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Abstract: This paper studies the problem of linkage-bar synthesis by means of multiple deep neural
networks (DNNs), which requires the inverse solution of linkage parameters based on a desired
trajectory curve. This problem is highly complex due to the fact that the solution space is nonlinear
and may contain multiple solutions, while a good quality of learning cannot be obtained by a single
neural network approach. Therefore, this paper proposes employing Fourier descriptors to represent
trajectory curves in a systematic and normalized form, developing a multi-solution distribution eval-
uation by random restart local searches (MDE-RRLS) to examine a better solution-space partitioning
scheme, utilizing multiple DNNs to learn subspace regions separately, and creating a multi-facet
query (MFQuery) to cooperatively predict multiple solutions. The experiments demonstrate that the
proposed approach can obtain better or at least competitive outcomes compared to previous work in
the literature. Furthermore, to verify the effectiveness and applicability, this paper investigates the
design problem of an industrial six-linkage-bar ladle mechanism used in a die-casting system, and
the proposed method can obtain several superior design solutions and offer alternatives in a short
period of time when faced with redesign requirements.

Keywords: deep neural network; multiple solutions; Fourier descriptor; linkage synthesis; indus-
trial application

1. Introduction

The linkage-bar synthesis problem is an inverse problem [1], which requires designing
the linkage mechanism based on the expected kinematic characteristics and the inverse
solution for each linkage parameter; however, the relationship between the shape of
the coupling curves and the parameters of the linkage mechanism is highly nonlinear;
furthermore, this type of inverse problem presents a high degree of complexity as it
may have no solution, a single solution, or multiple solutions depending on the specific
conditions [2].

Numerous prior studies have investigated linkage synthesis problems, with prevailing
solution methods encompassing geometric derivation, algebraic analysis, and numerical
methods [3]. The first two can comprehend mechanism parameters through the mathe-
matical derivation process; however, such methods have limitations due to the number
of precise points. When the number of points to be synthesized exceeds the number of
mechanism parameters, it is typically impossible to find exact paths through all the points.
Consequently, numerical methods are used to obtain an approximate solution, which is the
main solution method when dealing with a large number of points.

Numerical methods rely on the analysis of linkage-bar motion to establish an ap-
proximate mathematical model. Through the designed objective function of the coupling
error, various numerical algorithms are employed to solve for the optimal solution, such
as gradient methods [4]. Nevertheless, such methods have their limitations, including the
difficulty of selecting an appropriate initial value and algorithms to jump out the local
solution, making it arduous to get the global solution [5]. Therefore, researchers have
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explored the global solution scheme using heuristics methods, including genetic algorithm
(GA) [6,7], particle swarm optimization (PSO) [8], and differential evolution (DE) [9].

Heuristic methods are used for exploration and searching for equivalent models in
the solution space to provide a set of inverse solutions to choose from. These methods do
not directly solve the inverse problem, but rather, employ searching or sampling. They
use only the forward model to compute diverse sample values. For these global methods,
the crucial factor is the number of forward solutions [10] (i.e., the number of evaluation
function calls) needed to compute when sampling an uncertain region. Despite the presence
of uncertainty [11], the problem remains solvable, and typically, there is no requirement
to introduce a priori knowledge in the primary schema. As a result, heuristic methods
provide a more generalized approach to solving the inverse problem. However, since
iterative correction of the search direction in loops is usually used to approximate the
optimal solution and requires a large amount computation, heuristic methods are difficult
to provide real-time or fast synthesis results.

Furthermore, in the design of linkage bars, it is common to borrow similar designs
from the past to aid in finding a solution; in the literature, the atlas database method
involves creating a database of linkage curves beforehand, and then obtaining the closest
design solution by using the table lookup method [12]. However, this approach necessitates
a suitable curve representation, an appropriate database size, and an efficient process for
searching the linkage-bar database. Additionally, obtaining a new solution between the
pre-existing cases requires a proper interpolation method, however, such a solution is often
challenging to acquire, resulting in limitations.

Researchers have attempted to overcome the limitations of the numerical and heuristic
methods by adopting the artificial neural network (ANN) method. Using pre-learning
ANN models, they can efficiently provide rapid solutions for synthesis. Compared to the
atlas dataset method, ANN methods offer robust properties that allow for predicting new
solutions without pre-existing a linkage database [13]. Therefore, this paper investigates
the potential of utilizing neural networks as a means for dimension synthesis and evaluates
the advantages over existing approaches reported in the literature.

On the other hand, even minor variations in linkage-bar configurations or parameters
may result in trajectory curves of various shapes, sizes, or orientations due to nonlinear
factors, and thus many feasible designs may be missed when synthesizing. Therefore,
prior research has worked to systematize and normalize the representation for closed
trajectory curves [14,15]. This is done to reduce the high complexity and dimensionality
in the neural coupling problems that arises from scaling, rotation, and displacement of
trajectory output from linkage-bars. Hoskins & Kramer [16] attempted to represent the
curves in a power spectrum manner and learn the four-linkage-bar synthesis problem
with radial basis function ANN; however, their study fixes multiple linkage parameters
directly and explores the solution for only a small region of variation of two link parameters,
which is limited in applicability. Yannou & Vasiliu [17] showed the shape of the path by
the Fourier coefficients of the harmonic analysis and used the Stuttgart neural network
simulator (SNNS) for the function approximation of linkages, their study emphasized that
ANNs provide fast access to coupling solutions and are suitable to be built into interactive
tools. In addition, ANNs that have learned tens of thousands of cases require very little
storage as compared to the atlas method. However, the discussion on linkage design
acknowledges the existence of a one-to-many mapping problem, but lacks suggestions
for further improvement. Instead, the focus is on recommending appropriate selection
of dimensional parameters and their respective value intervals. Galán-Marín et al. [13]
used a wavelet as a curve representation and focused on the coupling problem of the
Crank-Rocker mechanism, but did not validate the applicability of other types, such as
the Crank-Crank mechanism. Khan et al. [18] used Fourier descriptor (FD) of cumulative
angular deviation of the curve, and also explored only the coupling problem of the Crank-
Rocker mechanism and used multilayer feed-forward neural network (MLFFNN) to learn
the coupling problem; however, some coupling results were significantly worse for the
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generalized curves in the cases they discussed. Li & Chen [19] explore the parametrization-
invariant method to eliminate the influence of parametrization under FD, normalization
with the arc length approach, and then learning by MLFFNN. However, according to the
original paper, the quality of the ANN solution can be further improved. Table 1 collates
information from existing literature about neural-network-based linkage synthesis and
indicates the curve descriptor, neural network model, and applicable mechanism types
used in each study for reference.

