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Abstract: Nowadays, railway track monitoring strategies are based on the use of railway inspection
vehicles and wayside dynamic monitoring systems. The latter sometimes requires traffic disruption,
as well as higher time and cost-consumption activities, and the use of dedicated inspection vehicles is
less economical and efficient as the use of in-service vehicles. Furthermore, the use of non-automated
algorithms faces challenges when it comes to early damage detection in railway infrastructure,
considering operational, environmental, and big data aspects, and may lead to false alarms. To
overcome these challenges, the application of artificial intelligence (AI) algorithms for early detection
of track defects using accelerations, measured by dynamic monitoring systems in in-service railway
vehicles is attracting the attention of railway managers. In this paper, an AI-based methodology
based on axle box acceleration signals is applied for the early detection of distributed damage to
track in terms of the longitudinal level and lateral alignment. The methodology relies on feature
extraction using an autoregressive model, data normalization using principal component analysis,
data fusion and feature discrimination using Mahalanobis distance and outlier analysis, considering
eight onboard accelerometers. For the numerical simulations, 75 undamaged and 45 damaged track
scenarios are considered. The alert limit state defined in the European Standard for assessing track
geometry quality is also assumed as a threshold. It was found that the detection accuracy of the
AI-based methodology for different sensor layouts and types of damage is greater than 94%, which
is acceptable.

Keywords: onboard dynamic monitoring of railway tracks; vehicle vibrations signal processing; rail
damage detection; drive-by monitoring of infrastructures; vibrations data analysis

1. Introduction

Distributed track geometry defects result from the degradation of the track support
system, while the deterioration or failure of individual track components mainly causes
isolated defects. Without suitable inspection and maintenance actions, the geometrical
defects increase with the number of passages [1–3] influencing wheel–rail dynamic forces,
passenger comfort, and running safety. Frýba [4] states that the vertical vibrations of
vehicles are influenced by the longitudinal level and cross level of the track. Claus and
Schiehlen [5], verify that structural vibrations of the railway bogie are mainly caused
by track irregularities. In addition, the lateral alignment, gauge, and cross level induce
transverse vibrations of vehicles and torsional dynamic effects on bridges.

To evaluate the geometrical track quality, inspection operations should be performed
periodically. These actions can be categorized as: (i) on-site inspections through specific
equipment and human resources or wayside monitoring; (ii) on-board monitoring using an
inspection vehicle equipped with optical and inertial systems. Currently, the geometrical
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quality of railway tracks is monitored through railway inspection vehicles because wayside
monitoring has higher costs [6–11] and leads to less accurate results. The track inspection
vehicle measures several geometric parameters, such as the position using a GPS (Global
Positioning System), the track curvature, the longitudinal level, and the alignment of both
rails, the cross level, the gauge, and the twist [8]. However, these inspection vehicles are
expensive and may not always be available for the whole of the railway line [7,12]. Further-
more, these vehicles do not circulate at the same speed as in-service railway vehicles, which
sometimes causes traffic disruption. To overcome these limitations, drive-by monitoring
and data-driven damage detection are being employed as inspection instruments. In this
scenario, sensors, usually accelerometers, are attached to railway in-service vehicles to
measure the dynamic response by specific vehicle elements, such as the axle box. This
approach does not disrupt traffic and it can provide real-time information about the track
condition, detecting potential defects at early stages.

