping irregularly shaped objects, based on the dataset of objects with regular shapes.
Furthermore, the grasping results are almost uninfluenced by lighting conditions. Even in
a completely dark environment without illumination, the method can be successfully used
to grasp objects.

The application of the method also has limitations, which will be the main research
focus in future work. The method was unable to adapt well to the situation of pose planning
for grasping flat objects in the experiments. In addition, the grasping pose may be not
the optimum result in real-world cluttered environments, where accurately obtaining the
centroid position of objects in occlusion and overlap scenarios is limited. Therefore, this
research has the potential to improve the segmentation algorithm and appropriate metrics
for ranking grasping poses. These further improvements of the adaptability of robots in
various practical scenarios can support the applications in industries like manufacturing,
healthcare, and logistics.

4. Conclusions

In this work, we presented a stable grasping pose estimation method for robots. In
this method, the grasping success rate, approach angle, and gripper opening width can be
output from the input voxel through a CNN model. Meanwhile, the grasping dataset was
produced based on common sense, and the model was trained in the physical simulator. In
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addition, the grasping position was optimized according to the distribution of the object
centroid in order to improve the grasping success rate. Finally, grasping experiments
involving 2 regularly shaped objects, 11 single objects, and multiple objects, as well as in a
dark environment without illumination, were performed in the established experimental
platform, and the effectiveness of the method was validated. The total grasping success
rate was 90.5% for the regularly shaped objects, 88.2% for the single objects, and 81.1% for
the cluttered scene of multiple objects. The results show that a robot using this method can
grasp different geometric objects including irregular shapes. Meanwhile, the method has
adaptability to a dark environment without illumination. This method can be optimized to
accurately estimate the centroid position of objects in occlusion and overlap scenarios to
further improve its adaptability in real-world cluttered environments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/machines11100974/s1, Video S1: The single-object grasping ex-
periments. Video S2: Experiments in a dark environment without illumination. Video S3: The
multiple-object grasping experiments. Video S4: Failure cases in the grasping experiments.
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Appendix A. The Setting Rules of the Grasping Dataset

Types
Object

Coordinates
Rules

Cuboid X, Y, Z

a. Determine the z-axis, y-axis, and x-axis directions of the grasping;
b. Allow a rotation ry of the gripper around its y-axis, ry ∼ N(0, π/18);
c. Allow an offset distance dz of the gripper along the z-axis, dz ∼ U(0.015− lz/2, 0.035− lz/2);
d. Allow an offset distance dx of the gripper along the x-axis, dx ∼ N(0, lx/6).

Cylinder X, Y

a. Determine the z-axis direction of the grasping;
b. Allow a rotation rx of the gripper around its x-axis, rx ∼ U(0, 2π);
c. Allow a rotation ry of the gripper around its y-axis, ry ∼ N(0, π/18);
d. Allow an offset distance dz of the gripper along the z-axis, dz ∼ U(0.015− lz/2, 0.035− lz/2);
e. Allow an offset distance dx of the gripper along the x-axis, dx ∼ N(0, lx/6).

Z Same as cuboid

Tri-prism
X

a. Determine the z-axis, y-axis, and x-axis directions of the grasping;
b. Allow a rotation ry of the gripper around its y-axis, ry ∼ N(0, π/27);
c. Allow an offset distance dz of the gripper along the z-axis, dz ∼ U(0.015− lz/2, 0.035− lz/2).

Y, Z Same as cuboid

Hemicylinder

X
a. Determine the z-axis, y-axis, and x-axis directions of the grasping;
b. Allow a rotation ry of the gripper around its y-axis, ry ∼ N(0, π/24);
c. Allow an offset distance dz of the gripper along the z-axis, dz ∼ U(0.015− lz/2, 0.035− lz/2).

Y, Z
a. Determine the z-axis, y-axis, and x-axis directions of the grasping;
b. Allow a rotation ry of the gripper around its y-axis, ry ∼ U(−π/2, π/2);
c. Allow an offset distance dz of the gripper along the z-axis, dz ∼ U(0.015− lz/2, 0.035− lz/2).
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