As previously discussed, the ANN method may provide a fast solution, but it struggles
to solve the linkage-bar synthesis problem well when faced with multiple solutions [19].
Additionally, in cases where there are instances with identical inputs but different outputs
within the dataset, the training quality and convergence of the ANN are significantly
reduced. This phenomenon can be confirmed by examining specific cases outlined in the
subsequent sections. However, although solving the multiple solution problem presents
challenges, it can provide more flexibility in applications [20]. For example, multiple sets
of inverse solutions can encourage the decision-maker to consider factors that are less
easily modeled (e.g., difficult machining) to select the most appropriate solution. Therefore,
unlike the previous research in which a single solution scheme was mainly considered, this
paper employs multiple deep neural networks (DNNs) to learn the relationship between
the Fourier coefficients and linkage-bars. This enables the development of a fast solution
scheme for linkage synthesis and allows individual DNNs to learn the partitioned sub-
solution spaces to cooperatively generate multiple sets of candidate solutions. Although
some recent studies use generative artificial intelligence (Generative AI), such as Auto
Encoder [21], to explore multiple solutions to linkage synthesis, their primary focus is on
generating diverse solutions. Coupling refinement is usually a secondary consideration,
and their direction is still distinct from the cooperative solutions towards refinement
proposed in this paper.

Since the proposed approach involves the construction of multiple DNNs, arranging
the learning datasets appropriately to maximize the overall learning quality has become
a critical issue. To effectively tune the learning performance of multiple DNNs, this
paper first proposes a multi-solution distribution evaluation using the random restart local
searches (MDE-RRLS) method. This sampling method examines the better sub-solution
space partitioning scheme when training multiple DNNs. Additionally, a multi-facet query
(MFQuery) is also proposed to form additional coupling targets by utilizing vertical and
horizontal projections on the trajectory curves. This expands the solution coverage of the
dataset. Subsequently, a voting method or threshold filtering process can be used to gather
one or multiple candidate solutions.

In addition, to assess the scalability of the proposed solution, the paper investigates the
design issues of a six-linkage-bar ladle used in metal-mold die-casting machine system [22].
Unlike the aforementioned four-linkage-bar case, this ladle mechanism does not require
closed-curve motion and cannot be directly converted by the Fourier transform; this paper
proposes expanding the motion curve into a closure-curve motion through geometric
projection and training multiple DNNs to solve the design problem.

To summarize, the contributions of this study mainly come from: (1) The multi-DNNs
strategy proposed in this study can obtain superior solution quality while also providing
multiple candidate solutions, in contrast to prior single-solution schemes; (2) This study
proposes a comprehensive multi-DNNs learning and prediction process, encompassing the
MDE-RRLS, the MFQuery and the voting methods; (3) This study extends and validates
the synthesis scheme with non-closed trajectories, providing a fast and feasible solution
for the redesign needs due to practical variations in the design of an industrial six-linkage-
bar mechanism.
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Table 1. List of the publications in linkage synthesis based on neural networks.

References Year Mechanism Curve Descriptor NN Model Additional Features
(Selected Portions Only)

Hoskins & Kramer [16] 1993 Crank-Rocker Power spectrum Radial basis NN
Hybridizing a
gradient-based numerical
method

Yannou & Vasiliu [17] 2001 Crank-Rocker Fourier series MLFFNN
Developing an integrated
predesign platform
REALISME

Xie & Chen [23] 2007 Crank-Rocker Fourier series MLFFNN Extending FD to the image
space of kinematic mapping

Erkaya & Uzmay [24] 2009 Slider-Crank Cartesian positions MLFFNN Modelling joint clearance as
a massless link

Galán-Marín et al. [13] 2009 Crank-Rocker Wavelet MLFFNN Sampling precise points at a
non-constant time interval

Khan et al. [18] 2015 Crank-Rocker Fourier series MLFFNN Hybridizing a local
optimization procedure

Ahmadi et al. [25] 2016 General four-bar Cartesian positions GMDH-type NNs Integrating game theory and
multi-objective optimization

Li & Chen [19] 2017 General four-bar Fourier series MLFFNN Proposing arc length
normalization

Deshpande & Purwar [21] 2018 General four-bar Signature method Auto-Encoder

Integrating machine
learning and computational
kinematics for defect-free
and part-to-whole synthesis

Mo et al. [26] 2019 Crank-Rocker Fourier series MLFFNN Obtaining a high precision
linkager mechanism

Yim et al. [27] 2021 General four-bar Fourier series Deep MLFFNN

Determining mechanism
topology and end-effector
location simultaneously
based on big data

Kapsalyamov et al. [28] 2022 Six-linkage-bar Cartesian positions Deep MLFFNN

Integrating computational
kinematics and machine
learning to syntherize two
joint trajectories (ankle and
knee)

Yim et al. [29] 2023 Spatial linkage Fourier series Deep MLFFNN

Making the NN handle
multi-class classification to
improve the previous planar
linkage synthesis approach

2. Problem Definition and Formulation

For a rigid body driven by a linkage-bar mechanism, when given a number of precise
points to pass through, the goal of the synthesis design is to solve the linkage parameters
inversely, in order to produce a desired trajectory curve that passes through a given set of
precise points as accurately as possible [30]. When coupling a closed curve, one can apply
a Fourier descriptor to obtain curve features and introduce a systematic normalization
method to assist in the linkage-bar coupling procedure [31].