Sun et al. [13], and Bosso et al. [14] highlighted the importance of using artificial
intelligence (AI) algorithms as promising ways to address the data interpretation problem
and damage detection. Memon et al. [15] developed and validated a web-based cloud
system with acceptable accuracy for fault detection on tracks. Ren et al. [16] proposed a
methodology for the detection of subgrade settlement on railway ballastless track, using
vibrations signals, and an algorithm based on support vector machines (SVM), convo-
lutional neural networks (CNN), and particle swarm optimization (PSO). Additionally,
Ribeiro et al. [17] refer to the fact that the GA can deal with big data, i.e., a significant
number of modal parameters. Lederman et al. [18] developed a data-driven methodology
for damage detection on railway tracks using the dynamic responses of in-service passenger
vehicles. The authors proposed the average signal energy using a sliding window and
found that the effect of speed variation is one of the challenges. The disadvantage in the
proposed approach is the need to localize the track damage, since the average values are
influenced by extreme values in the measured data. Moreover, the algorithms developed
by Malekjafarian et al. [19] and Lederman et al. [18] were validated for passenger railway
in-service vehicles. The Ensemble Empirical Mode Decomposition (EEMD) was considered
by Li and Shi [20] for the extraction of wavelength features of rail corrugation for later
detection using a machine learning classifier. These authors used the simulated wheel
dynamic responses regarding accelerations as the raw data. But the EEMD is commonly
used for damage in the dynamic system involving non-linear and non-stationary vibration
signals. Kostic and Gul [21] proposed a methodology for the detection of damage to foot-
bridges under temperature effects, using artificial neural networks (ANN) and vibration
measurements, with acceptable feasibility. Lee et al. [22], developed an ANN, known as
a convolutional autoencoder (CAE), and detected damage to bridges with an accuracy
of around 90%, using bridge vibration simulated data under traffic loads. To extract the
damage features, autoregressive models with exogenous input (ARX) were fitted to the
acceleration dynamic responses. Huang et al. [23] developed an algorithm based on genetic
evaluation theory for damage detection, considering the effects of temperature variation
and vibration measurements, with acceptable accuracy. To detect unbalanced loads on a
freight railway vehicle, and guarantee the comfort and safety of goods, Silva et al. [24]
implemented an artificial intelligence algorithm, which recorded vibrations data using
a virtual wayside monitoring system. For the extraction of the most sensitive features
for damage detection and feature dimensionality reduction, Silva et al. [24] considered
(linear) autoregressive models with exogenous input (ARX) for feature extraction from
accelerations and strain dynamic responses. The Mahalanobis distance was considered for
data fusion and features discrimination, and outlier analysis was used to distinguish in
which scenarios the vertical and lateral vehicle loads were not balanced. They proved that
the applied methodology enables users to automatically check whether the vehicles’ loads
are unbalanced. Meixedo et al. [25] considered simulated bridge damage and experimental
measurements. The authors considered different vehicle speeds, environmental conditions,
damage severity, as well as different sensor locations. The developed algorithm proved
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that it had the potential to distinguish, automatically, between damaged and undamaged
railway bridge conditions, even at early stages. Malekjafarian et al. [26] conducted a study
wherein they introduced a railway track monitoring method. This approach involved
utilizing acceleration data collected from an in-service train to identify the degradation of
stiffness in the track sub-layers. This was achieved through the application of an Artificial
Neural Network (ANN) algorithm. Malekjafarian et al. [19] proposed an algorithm based
on HT (for features extraction) and peak-based decomposition (PBD) for the detection of
track damage using data recorded in an in-service passenger vehicle. Song et al. [27] inves-
tigated the dynamic effects induced by car-body vibrations on the pantograph–catenary
system, under track irregularities. They found that the car-body vibrations may cause the
loss of contact between the pantograph and the overhead transmission line under extreme
track degradation conditions. Xia et al. [28] presented an automated driving systems data
acquisition and data analytics platform for vehicle detection and tracking. They used the
Kalman filter and Chi-square test method to reduce the noise and remove the outlier in
the vehicle trajectory data. Xia et al. [29] developed an algorithm for the localization of au-
tonomous roadway vehicles equipped with onboard sensors, under different environmental
conditions. Tsunashima and Hirose [30] considered simulated vertical car-body accelera-
tions and a HTT algorithm to detect damage on a longitudinal level, after track maintenance
activities. The accuracy of the algorithm was validated through wayside and simulated dy-
namic responses recorded by in-service vehicles in terms of vertical car-body accelerations.
Quirke et al. [31] applied a cross-entropy optimization algorithm to randomly generate the
railway track damage and compared the obtained results with vehicle dynamic responses,
in terms of the accelerations recorded from the bogie. The algorithm was tested for noise
sensitivity and damage to the tracks related to the longitudinal level. Quirke et al. [31]
concluded that a change in the deflection of a railway bridge due to the presence of damage
manifests itself as a variation in the simulated longitudinal level, associated with the mea-
sured railway vehicle dynamic response. A machine learning (ML) classification algorithm,
named a support vector machine (SVM), was developed by Tsunashima [6] to automatically
detect damage to railway tracks using accelerations recorded by simulated sensors attached
to the car body. To validate the results, Tsunashima [6] conducted an experimental test
and simulated a 3D numerical model using SIMPACK® [32]. For the identification of
damaged lateral alignment, cross level and longitudinal level damage to tracks, the root
mean square value (RMS) of the vertical and lateral accelerations, as well as the roll angle,
were considered as damage indicators. The damage detection accuracy was found to be
above 80%, showing the robustness of the developed approach. Balouchi et al. [7] found
good agreement in relation to the longitudinal level and lateral alignment damage by using
an ML approach for the detection and location of damage to track. Balouchi et al. [7] also
reported that the dynamic responses in terms of axle box accelerations, under damage
conditions, can be considered as the most reliable evidence of the extent of the damage
to the track. Chang et al. [33] applied a continuous wavelet transform (CWT) to detect
the resonant frequency of the car body, using vertical and lateral acceleration registered at
the floor level, under rail [34–36] and wheel wear damage conditions. Erduran et al. [37]
developed a methodology based on CWT for the detection of bridge vibration frequencies
under track damage, using simulated bogie vibration signals, and found that the developed
approach can detect the bridge vibration frequency with acceptable accuracy. They found
that the developed methodology can detect and locate, in real time, the track damage using
vehicle vibrations data. Wang et al. [38] concluded that early defects in high-speed railway
vehicles can be detected using an algorithm based on Bayesian theory, also implemented
by Flynn and Todd [39]. Sun et al. [40] validated an algorithm for the online detection of
wheel fatigue defects in railway vehicles. Auersch [41] conducted an onboard dynamic
monitoring test, recorded the bogie and axle box accelerations of passenger vehicles, and
used a correlation coefficient to conclude that there is a strong correlation between the soil
condition and vehicle vibrations on a railway track.
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Regarding the numerical models of the vehicle–track dynamic system, which have
been adopted in studies concerning the identification of damage and vehicle–structure
dynamics, two main approaches may be found in the literature. Namely, approaches that
rely on theories of multiple moving point loads, finite elements, and elastically supported
structures [4,42–51], and theory of multi-body dynamic simulation of the railway vehicle–
track dynamic system [14,52,53]. Mosleh et al. [54] developed a 3D numerical model of a
passenger railway vehicle using the theory of finite elements. They modelled the ballast
layers and soil foundation as masses, connected between them through spring-dashpot
elements. Xue et al. [55] simulated a high-speed freight railway vehicle in SIMPACK® [32]
and considered Kalker’s simplified theory of contact (FASTSIM) for computation of the
tangential contact forces. Chang et al. [33] elaborated a 3D numerical model and found that
the deformation to the car body (not only as a rigid body) of a passenger railway vehicle is
influenced by railway track damage. Also, the sprung masses are generally greater than
the unsprung masses. These facts may lead to the missed detection of track damage at the
early stages of their appearance. However, onboard monitoring systems based on sensors
attached to in-service vehicles may have drawbacks related to the communication system,
power supply [56], and adaptability of the systems to different types of railway in-service
vehicles, as well as different damage identification algorithms, that can affect the reliability
and efficiency of these systems.