2.1. Fourier Descriptor Formulation

To analyze the periodic movement of a planar four-linkage-bar mechanism, the coor-
dinate system shown in Figure 1a can be used. The framework uses O as the coordinate
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origin, coincides point A with origin O, and aligns the AD link with the x axis. Under the
condition that r2 can rotate a full 360 degrees, it is identified as a Crank link, in which the
P-point will form a closed curve as it changes with time. The four linkage-bar mechanism is
typically driven by the input angle θ2. To obtain the position of P at a certain point in time,
it is necessary to combine the value of θ2 with the kinematic analysis of the lengths of the
link-bars. This deduction can be achieved through the vector-loop method. Assuming that r
represents the vector of the link-bar r, the corresponding closure conditions are formulated
as follows:

r1 = r2 + r3 − r4, (1)
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Figure 1. Coordinate system and parameters of a four-linkage-bar. (a) Simplified structure dia-
gram. (b) General analysis diagram. 
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Next, the component equations are used to derive:

r1cosθ1 = r2cosθ2 + r3cosθ3 − r4cosθ4, (2)

and r1sinθ1 = r2sinθ2 + r3sinθ3 − r4sinθ4. (3)

By collapsing the above equations and analyzing the geometric relation of P and
BC based on the parameters r5 and ϕ, the position of P can be expressed as a relation of
[r1, r2, r3, r4, ϕ, r5] and θ2; the detailed derivation process can be referred to [32].

If rP(t) represents the trajectory curve function of P during the motion, rP(t) is a peri-
odic function, and the period T = 2π, rP(t + T) = rP(t). The function can be represented by
a complex function rP(t) = x(t) + iy(t). When θ2 is moving at a constant speedω, based
on previous studies [14,33], rP can be expanded to a Fourier series in complex form:

rP(t) = x(t) + iy(t) = ∑∞
n=−∞ cneinωt, (4)

where cn is the n-th term of Fourier coefficients of the trajectory curve. In the Fourier
descriptor, each item can be regarded as a circle whose radius is the magnitude of the
coefficient, and these items are iterated to form the desired curve.

Since the process of synthesis typically involves passing through a finite number
of precise points, using a Fourier descriptor to represent the curve requires that only a
finite number of terms to be chosen to meet the necessary level of precision [17]. As a
result, the precise points can serve as sampling points in this synthesis problem, with the
corresponding coefficients obtained through application of the Fourier transform. If the
number of retained terms is 2d + 1, this can be expressed as the following equation:

rP(t) ∼= ∑d
n=−d cneinωt. (5)

In practice, d only needs to be a small number for the approximation error to be
reduced to what is actually required [1].
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On the other hand, a more generalized four-linkage-bar diagram can be represented
in Figure 1b. From the diagram, the whole mechanism ABCDP is equivalent to a rotation
of θ1 about the x-axis, and an offset of l0eiα with respect to the origin O. In this case, the
coordinate transformed r′P of rP is as follows:

r′P = l0eiα + rPeiθ1 . (6)

The transformed trajectory curve can be expanded as:

r′P(t) ∼= l0eiα + ∑d
n=−d cneinωt·eiθ1 = l0eiα + ∑d

n=−d cnei(θ1+nωt). (7)

2.2. Fourier Coefficient Normalizing and Learning

To couple closed curves, normalization can reduce the dimensions that need to be
synthesized. For example, shapes of curves produced by the same linkage-bar configuration
with different origin coordinates can be normalized to the same shape. The normalization
operations used in this paper include: (1) Normalization of the center point: setting the
c0 coefficient to 0, the center point is normalized to the origin (0,0); (2) Normalization of
the orientation: rotating the curve to zero the phase angle of the c−1 coefficient, it tends
to align the orientation with the X-axis (horizontally); (3) Normalization of the curve size:
dividing the amplitude of the coefficient c−1 to all coefficients; and (4) Normalization of
the length of the ground-link: setting r1 as the base (r1 = 1).

Indeed, in operations (2) and (3), they are not limited to the selection of the c−1 term,
and in the practical tests, the selection of either c1 or c−1 is very close to the effect. Based
on the normalization rule, rP(t) and r′P(t) are normalized to r′P(t) and rP(t), respectively,
and their equations can be derived as follows:

r′P(t) ∼=
1

c−1ei(θ1−ωt) ∑
d
n=−d, n 6=0 cnei(θ1+nωt) (8)

=
1

c−1ei(−ωt) ∑
d
n=−d, n 6=0 cnei(θ1+nωt) · e−iθ1

=
1

c−1ei(−ωt) ∑
d
n=−d, n 6=0 cneinωt

= rP(t).

From the derivation, r′P(t) is equivalent to rP(t); therefore, the normalization elim-
inates the impact of the extra displacement and rotation of the mechanism. As a result,
the simplified coordinate system as shown in Figure 1a is suitable for the normalized
synthesis problem. Figure 2 shows an example of a trajectory curve obtained using the
aforementioned normalization operations.

As shown in Figure 3, in the Fourier descriptor, the dimension synthesis problem
is equivalent to the problem that synthesizing Fourier coefficients with the linkage-bar
parameters. Therefore, when solving this synthesis problem using a DNN approach
with multiple hidden layers, it is necessary to build a network model with normalized
coefficients [c−d · · · c−1, c1 · · · cd] as input and the linkage parameters [r2, r3, r4, ϕ, r5] as
output, where r1 is fixed to 1, and need not to be included.
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2.3. One-to-Many Mapping Issues

Although the Fourier descriptor approach can systematically represent the needs of
the coupling problem, there remains one-to-many mapping in this synthesis problem. This
implies that, for one input (a Fourier coefficient vector), there will be multiple output
solutions (a set of linkage parameter vectors), as can be seen below:

(1) Cognate linkages

According to the Roberts-Chebyshev theorem [34,35], for a trajectory curve that can
be generated by a four-link mechanism, there are always three corresponding four-link
mechanisms that describe the same curve. As shown in Figure 4, by drawing parallel lines
and isoproportion lines to assist the analysis, one can get (a)–(c) parallelograms and (d), (e)
reciprocal triangles of equal proportions A-P-B and then obtain the four-link system O-A-B-
C-P, O-A’-E-O’-P and C-B’-F-O’-P with the same P-point trajectory curves. It also means the
same Fourier coefficients, but with three different linkage parameters and configurations.
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(2) Factors of normalization

Due to the normalization, trajectory curves with different translations, rotations and
scales, but with the same shape, will have the same Fourier coefficients.

(3) Incomplete coupling at precise points

Multiple solutions arise regardless of whether there are too many or too few precise
points coupled to the problem. When there are too few precise points, there are multiple
different linkage trajectories to pass through, which is essentially a multi-solution paradigm.
On the other hand, too many precise points may result in the inability to obtain a trajectory
that perfectly passes through the precise points, and only approximate solutions can be
obtained [36]. As shown in Figure 5, the different dashed lines are generated by using AD as
the base reference and different combinations of other link parameters. These configurations
are considered equivalent solutions within the allowable error after normalization.
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As mentioned above, these aspects reveal that coupling curves will have multiple
feasible solutions as a result of the one-to-many mappings, regardless of whether the
coupler error falls within an acceptable range or is expressed in terms of the normalized
Fourier coefficients.

2.4. Learning One-to-Many Mapping by Neural Networks

For problems with one-to-many mappings, the outputs corresponding to the same or
similar inputs may vary significantly in the solution space near multiple solutions. This
means that even small input variations can result in considerable output changes. The
most straightforward case is to input the same Fourier coefficients and receive multiple
different sets of linkages in the output, resulting in infinity variation. As a result, data
models obtained using an ANN typically have poor learning quality.

Taking the Slider-Crank linkage shown in Figure 6 as an example, the relationship
between the length l and angle θ can be derived as follows:

l = r1cosθ +
√

r2
2 − r2

1sin2θ. (9)

Given the value of l, if one wishes to find the corresponding value of θ, one needs
to find the inverse solution of the equation. The geometric relationship symmetric to the
vertical axis indicates the existence of two solutions. Therefore, a DNN designed to learn
this inverse solution problem with l as input and θ as output will contain a one-to-many
mapping relationship (specifically, 1-to-2 in this case).
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Table 2 shows that when the range of θ is restricted to the interval [−1/2π, 1/2π], the
learning quality is poor regardless of the size of the training set because each l corresponds
to two solutions; if the region of θ is restricted to the interval [−1/2π, 1/4π], the quality is
similarly poor due to the fact that multiple solutions still exist in the interval; and when
the region of θ is restricted to the intervals [0, 1/2π] or [−1/2π, 0], in which each l value
corresponds to a single θ solution, the trained DNN can obtain good learning results. As
shown in the table, the prediction error can be reduced to about 1.8% in 50,000 data. In
addition, when converging to one-to-one mapping relationship, the number of training sets
increases to make DNN learning quality with significant improvement. Therefore, when
employing a DNN approach to solve inverse problems, it is crucial to choose the solution
space region thoughtfully and minimize one-to-many relationships.

Table 2. Comparison of learning the l − to− θ mapping in the Slider-Crank mechanism.

Data Set
Amount

Mean (Standard Deviation) of Prediction Errors (Unit: rad)

θ:
[
−1

2
π,

1
2

π

]
θ:
[
−1

4
π,

1
2

π

]
θ:
[

0,
1
2

π

]
θ:
[
−1

2
π,0
]

5000 0.7309 (0.0132) 0.3411 (*0.004) 0.0329 (0.0079) 0.0372 (0.0149)
10,000 0.7404 (0.0039) 0.3005 (0.0114) 0.0282 (0.0159) 0.0547 (0.0213)
50,000 0.7655 (0.0001) 0.2918 (0.0095) 0.0137 (0.0062) 0.0232 (0.0106)

* Remark: Bold numbers indicate the best scores.

In the past, studies using ANN to learn the synthesis have often improved the quality
by restricting the parameter region of the linkages. However, it is typically challenging to
directly analyze and derive appropriate constraints to limit the solution space to a small
enough region to avoid multiple solutions in most practical inverse problems. On the other
hand, solutions obtained by narrowing the parameter region are typically not able to meet
the needs of general practical applications. This paper proposes using multiple DNNs to
address this kind of inverse problem.

3. Synthesis Using Multiple DNNs

As mentioned above, it is necessary to establish the appropriate learning region for
each DNN. However, since the synthesis is a complex nonlinear problem, it is difficult
to obtain a complete solution landscape through analytical methods. On the other hand,
previous research [37] has demonstrated the feasibility of investigating the multimodal
solutions by restarter searches and obtaining optimal or far better solutions. Therefore, this
paper proposes a multi-solution distribution evaluation by random restart local searches
(MDE-RRLS) to assist the analysis of the solution space. MDE-RRLS analyzes the distribu-
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tion of multiple solutions through sampling and generates a group of sub-datasets from
the corresponding partitioned regions to train a set of DNNs. Figure 7 shows the overall
learning and predicting process using MDE-RRLS as the evaluation metric, and the main
steps in the process are explained as follows.
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3.1. Dataset Partition and Generation for DNN Training Flow

Assuming that the normalized Fourier coefficients of the desired trajectory curve are
C = {c−d · · · cd}, the synthesis problem can be converted into the following optimization
problem:

min

√
∑d

n=−d, n 6=0(cn − c′n)2 (10)

subject to C′ = {c′−d · · · c′d} = Γ(ϕ, r2 · · · r5),ϕ ∈ [0, 2π], rk ∈ [r̂k, řk], and 2 ≤ k ≤ 5,
where C′ is the coefficients of the trajectory curve of the predicted linkage mechanism,
r̂k and řk are the lower and upper bounds of rk, respectively, and Γ(.) denotes as the
Fourier transform and normalization function. Equation (10) tends to minimize the root
mean square error (RMSE) of the desired and the predicted normalized coefficients. By
encoding the linkage parameters into the objective function, this paper proposes a method
for generating a set of coupling curves as samples. This method employs iteratively
restarting and searching methods to explore the multi-solution locations of these samples
and evaluates the relative merits of partitioning schemes. The evaluation is carried out by
measuring the number of multi-solutions in the partitioned regions.