This paper aims to present an application of an unsupervised machine learning
approach to detect distributed track irregularities as defined in the European Standard
EN13848-5 [57], based on artificial measurements numerically simulated with the commer-
cial software provided by SIMPACK® [32]. The detection methodology comprises four
steps: (1) feature extraction from the acquired responses using an autoregressive method;
(2) feature normalization; (3) data fusion; and (4) damage detection by performing an
outlier analysis.

The following significant contributions can be highlighted from this research:

1. Detecting early-stage damage to railway tracks using artificial intelligence and simu-
lated railway vehicle vibration measurements, recorded by in-service vehicles;

2. Create conditions for the operational and technical integration of railway track dy-
namic monitoring and maintenance for different railway networks;

3. Validate the developed artificial intelligence algorithm for damage detection to rail-
way track using axle box accelerations registered by a freight wagon, considering
an optimized number of accelerometers, big data, and operational and simulated
environmental conditions, for railway decisionmakers in order to be integrated, later,
into an in-service wagon.

2. Numerical Modeling of Vehicle–Track Dynamic System
2.1. Vehicle Model

This sub-section includes the aspects considered in the numerical modeling of the
vehicle. The freight railway vehicle used in this work consists of a Laagrss-type wagon
(Figure 1a,b), which is a freight vehicle with a 45 feet flat steel platform designed for
the transportation of containers, that operates between Portugal and Spain and can reach
speeds of up to 120 km/h. The platform is supported by two single wheelsets with leaf-type
suspension, whose dynamic parameters were obtained in the experimental calibration of
the numerical model developed by Braganca et al. [44].

The 3D (three-dimensional) multi-body system (MBS) simulates a freight wagon
(Figure 2), whose main dynamic and geometric properties are adopted from Braganca
et al. [44]. It consists of two wheelsets, with 10 m of wheelbase, and a car body (platform
and container together), whose dynamic properties are summarized in Figures 1 and 2. The
wheelsets are connected to the rigid car body through the suspension system, consisting
of spring-dashpot assemblies. To consider the wagon load variation (i.e., the operational
effects), different loading schemes are considered, namely, unloaded, 50% loaded, and
100% loaded, as shown in Figure 2. The car body (platform and container together) and
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wheelsets are simulated as rigid body elements with 6DOFs (longitudinal, lateral, and
vertical translations; roll, yaw, and pitch rotations); otherwise, the axles were simulated
as rigid body elements with 5DOFs. The wheels are rigid body elements connected to the
wheel axles and have real profiles (i.e., S1002, from the SIMPACK® default database). The
rail–wheel ‘contact patch’ is assumed as the surface where the rail profile and the wheel
outline intersect or interpenetrate geometrically. The vertical translation (z), the lateral
translation (y), the longitudinal translation (x), the rotation around the x-axis (roll), the
rotation around the y-axis (pitching), and the z-axis (yawing), are considered in the solution
to the vehicle–track dynamic equation. To account for the vehicle speed variation along
the track, a speed step of 20 km/h is considered. The sampling frequency (Fs) for the axle
box accelerations is 5 kHz, which corresponds to a time step of 0.2 ms. The vehicle–track
dynamic equations are solved using a direct time integration method. It is also assumed
that the vehicle starts from an undisturbed ideal track, with no track geometry damage.
Geometric and dynamic properties of the freight wagon is summarized in Table 1.
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Figure 1. The wagon of the freight vehicle (Laagrss) (a) and leaf-type suspension system (b) [44].

Table 1. Geometric and dynamic properties of the freight wagon, adopted from [44].

Geometric and Dynamic Properties Limit Bounds (Lower/Upper) Adopted Value Unit

Car body mass (mc) 33, 200 to 49, 800 41,100 [ kg]

Car body roll moment of inertia (Ix ) 39, 200 to 58, 800 49,000
[
kg.m2]

Car body pitch moment of inertia
(

Iy ) 337, 000 to 674, 000 673,000
[
kg.m2]

Car body yaw moment of inertia (Iz ) 337, 000 to 674, 000 665,000
[
kg.m2]

Length (L ) −/− 1247
[
kg.m2]

Width (W ) −/− 312
[
kg.m2]

Height above the ground (H ) −/− 312
[
kg.m2]

Wheel set mass 1250 kg to 2875 1247 [kg]

Wheel set roll moment of inertia (Jx ) −/− 312 [kg]

Wheel set yaw moment of inertia (Jz ) −/− 312 [kg]

Wheel set height above the ground (H ) 0.450 [m]

Longitudinal suspension stiffness (xz ) 22, 500 to 67, 500 44,981 [kN/m]

Lateral suspension stiffness
(
ky ) 15, 450 to 46, 350 30,948 [kN/m]

Vertical suspension stiffness (kz ) 1560 to 2780 1860 [kN/m]

Vertical suspension damping (cz ) −/− 16.7 [kN.s/m]
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Figure 2. Model of the vehicle–track multi-body dynamic system.