3.1.1. Multi-Solution Distribution Evaluation by Random Restart Local Searches
(MDE-RRLS)

MDE-RRLS randomly generates M sets of linkage parameters as samples and convert-
ing them to normalized Fourier coefficients. Then, by searching the region in the entire
solution space with a local search with randomly restarting L-1 times while trapped into a
local solution. The goal of the search is to collect all the local solutions explored during the
restart iterations. Since multiple solutions exist, the set of inverse solutions after repeatedly
restarting searches is denoted as S =

{
si,j
∣∣1 ≤ i ≤ M, 1 ≤ j ≤ L

}
where si,j is the search

result of the j-th partitioned region of the i-th sample, and its value is set to 0 if the solution
is duplicated with the others or is not a feasible solution; otherwise, si,j is set to the searched
linkage parameter vector [r2, r3, r4, ϕ, r5]. MDE-RRLS computes and evaluates the number
of multiple solutions that fall in the same partitioned region, which allows to discriminate
the relatively better partition scheme.

In the implementation, MDE-RRLS computes the total number (labelled SUM) of the
multiple solutions in a partition and the maximal amount (labelled MAX) of the multiple
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solutions in a partitioned region as the evaluation metrics, and the pseudo steps are shown
in Algorithm 1.

Algorithm 1: MDE-RRLS

Input:

A set of partitions PR = {pri|1 ≤ i ≤ h} where h is the number of partitions and pri is the
region covering the i-th partitioned sub-space of (ϕ, r2 · · · r5).

A set of explored multi− solutions S =
{

si,j

∣∣∣1 ≤ i ≤ M, 1 ≤ j ≤ L
}

after performing
random local searches with restarting L-1 times when trapped.

Output:

SUM: total number of multi-solutions existed in the partitions.
MAX: the maximal multi-solution number in a partitioned region.

Begin

Define a matrix PS =

ps1,1 · · · ps1,M
· · · psi,j · · ·

psh,1 · · · psh,M

 where psi,j is the number of solutions of the j-th

sample located at the i-th partitioned region and set as 0 initially.
For k = 1 to h

For i = 1 to M
For j = 1 to L

If si,j 6= 0 and si,j located at prk Then, psi,j= psi,j + 1

Next j
Next i
For i = 1 to M

If psk,i ≤ 1 Then, psk,i = 0
/* Count numbers only if more than one solution is in the same region */
Next i

Next k

Compute SUM =
h
∑

i=1

M
∑

j=1
psi,j.

Compute MAX = the maximum of

{
M
∑

j=1
ps1,j · · ·

M
∑

j=1
psh,j

}
.

End

Since all the sampled solutions will inevitably fall in all the partitioned regions, and
between the partitioned regions, as illustrated in the Slider-Crank example above. It
follows that learning quality increases when partitioned regions produce no or fewer
multi-solutions. Consequently, a better partitioning scheme will have fewer SUM and
MAX values. Using sampling can significantly reduce the computational cost compared to
directly training the DNNs and then reviewing their learning quality.

3.1.2. Dataset Generation & Partition

After selecting the partition scheme, all linkage data within the partitioned region
will be randomly generated. However, any data that does not satisfy the Grashof’s law or
prohibits r2 from rotating by a full 3600 should be excluded. According to the sampling
requirements of the Fourier transform, the sampling position {t1 · · · t2d+1} is brought
into P(t) to obtain the precise points {p1 · · · p2d+1}. Next, the Fourier coefficients are
obtained after Fourier transformation and normalization. The dataset is then constructed
by combining the Fourier coefficients with the parameters of the linkages to form an input-
output pair ([c−d · · · c1 · · · cd],[r2, r3, r4, ϕ, r5]). It should be noted that c0 and r1 remain fixed
throughout this process.
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3.1.3. Training DNNs by Partitioned Datasets

Next, the dataset is partitioned into multiple sub-datasets based on the results of
MDE-RRLS for training and learning purposes. The subsequent experiments also address
the learning quality of DNNs trained using different partitioning schemes.

3.2. Predicting Flow to Obtain One or Multiple Solutions

When using the trained MDNNs for prediction, this paper proposes the multi-facet
query (MFQuery) method which uses multiple projections of the desired curve to predict
the outputs of the DNNs. In addition, since multiple DNNs are used to learn the overall
solution space, when predicting the solutions, it is necessary to further cooperate with the
trained DNNs to decide the most suitable solutions. Therefore, the paper also advocates
for establishing a voting method for prediction.

3.2.1. Multi-Facet Query

For the desired curve, the standard method of prediction is sampling precise points
and subsequently transforming and normalizing them into Fourier coefficients. Using
these coefficients as the input, the trained DNNs will then predict the output of the cor-
responding linkage parameters. However, although the normalization effect allows the
dataset to eliminate additional translations, scales, and rotations, there are still other affine
transformations that have not been considered, such as vertical-axis versus horizontal-axis
projection. There are two potential solutions to improve this problem. The first is to add
additional affine transformations to the normalization of the dataset, but this approach will
increase the number of multiple solutions again. The second solution involves transforming
the desired coupler curve with the above two projections and querying the trained DNNs
to predict additional linkages. Since the latter takes only a rather short time (usually less
than 0.1 s) to perform the additional prediction, this paper proposes the second scheme to
obtain more coupling candidate solutions within the same dataset.

MFQuery is implemented by first converting the normalized Fourier coefficients back
to the sampling points (normalized precise points) of the curves and subsequently acquiring
two additional sets of sampling points transformed by vertical-axis and horizontal-axis
projections, followed by obtaining two additional sets of corresponding normalized Fourier
coefficients. Then, the trained DNNs use these coefficient sets as inputs to predict the
additional outputs (i.e., the linkage parameters), and finally, the best-fit solutions are chosen.

Figure 8 shows an MFQuery example. Figure 8(a1,b1) is the desired coupler curve.
Figure 8(a3,b3) shows the curves after the projection of the vertical and horizontal axes,
respectively. Additionally, Figure 8(a2,a4,b2,b4) is the prediction results of the trained
DNNs, respectively. Since Figure 8(a4,b4) is the additionally projected linkages, the practical
linkage configurations need to be applied with corresponding inverse projections; the
resulting transformed configurations are shown in Figure 8(a5,b5).

In the presentation style, Figure 8(a1,b1) lacks specific axes since the axes can have
arbitrary scales due to normalization. To ensure consistency, Figure 8(a3,b3) is presented
following the same format as Figure 8(a1,b1), since they have a projection relationship with
Figure 8(a1,b1).

3.2.2. Voting Method

Since synthesis can involve a single solution or a set of candidate solutions, a voting
method is needed to select the best-fit solutions from the outputs of the trained DNNs.
This paper employs the RMSE formulated in Equation (10) to assess the closeness of the
trajectory points of output solutions to their corresponding precise point positions. All
feasible solutions can be ranked according to the RMSE values, and the one with the lowest
value can be selected, or an appropriate threshold can be set to reserve a collection of
superior solutions.
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4. Experiments and Discussions

In this section, the four-linkage-bar synthesis problem is first used to validate the
proposed flows, and a comparison with the cases in the literature will also be made to
identify the potential advantages of the proposed scheme. The following hardware and
software specifications were used for the execution of the experiments: i7-12700 CPU,
RTX4090 GPU, Windows 10 OS, and TensorFlow 2.

4.1. MDE-RRLS Evaluation and Selection of Subspace Partitions

In this test case, r2, r3, r4, ϕ, r5 parameters are used as the partition targets. Based
on r1 = 1, the bar length ranges of r2, r3, r4, r5 are set to be [0.1, 3.5], and ϕ ∈ [0, 2π]. In
addition, according to the transmission angle µ (as shown in Figure 1a) is greater than or less
than 90 degrees, the linkages can be assembled into different two kinds of configurations,
“elbow-up “ and “elbow-down”, denoted as CFG to represent these two types with values
0 and 1. CFG is also used as the partition target. The Fourier transform is performed with a
set of nine precise points to retain the first nine coefficients (d = 4) as chosen in [17].

Firstly, the distribution of multiple solutions in different partitioned regions was
evaluated by MDE-RRLS in 100 samples (M = 100) where the sequential least squares
programming method (SLSQP) [38] is employed in the local searches with 100 restarting
times (L = 100). Then, further refined partitioning schemes were selected to review the
changes in the distribution. Table 3 shows the results of the MDE-RRLS evaluation with up
to 8 partitioned regions. Firstly, the smallest SUM and MAX values obtained by MDE-RRLS
were selected after comparing the cases with two equal regions, the top two being Ψ and
CFG, respectively; and then the cases with four equal regions was performed to compare
the two parameters including an individual partition (Ψ:4) and a combined partition (Ψ:2,
CFG:2). Comparisons show that the obtained values decrease significantly in a larger
number of regions, and in addition, the combined partition scheme leads to better values;
finally, based on the SUM and MAX values, the case (Ψ:4, CFG:2) containing a quadratic
partition in Ψ combined with an equal partition in CFG is selected here as the partitioning
and learning blueprint for the subsequent training of DNNs.
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Table 3. MDE-RRLS evaluation results for the solution space partitions.

2 Regions MAX (SUM)

* r2:2 55 (100)
r3:2 57 (72)
r4:2 56 (71)
Ψ:2 13 (22)
r5:2 55 (76)

CFG:2 15 (25)
4 Regions MAX (SUM)

Ψ:4 6 (11)
Ψ:2, CFG:2 3 (6)
8 Regions MAX (SUM)
Ψ:4, CFG:2 2 (6)

Ψ:8 2 (6)
* Remark: The partitioning setup is shown as (parameter):(partitioned region number).

4.2. Training Parameter Selection

For each partitioned sub-dataset, an individual DNN will be trained. Due to the
stochastic nature of DNN learning and training, the mean and standard deviation of
the 10 execution runs in each case are used as a basis for comparison. Other training
parameters were set as follows: according to the number of data ranging from [0, 50,000],
(50,000, 200,000], (200,000, 800,000] to (800,000, 1,600,000], the number of hidden layers and
the number of neurons were combined to be (2, 32), (3, 64), (3, 128), and (4, 128), respectively.
The activation function was the rectified linear unit function (ReLU) [39], the learning rate
is 0.001 and the epoch number was 50.

Table 4 compares the learning results after training of DNNs, and it can be observed
that when 8 DNNs are learned cooperatively, the average prediction error of (Ψ:4, CFG:2)
is better; and when the number of datasets is increased, the overall quality of learning is
also improved.

Table 4. Comparison of learning quality of trained DNNs.

Data
Amount

RMSE of Predictions in Different Partition Methods Mean (std)

Ψ:2 CFG:2 Ψ:4 Ψ:2, CFG:2 Ψ:8 Ψ:4, CFG:2 No Partition

80,000 0.5597
(0.0423)

0.596
(0.0302)

0.5349
(0.0202)

*0.5138
(0.0131)

0.5552
(0.0222)

0.5162
(0.0223)

1.4377
(0.0496)

400,000 0.3298
(0.023)

0.4262
(0.0301)

0.2866
(0.0261)

0.2758
(0.0171)

0.3212
(0.013)

0.2922
(0.014)

1.3279
(0.0367)

800,000 0.277
(0.0167)

0.3286
(0.0296)

0.2296
(0.0125)

0.232
(0.0244)

0.2488
(0.011)

0.2368
(0.0132)

1.2264
(0.0382)

1,600,000 0.2452
(0.0181)

0.2725
(0.0244)

0.2197
(0.0182)

0.2139
(0.0227)

0.2114
(0.0075)

0.2061
(0.0148)

1.1914
(0.0262)

* Remark: Bold numbers indicate the best scores.