2.2. Track Model

Herein are presented the aspects considered in the modeling of the track (as shown
in Figure 2). The model assumes that the track moves with the vehicle [58], i.e., a moving
track model. The track numerical model has a total length of about 5.4 km, and has
lateral, vertical, and roll movements at the track foundation level. The rails are modeled
using rigid body elements with the corresponding dynamic and geometric properties,
summarized in Figure 3. The track ballast and track subgrade are modelled together as a
total equivalent foundation layer (Figure 2) connected to the sleeper by only one spring-
dashpot element (to model the flexibility of the track), considering the lateral, vertical, and
roll (i.e., torsional) stiffness and damping properties, with 3DOFs. Main properties of track
model is summarized in Table 2. As the foundation properties of the track are assumed
to be homogenous along the track length, a moving elastic track model is assumed in
SIMPACK® to optimize the unwanted computational cost and prevent unrealistic peak
values in the acceleration responses. The track irregularities excite the vehicle through
the wheel–rail contact interface, and all other dynamic properties beneath the rail and the
rail profile are assumed to be constant. An equivalent, vertical, lateral, and roll stiffness
and damping are considered to model the rail pads and rail fastening system. The track
gauge considered in the numerical model is 1.668 m. The elastic track foundations have
in common that they follow the track at the position of the wheel. This is ensured by
joint 91, a wheel/rail track sleeper, which is used on the rail itself. This joint does not
provide the related degrees of freedom. The total track stiffness and damping are simulated
by only one vertical equivalent spring, with lateral, vertical, and roll degrees of freedom.
This approach avoids using more than one spring-dashpot assembly to model the track’s
dynamic properties for different DOFs. A similar approach was considered in the model
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developed in SIMPACK® by Carlberger et al. [59], and by Bezin et al. [60], and the track
models discussed by Zhai et al. [45].
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Table 2. Main properties adopted for track model.

Description of the Properties Value Unit References

Rail

Cross sec tion
(
m2 ) 87.7 [kN/m] [61]

Density 7850 [kg/m3] [61]

Moment of inertia 0.309 [cm4] [61]

Elasticity modulus (E) 210 [GPa] [44]

Poisson’s ratio (ν) 0.28 [-] [61]

Rail pad and
fastening system

Lateral stiffness
(
ky ) 20 [MN/m ] [61]

Vertical stiffness (kz ) 500 [MN/m] [44]

Lateral damping
(
cy ) 50 [ kN/m] [61]

Vertical damping (cz ) 200 [kN/m] [44]

Sleeper

Area of the cross section 402.5 [cm2] [44]

Moment of inertia of the cross section 17, 620 [cm4] [44]

Density 2590 [kg/m3] [61]

Elasticity modulus (E ) 40.9 [GPa] [44,61]

Poisson’s ratio (ν) 0.2 [-] [61]

Ballast

Density (ρ ) 1995.9 [kg/m3] [44]

Elasticity modulus (E ) 0.11 [GPa] [62]

Lateral stiffness
(
ky ) 2.25 [ MN/m] [61]

Vertical stiffness (kz ) 30 [MN/m] [61]

Lateral damping
(
Cy ) 50 [kN.s/m] [61]

Vertical damping (Cz ) 15 [kN.s/m] [61]

Foundation
Lateral stiffness and vertical stiffness

(
ky = kz ) 20 [MN/m] [61]

Lateral and vertical damping
(
Cy = Cz ) 0.501 [kN/m] [61]

2.3. Modeling of Vehicle–Track Dynamic Interaction

The modeling of the vehicle–track interaction and the main assumptions made are
discussed in this sub-section. To model the wheel–rail contact (as shown in Figure 2) [63],
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Kalker’s theory of contact [64] and the Hertz method are considered using the software
SIMPACK®, for the computation of elastic forces at the contact surface. The wheel–rail
‘contact patch’ is assumed as the surface where the rail profile and the wheel outline
intersect or interpenetrate geometrically. SIMPACK® provides two ways to calculate the
normal force from the equivalent penetration. The Hertzian method [65] involves the
dimensions of the equivalent contact ellipse and the combined Young’s modulus and
Poisson’s ratio. An additional damping force is added to avoid high-frequency dynamic
responses in the rail–wheel contact. The normal force is calculated to keep the natural
damping constant, even when the Hertzian stiffness varies [32]. In SIMPACK, the user
specifies a reference damping (known as the contact reference damping), for the present
study it is set as 100 kNs/m, that is valid for a reference contact stiffness of Kh = 500 MN.
The final normal force is obtained as the sum of the Hertzian or linear spring force and
the damping force. But, to avoid a situation where the wheel ‘sticks’ to the rail when the
damping force becomes larger than the stiffness force, the normal force is limited to be
greater than zero.

The FASTSIM approach [66] Is considered for the computation of tangential forces at
the wheel–rail contact surfaces, with an initial patch discretization of eleven. The tangential
contact forces depend on the normal contact force, the friction coefficient and the geometry
of the contact patch, and the stress distribution within the wheel–rail contact patch. The
Polach weighing factors A and B [64] are assumed to be zero in the software, while the
friction coefficient is constant along the track (and within the whole contact area) and
assumed as 0.3. Different methods for the selection of the friction coefficient [67] are
available in the software. The stick friction coefficient determining the maximum adhesion
forces [68] is set as 0.4. The stick coefficient used for virtual spring–damper considered only
for the stick case is 100 MN/m by default [32]. The modulus of Young and Poisson’s ratio,
considered for the computation of the wheel–rail contact, are 210 GPa and 0.28, respectively.

3. Simulation of Baseline and Damage Scenarios
3.1. Baseline

Herein, the baseline scenarios are discussed. The baseline scenarios, also designated as
‘reference’ scenarios, depict a limited state of the track in which the standard deviation of the
track’s geometric irregularities is less than the standard deviation of the damage scenarios.
The track geometry irregularities for the baseline scenarios (BSC) have a wavelength range
of 3 ≤ D1 ≤ 25 m. The standard deviation (i.e., STDZ, STDY) of the left and right rail
longitudinal level (LRLL, RRLL) and lateral alignment (LRLA, RRLA), at every window
length of 200 m, are less than the standard deviation for the alert limit state (ALSTD),
defined by European Standard EN 13848-5 [57], and less than the ALSTD for the damage
scenarios for a vehicle speed of 80 km/h, as shown in Table 3. At each instance of travel,
starting from a speed of 40 km/h to 120 km/h, a sampling frequency of 5 kHz is fixed to
record the axle box accelerations (ABA), as shown in Table 4. For the baseline scenarios, a
speed (v) increment of 20 km/h was assumed, to account for the vehicle speed variation.
The signals are filtered and used for features extraction using an autoregressive model (A
3R model), as discussed in later sections in this paper. The ABA signals for the damage
scenarios (BSC) were registered along a railway track of 1080 m in length. The total number
of baseline scenarios is 75. In Table 4, a summary of the simulated baseline and damage
scenarios is given.

Table 3. Adopted value of standard deviation for alert limit, according to EN 13848-5 [57].

Speed (km/h) ALSTD for LL (mm) ALSTD for LA (mm)

v ≤ 80 2.3 to 3.0 1.5 to 1.8
80 < v ≤ 120 1.8 to 2.7 1.2 to 1.5

120 < v ≤ 160 1.4 to 2.4 1.0 to 1.3
160 < v ≤ 230 1.2 to 1.9 0.8 to 1.1
230 < v ≤ 300 1.0 to 1.5 0.7 to 1.0
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Table 4. Simulations of baseline and damage scenarios.

Description Baseline Scenarios Damage Scenarios

Type of railway vehicle Freight Laagrss vehicle Freight Laagrss vehicle
Load increment of wagon 3 types 1 type

Noise ratio 5% 5%
Vehicle speeds [km/h] 40–120 80

Track geometric irregularities 1 profile 9 profiles
ALSTD for longitudinal level (z) 0.78 1.4, 1.8, 2.3
ALSTD for lateral alignment (y) 0.48 1, 1.2, 1.5

Total number of analyses 45 75
Sampling frequency for acceleration, Fs = 5 kHz.

Low-pass digital filter for acceleration (Chebyshev II) Fc = 1.5 kHz

3.2. Damage

The damage scenarios depict a limited state of the track, in which the standard devia-
tion of the track’s geometric irregularities has changed in relation to the standard deviation
of the baseline scenarios. The distributed track geometry irregularities for the damage
scenarios (DSC) are generated using power spectral density function (PSD) in MATLAB®

software [69], in the wavelength range of D1, as defined by European Standard EN 13848-
5 [57]. The formulation used for the generation of track geometric irregularities is discussed
by Claus and Schiehlen [5]. It is assumed that the standard deviation of the distributed
defect, concerning the lack of the longitudinal level of the track on both the left and right
rails, is less than the standard deviation chosen for the baseline, as stated before. The
procedure is repeated, varying the standard of the lateral alignment (LA) and longitudinal
level (LL) iteratively, thus obtaining 45 possible combinations (called damage scenarios).
For each ‘combination’, considering that the vehicle travels at a speed of 80 km/h and is
fully loaded (full), the vehicle’s dynamic responses, in terms of the ABA, are registered.
Since the maximum operating speed for which the baseline scenarios are considered is
120 km/h, the STD had to be iteratively increased up to 2.3 mm and 1.5 mm, values for
which it is no longer considered practical to drive at the minimum speed (i.e., 80 km/h)
considered here, without planned maintenance, as shown in Table 3. This also accounts
for early damage and damage severities (for the same wagon loading condition), since the
limit values are 2.3 mm and 1.5 mm for the longitudinal level and lateral alignment and a
speed of 80 km/h.

It can be observed that all the STD values for the BSC are less than for the damage
scenarios, as stated before. For the baseline scenarios, the freight wagon is subjected to
three load increments in the wagon or loading scheme: (a) fully loaded (i.e., 100% loaded),
(b) half load (i.e., 50% loaded), and (c) empty or tare (i.e., unloaded).

4. Vehicle Dynamic Responses

The vehicle dynamic responses are recorded by the axle box, as previously shown
in Figure 2. The axle box acceleration signals that refer to the accelerometer S1Y and S1Z
show that when the standard deviation increases, in general, the axle box acceleration
increases. The results are shown only for the last tested track section. The lateral acceleration
amplitudes recorded by the sensor S1Y are smaller than the vertical ones (recorded by
the sensor S1Z) for damage scenario eight, for a fully loaded vehicle traveling at a speed
of 80 km/h. Thus, the ALSTD for the lateral alignment is less than the ALSTD for the
longitudinal level, as shown in Table 4. When the vehicle is fully loaded, driving over an
undamaged track condition (BSC3 and BSC4), the vertical acceleration recorded by the S1Z
is higher for a speed of 100 km/h than for 80 km/h, as expected. But, when the vertical
acceleration for BSC4 (100 km/h) (Figure 3b) is compared to the vertical acceleration for
DSC8 (i.e., 80 km/h, STDY = 2.3 mm, and STDZ = 1), recorded by the same sensor S1Z,
a peak with a higher acceleration amplitude for BSC appears, which may lead to a false
alarm when the operational effects and simulated environmental effects are not removed
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at the stage of data normalization. DSC8 refers to the scenarios with STDZ (longitudinal
level standard deviation) equal to 2.3 mm and the standard deviation for lateral alignment
(STDY) equal to 1.2 mm. In Figure 3a,b, the amplitudes of the accelerations recorded
onboard the vehicle are higher for the situation with damage than for the situation without
damage. But the detection of this difference between the two vehicle dynamic responses,
in terms of acceleration, is not so evident when viewing the signal in the time domain,
especially for the ALS (i.e., at the early stage of damage) involving big data (over a long
track length). This proves that the interpretation of vehicle vibration signals, in the time
domain, for track damage detection is limited since the signal contains many frequency
components recorded over a long track length with irregularities concerning the different
severities. This justifies the use of unsupervised machine learning in the interpretation
of vehicle vibration signals for the identification of damage involving operational and
environmental effects.