In addition, Table 4 also shows that the quality of learning tends to be similar to the
assessed values for the various MDE-RRLS outcomes shown in Table 3. When the dataset
is large enough, the results tend to be more consistent. Moreover, when the number of
partitions reaches a certain number, the decrease in prediction error becomes less obvious,
and this effect also reflect in the evaluation of MDE-RRLS. Thus, the MDE-RRLS evaluation
can guide the partitioning of the dataset, resulting in an improved quality of learning.

It should be noted that even if the data number increases, none of the single neural
network solutions in scheme (No Partition) can get good solution quality. Even with the
largest dataset in the table, the average error is still five times higher compared to the
partitioning scheme (Ψ:4, CFG:2) for the same dataset.
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4.3. Comparison with Literature Cases

To verify the results of the proposed approach, a previous four-linkage-bar synthesis
case [17] is used here for a comparative study. In the original study, both the setup in
Figure 9 was chosen with the origin as A and AD coinciding with the x-axis, which is
equivalent to Figure 1a. For the sake of fairness, the other setting as that of the previous
work is also used, where the information of the linkage parameters is defined in terms of the
endpoint coordinates of the link-bars, e.g., the coordinates of the joint A point are denoted
as (xA, yA). In addition, datasets of the same size (i.e., 60,000 data volume) were used.
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It should be noted that the original study used a single ANN as the solution method;
however, as mentioned above, datasets with multiple solutions will make the ANN training
converge poorly. Therefore, the original study restricted parameter ranges to a limited
region where the link-bar scale is small, the inverse solution exists, and the mechanism will
not get stuck in the simulation. The conditional rule enhances the coupling success rate,
but its extensiveness can be relatively limited (e.g., the selected parameter region will only
produce Crank-Rocker bodies).

In this synthesis problem, eight DNNs are trained using the partition scheme men-
tioned earlier (Ψ:4, CFG:2). Figure 10 shows the comparison between the proposed multi-
DNNs scheme and the results of the previous work, where the scheme proposed in this
paper obtains better solutions in the first and second cases and comparable solutions in
the third and fourth cases. Figure 11 shows that the MFQuery method obtains additional
good solutions after making predictions using vertical and horizontal projection curves,
and the more suitable solutions are selected by the boxes. In the second and fourth cases,
the queries by projection curves obtain obviously better coupling solutions compared to
the original curve.
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The output (linkage) parameters obtained in this study are shown in Table 5. Although
the impact of θ1 variation vanishes after the normalization process, inverse normalization
is still required for an inverse rotation during the final coupling stage, with the amount of
rotation provided by θ1.

Table 5. Synthesis results for linkage parameters.

Study Cases θ1 r1 r2 r3 r4 ϕ r5 CFG Projection

#1 −0.52 234.23 64.62 249.61 360.60 4.22 163.67 0 None
#2 −0.27 135.82 35.68 246.41 265.25 0.02 358.53 0 Horizontal
#3 −0.45 299.31 76.90 361.66 402.66 4.71 298.47 0 None
#4 −0.19 234.23 85.09 260.69 141.45 0.36 230.54 0 Horizontal

5. Application to Design an Industrial Six-Bar Ladle Mechanism

To verify the effectiveness of the proposed method in practical applications, this paper
discusses how to expand the application of the proposed method in practical cases through
a six-linkage-bar mechanism design case. As illustrated in Figure 12, this mechanism is
used for metal-mold die-casting system in loading the liquid metal [22], and in the actual
production, θ1 is driven by an electric motor, and the tail end will be configured with a
soup spoon. As shown in Figure 12c, while the OU bar is rotating, the mechanism loads
the liquid metal (such as aluminum liquid) from the boiler, moves around the boiler wall,
and finally arrives at the location of the pouring hole.
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Based on this operational requirement, the precise points need to be designed to pass
through the motion path of F-point in Figure 12c, in order to couple the required linkage
synthesis design parameters.

In the kinematic derivation part, due to the fixation of pivot points O and C, the
mechanism is constrained to one degree of freedom. The position of the F-point can be
derived by extending the aforementioned four-linkage case, which can finally be expressed
as the relationship equations of

[
cx, cy, r1, r2, r3, r4, r5, r6, r7

]
and θ1 in Figure 12c diagram,

and the detailed derivation process can be referred to [32].
Unlike the previous four-linkage-bar synthesis problem, the difficulty of coupling

the six-linkage-bar increases due to the increase in the number of linkage parameters. In
addition, the operation path of this six-bar mechanism is mainly a back-and-forth iterative
motion between the loading and the pouring positions, which differs from the previous
four-bar case by not being a closed curve. Consequently, it cannot be directly converted
by the previous Fourier transform and normalization. In this case, this paper proposes
to preprocess the original non-closed curve into a closed curve by a geometric projection,
before applying the same solution process to achieve synthesis design.

5.1. Design Precise Points and Partition Schemes

As shown in Figure 12b, five precise points {(290,−1398), (113,−1088), (−518,−815),
(−1009,−680), (−1229,−919)} which are then projected onto the reference axis to form
a closed curve. This results in obtaining nine symmetrical points after mapping once
the duplicate starting endpoints have been subtracted. The Fourier transform is subse-
quently performed using this set of precise points, with the first nine coefficients (d = 4)
being retained.