5. AI-Based Methodology for Railway Track Damage Detection
5.1. Overview

An automated AI-based methodology for the detection of damage to railway track was
adapted based on the one firstly developed by Meixedo et al. [25] for damage identification
in railway bridges. But it was not yet applied for the detection of damage to tracks using
an onboard monitoring system for in-service vehicles, under big data conditions. The
methodology deployed herein, using MATLAB® software, consists mainly of the follow-
ing self-explanatory steps depicted in Figure 4. The main steps in the methodology are:
(i) feature extraction using the AR model, for extraction of the most sensitive statistical vari-
ables, (ii) data normalization based on PCA to remove the environmental and operational
effects, and (iii) a detection step that comprises data fusion, features discrimination, and
outlier analysis.
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5.2. Feature Extraction

Feature extraction from vibration signals for damage recognition in structures involves
the process of finding or processing the vibration signals to select statistical variables that
are sufficient to describe the behavior of a vehicle–structure dynamic system in terms of
the presence of structural changes. AR models are machine learning linear regression
models deployed for structural dynamic system identification, in which the prediction of
the features at each interaction is only a function of the features of the previous (regression)
interaction of the same vibration signals and a bias. That is, the linear regression, at each
step, is computed based only on the values for the previous step. In such a way that the
total of the previous step is equal to the model order (i.e., 50 in the present work) or the
number of variables involved in the regression. This leads to a small amount of meaningful
or damage-sensitive (statistic) variables or features, whose quantity of features corresponds
to the model order. The features corresponding to abnormal structural dynamic behavior
when compared with those of normal structural conditions results in a group of damaged
and undamaged structures at the given tested section. The formulation used in the present
paper is shown in Equation (1), where m denotes the model order, xj−i denotes the (input)
registered axle box accelerations, ε j is the random error or bias in the model, and xj are the
extracted features. The meaning of Equation (1) is that the output of the linear regression at
any step (j) is computed based only (i.e., auto) on using the values for the same axle box
acceleration signals as the previous step (i) and a bias. The AR model order was selected
through convergence analysis, applying the Akaike information criterion, AIC [70]. Figure 5
shows the convergence analysis for the selection of the suitable model order. The AIC
evaluates the relative amount of vehicle vibration information lost during the extraction
of features from the axle box accelerations. In fact, a model order of 50 is set, since the
less information an AR model loses, the higher the model quality, the lower the risk of
overfitting or underfitting. In other words, by increasing the model order, the limit in the
amplitude of the features when the model order tends to infinite, approaches zero, that is,
its contribution to damage recognition is neglected. So, AR models with different orders,
from 1 to 70, are assumed as candidate models, then the AIC for the evaluation of the
goodness of data fitting, whose formulation is shown in Equation (2), is computed. Where
Nt denotes the number of estimated data points, Np is the number of estimated parameters,
and ε denotes the average sum-of-squares residual (SSR) errors.

xj =
m

∑
i=1

aixj−i + ε j (1)

AIC = Ntln ε + 2Np, ε =
SSR
Nt

(2)

The designed AR model is such that it minimizes the AIC values, that is, 50, as shown
in the results plotted in Figure 5. It means 50 is the best fit AR model, according to the
Akaike information criterion (AIC), which explains the greatest amount of variation using
the fewest features. This value is shown by the red line in the Figure 5. Consequently, the
total number of principal components is also fixed at 50.

Figures 6–13 illustrate the results for some of the features extracted from the lateral
rear and front axle box accelerometers, for randomly selected features 1 and 2, from a matrix
s with a dimension r× f (i.e., 120× 50), whose row entries are the total number of railway
vehicle passages (r), which is equal to the number of scenarios, and the column entries
are the total number of features ( f ) for the assessment of the railway track maintenance
condition, under the alert limit state (ALS), for all k = 8 sensors. Note that the recognition
patterns, corresponding to the baseline scenarios, are more dispersed around the mean,
which highlights the dynamic effects on the vehicle due to speed and wagon load variations,
since the track condition is the same. The opposite happens for the damage scenarios,
with the same speed and different severity of damage. This result also shows that it is
not practical to differentiate the baseline from the damage scenarios using only this step,
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which comprises the extraction and visualization of the features. Furthermore, as the
amplitude of the features is more dispersed around the mean, due to the inclusion of the
effect of speed and vehicle loading, these need to be removed to increase the damage
detection accuracy. For this reason, data normalization is performed. The Stdz/y denotes
the standard deviation for the longitudinal level and lateral alignment, for the previously
mentioned scenarios and “1–5” denotes the range of tested track sections, each with 1080 m.
These figures show that when the standard deviation increases, it does not necessarily mean
that the corresponding feature amplitude will increase. Due to the presence of operational
and simulated environmental effects, it means that the baseline and damage scenarios
cannot be separated using the amplitude of the features. In Figure 6, Amp.feat.1-S4Y,
denotes the features amplitude 1, extracted from the sensor S4Y (Figure 2), and Load incr.
denotes the load increment or the condition for loading of the wagon. These details are
analogous to Figures 7–12.
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5.3. Feature Normalization

Feature normalization is crucial for achieving the most accurate damage identification.
Otherwise, the influence of environmental and operational effects on the acceleration
signals can generate false positives. Principal component analysis (PCA) is a latent variable
method that has been efficiently applied for this purpose. Considering an n×m matrix X,
where m denotes the number of AR parameters extracted from the railway vehicle axle
box acceleration signals, and n is the number of simulations for the baseline scenarios.
The eigenvalues of the covariance matrix of X, which transform X into another set of
m parameters, Y, are designated principal components, whose computation is obtained
using Equation (3), where T is an m × m orthonormal linear transformation matrix that
applies a rotation to the original coordinate system. The covariance matrix of the baseline
feature, C, is related to the covariance matrix of the scores, Λ, using Equation (5). The
superscript T denotes the transpose of the matrix T, where T and Λ denote the matrices
obtained by the singular value decomposition (SVD) of the covariance matrix C of the
features. The columns of T are the eigenvectors and the diagonal matrix Λ comprises
the eigenvalues of the matrix C in descending order. Hence, the eigenvalues, that is, the
coefficients of the linear combination of the principal components stored in Λ are the
variances of the components of Y. They express the relative importance of the variation
or damage for each principal component in the entire data set [25]. In a vehicle–track
dynamic system, the vehicle acceleration signals are also influenced by the vehicle speed
and the loading condition. Therefore, to separate the effects caused by the operational and
environmental variability from the changes caused by the damage itself, all the features
(firstly merged into a struct array) were normalized based on PCA and computed PCA
residuals. The PCA can retain meaningful information related to the operational and
environmental effects in the first components, thus the remaining components are those
that enable the state of the damage to be distinguished from the state of an undamaged
railway track. There are different ways to select the most informative principal components,
which explain the largest variance in a dataset. Generally, values not less than 80 are
chosen [70]. Another method is based on plotting the eigenvalues as a function of the
number of principal components and then selecting those components, from which the
eigenvalues are reasonably small, similar to the AIC plot (Figure 5). After neglecting
the most influential principal components (p) that explain the largest variance, the m− p
principal components of the matrix Y are calculated using Equation (3) and a transformation
matrix T̂ is built with the remaining m− p columns of T. Those m− p components can
be remapped to the original space using Equation (5). This computation process was
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repeated for all matrix s, whose entries are the features from each of the eight onboard axle
box accelerometers.

Y = X.T (3)

C = T.Λ.TT (4)

FPCA = X.T̂.T̂T (5)

Figures 13–21 show the results for the computed PCA residuals. It is evident that
for different accelerometers, the selected features 1 and 2 are now normalized around the
mean value, with no operational nor the simulated environmental effects. However, it
is still difficult to distinguish the damaged from the undamaged scenarios at this stage.
To overcome this problem, in the next step, all the features are automatically merged to
increase the damage sensitivity, using data fusion, features discrimination, and outlier
analysis. The observation of the plot of the features reveals that consecutive features (i.e., 1
and 2) have very similar values.
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5.4. Data Fusion, Features Discrimination, and Outlier Analysis

Data fusion is the process of integrating data from multi-accelerometers to produce
more consistent, accurate, and useful information than any individual feature or accelerom-
eter. It improves the computational efficiency, data visualization, and interpretation, and
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increases the sensitivity of the features to the damage scenarios. As a result, a damage
indicator (DI) is determined for each simulation and each tested track section. The Ma-
halanobis distance is a metric distance or similarity measure, used in machine learning to
distinguish structural conditions. It is also understood as a fusion of multivariate data into
a single DI, as referred to in Silva et al. [24], and Meixedo et al. [25]. The DI calculates the
distance (i.e., dissimilarity or difference) between the damage and the baseline scenarios to
state how severe each tested track section is compared to the normal condition. Since the
features that characterize the vehicle vibration under damage and non-damage scenarios
are stored in vectors, and the distance between two vectors always results in one value, this
is what also leads to this process being called data fusion. This value is then used, together
with a threshold (defined within a confidence boundary), to conclude whether a certain
tested section of the railway track requires intervention, related to the alert limit state.
Since DI and the threshold are automatically calculated, this process is called unsupervised
machine learning. Equation (6) expresses the difference between several features, so that the
baseline features are very similar (have close DI values between them) and very different
from the damage-sensitive features, with a DI value mostly greater than the threshold. In
Equation (6), DIi denotes the Mahalanobis damage indicator for each simulated railway
vehicle passage ith, xi denotes a vector of m features representing the possible damage,
x is the matrix of the mean values of the features estimated from the baseline scenarios,
and Sx is the covariance matrix of the baseline simulations. The DIi is computed for each
simulation and each sensor resulting in a n× k matrix, whose entries are the DIi for the k
accelerometer (s), and n is the total number of scenarios (baseline and damage scenarios).
The subscript T denotes the transpose and S−1

x is the inverse of the covariance matrix. Then,
a new DIi is determined, considering features from more than one sensor to obtain a vector
n× 1, i.e., a multi-sensor fusion from all the k = 8, accelerometers.

DIi =

√
(xi − x).S−1

x .(xi − x)
T

(6)

Feature discrimination is the last step in the AI-based methodology for the automatic
damage detection. Based on the obtained results with the AR features, a confidence
boundary (CB) of 99% [70] is considered to distinguish between the baseline and damage
scenarios. The CB is determined by Equation (7), which expresses the Gaussian inverse
cumulative distribution function (ICDF), considering the mean value (µ), and the standard
deviation, σ, of the baseline scenarios, and for a significance level α. Where α corresponds
to 1% of uncertainty, i.e., a 99% CB. This means that a certain tested section of the track
is considered to have reached or exceeded the alert level, with an uncertainty of 1%. The
value of 1% is also reported by Silva et al. [24] and Mosleh et al. [70]. The CB, in this case,
is the mean of the estimated features, plus and minus the variance (standard deviation)
of these estimated features. This is the range of values between which you expect your
features that characterize a given condition to lie if you rerun the board test, within a
confidence level of 99%. According to Tamhane [71], in statistics the upper confidence limit
is a “conservative” approach.

CB = inv Fx(1− α), with F(x|µ, σ) =
1

σ
√

2π

x∫
−α

e−
1
2 (

x−µ
σ )

2

dy, and xεR (7)

For the detection of changes in the lateral alignment and longitudinal levelof the left
rail, the features extracted from the axle box accelerations recorded by the back sensors,
S4Y and S4Z (Figures 21 and 22), are considered.

In order to find the detection accuracy and optimize the number of accelerometers,
different axle box sensor locations are tested, for the lateral alignments and longitudinal
level damage to both the left and right rails, using S4Y, S1Y, and sensors S2Y and S3Y
(Figures 23–28). The results depicted in Figures 23 and 25 demonstrate that, in fact, the
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lateral accelerations of the vehicle are related to the lateral alignment damage to both the
left and right rails.
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5.5. Accuracy Assessment Based on Different Sensor Layouts

After the fusion of the features and the detection of damage, the reliability of the
artificial intelligence model, in order to check its detection accuracy, for different sensor
layout, is performed. For such purpose, detection accuracy is computed. The detection
accuracy (%) is calculated by Equation (8), where TP and TN denote the true positive and
true negative, respectively, and VP is the total number of vehicle passages.

Accuracy (%) =
TP + TN

VP
× 100 (8)

As shown in Table 5, the damage detection accuracy of the left rail lateral alignment
(RRLA), right rail lateral alignment (RRLA), left rail longitudinal level (LRLL), and right
rail longitudinal level (RRLL), varies according to the sensor location. In general, for all
the sensors and for the fusion of all eight multi-sensors, the detection accuracy is greater
than 94%, which is acceptable for engineering practice. In other words, the automated
algorithm has acceptable accuracy for detecting longitudinal level and lateral alignment in
railway tracks. As the accelerations are obtained from numerical modeling or data-driven
processes, no evidence demonstrates that front sensors can better detect damage than rear
sensors. Even more so because the sensors are not attached to the motor unit of a real
vehicle. Moreover, the dynamic response of the front left axle is not the same as the lateral
one, in a curved railway track, with different instances of damage along the railway length.
Hence, in a curve, the rotational speed of the wheel on the outer rail and the wheel on
the inner rail are different because the wheels describe the trajectory of the damaged track
geometry. Therefore, the onboard registered axle box accelerations are different. Even so,
for all the sensors, the accuracy is approximate.

Table 5. Detection accuracy of the AI-based methodology for different sensor layouts and damage.

Damage
Detection Accuracy for Each Sensor

S4Y S1Y S2Y S3Y S2Z S3Z S4Z S1Z

LRLL ---- ---- ---- ---- 94% ---- 98% ----
RRLL ---- ---- ---- ---- ---- 99% ---- 98%
LRLA ---- 98% 99% ---- ---- ---- ---- ----
RRLA 95% ---- ---- 100% ---- ---- ---- ----

6. Conclusions

The application of the AI-based methodology and axle box accelerations, recorded by
simulated onboard monitoring systems in in-service freight railway vehicles traveling on
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railway tracks, demonstrated acceptable robustness for the automatic detection of early
damage to tracks under an alert limit state. For all locations of the accelerometers, the
detection accuracy of the damaged longitudinal level, lateral alignment, cross level, and
twist is greater or equal to 94% of detection accuracy. This is because there are track-tested
sections where the standard deviation of the longitudinal level and lateral alignment over
a given window length is less than the amplitude of the track irregularities corresponding
to the baseline scenarios. It means that for the track-tested sections where the damaged
scenarios are less than the threshold value, no maintenance needs to be planned for a
considered speed of 80 km/h and the considered baseline scenarios. The application of au-
toregressive models enabled the extraction of features from the dynamic vehicle responses
for the computation of damage indicators for track damage identification, instead of using
the measurements in the time domain. The deployment of the data normalization, based
on the principal components, permitted the compression of vehicle vibration measurement
(big data), improving the computational efficiency. Although the methodologies for track
damage simulation and damage detection methodologies are valid for a freight railway
in-service vehicle and simulated accelerations, it has the robustness to be implemented for
any type of railway in-service vehicle and onboard dynamic measurements. It can also
be adapted for damage identification in track-bridge transition zones, short-span railway
bridges, and vehicle wheels. Furthermore, the developed approach can also be used for
early warning for passenger comfort, and unbalanced loads affecting mainly freight vehi-
cles. Further studies are recommended to detect other types of damage, likewise bridge
twist, track twist, and cross level.

Regarding the literature review on onboard dynamic monitoring using sensors in
in-service vehicles, the following conclusion can be drawn. The accelerations registered on
the car body of railway vehicles for the assessment of railway track conditions still have a
large margin of progression, mainly for low speed and early damage. Since, the dynamic
effects induced in the vehicle are transferred to the car body after being attenuated by the
suspension. Hence, it is reasonable to affirm that, mainly for freight where the loading
condition is important, the axle boxes are much more sensitive sensor locations. From the
literature review conducted, it is concluded that four (only on the front or rear axles), or
at most eight, biaxial accelerometers (on both the front and rear axles of the same bogie)
allow the longitudinal level and alignment of both rails to be evaluated, for the sake of
redundancy in the vehicle vibration signals and the reliability of measurements.
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