In the experiments, cx = 100 was used as the base size, and for other linkage pa-
rameters containing cy, r1, r2, r3, r4, r5, r6 and r7, their ranges are set as [300,500], [100,3000],
[100,3000], [100,3000], [100,3000], [100,3000], [100,3000] and [100,3000], respectively; and
the partition schemes were compared by MDE-RRLS. Table 6 shows the MAX and SUM
values evaluated with 100 samples; observing the result, the use of (r7:4, r6:2) is a better
partition scheme.

Table 6. Comparison of partitioning methods for six-linkage-bar parameters.

2 Regions MAX (SUM)

Cy:2 28 (32)
r1:2 16 (28)
r2:2 23 (26)
r3:2 17 (23)
r4:2 20 (25)
r5:2 19 (22)
r6:2 13 (18)
r7:2 *9 (14)

4 Regions MAX (SUM)
r7:4 3 (8)

r7:2, r6:2 3 (6)
8 Regions MAX (SUM)
r7:4, r6:2 1 (2)

r7:8 2 (6)
* Remark: The partitioning setup is shown as (parameter):(partitioned region number).

5.2. Multi-DNNs Training Results

Next, a dataset of 1,600,000 data is created and partitioned into eight equal regions in
partition (r7:4, r6:2), and each sub-dataset is used to train one DNN, respectively. Table 7
shows the results of the eight trained DNNs. Notably, the values of ox, oy, and cx obtained
via inverse normalization are presented despite their omission from the DNN training
parameters. they are the corresponding values obtained from the inverse normalization.
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Figure 13 shows the trajectory curves of each solution, with the markers in the upper half
of the curve being the desired precise point locations. In addition, since this problem is
a practical application and the design of the mechanism does not allow for vertically or
horizontally projected installation, only the original trajectory curves from MFQuery are
used to predict the linkage parameters in this design problem.

Table 7. Prediction results of the trained DNNs.

DNN No ox oy cx cy r1 r2 r3 r4 r5 r6 r7

1 13.92 92.89 186.72 615.26 219.84 498.5 323.27 1427.38 452.83 1058.51 964.14
2 62.56 186.41 215.45 710.56 207.65 467.71 301.6 1367.77 451.54 910.34 1088.36
3 95.67 115.96 186.42 618.8 203.89 438.73 259.53 1851.51 550.87 1393.61 1597.08
4 114.26 176.75 210.67 690.03 200.5 426.18 297.89 1505.03 450.45 1045.28 1530.64
5 4.78 246.23 217.5 709.54 194.58 469.81 305.44 1352.53 347.01 1081.34 725.82
6 18.19 234.81 212.45 714.23 197.21 475.72 321.05 1486.01 391.81 1094.67 1129.86
7 93.63 358.67 263.03 862 188.17 447.75 296.24 1470.82 371.21 1051.77 1210.44
8 37.82 133.99 213.72 684.79 222.4 503.03 331 1319.76 334.43 791.37 1208.21
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Figure 14 shows the better solutions 2, 4 and 6, respectively, which contain each link-
age configuration with its corresponding trajectory curve. Observing the motion curves in 
the figure, the trajectory curves are close to the desired precise points. Therefore, the de-
sign requirements can be achieved, and the other solutions, such as solutions 3, 7 and 8, 
are also solutions that can be considered with some fine-tuning if only the loading and 
injection points are the focal points. 

Figure 13. Trajectory curves predicted by multiple trained DNNs. (a) Prediction in DNN #1. (b) Pre-
diction in DNN #2. (c) Prediction in DNN #3. (d) Prediction in DNN #4. (e) Prediction in DNN #5.
(f) Prediction in DNN #6. (g) Prediction in DNN #7. (h) Prediction in DNN #8.

Figure 14 shows the better solutions 2, 4 and 6, respectively, which contain each linkage
configuration with its corresponding trajectory curve. Observing the motion curves in the
figure, the trajectory curves are close to the desired precise points. Therefore, the design
requirements can be achieved, and the other solutions, such as solutions 3, 7 and 8, are also
solutions that can be considered with some fine-tuning if only the loading and injection
points are the focal points.
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5.3. Design Refinement in a Short-Time Response

Since the trained DNNs can compute (predict) the output linkage parameters quite
quickly, the proposed scheme can respond fast to the linkage redesign with the change of
the precise points. Figure 15 shows that the corresponding design is obtained by simulating
the drag-and-move interactive design when a precise point is moved from A-point to
B-point, where four consecutive changes are made. Due to the fast computation capabilities
of the trained DNNs (the computation time is less than 1 s in the tested environment), their
performance can be applied to applications that require a short response time, which can
provide designers with considerable real-time options.

Machines 2023, 11, x FOR PEER REVIEW 19 of 21 
 

 

   
(a) (b) (c) 

Figure 14. Example linkage solutions from the different trained DNNs. (a) Linkage structure in 
DNN #2. (b) Linkage structure in DNN #4. (c) Linkage structure in DNN #6. 

5.3. Design Refinement in a Short-Time Response 
Since the trained DNNs can compute (predict) the output linkage parameters quite 

quickly, the proposed scheme can respond fast to the linkage redesign with the change of 
the precise points. Figure 15 shows that the corresponding design is obtained by simulat-
ing the drag-and-move interactive design when a precise point is moved from A-point to 
B-point, where four consecutive changes are made. Due to the fast computation capabili-
ties of the trained DNNs (the computation time is less than 1 s in the tested environment), 
their performance can be applied to applications that require a short response time, which 
can provide designers with considerable real-time options. 

 
Figure 15. Redesign case due to local path changes. 

6. Conclusions 
The linkage synthesis problem described by the Fourier descriptor and normalization 

allows for a systematic representation of coupled trajectory curves. However, a single neu-
ral network for synthesizing methods results in poor learning quality due to multiple so-
lutions existing in the dataset. Therefore, this paper proposes using the MDE-RRLS 
method to enhance the partition scheme of the solution space, employing multiple DNNs 
to learn the partitioned subspaces, and using the MFQuery method on the trained DNNs 
to predict additional candidate solutions. Finally, the candidate solutions are combined to 
obtain a single optimal solution by the voting method or multiple feasible solutions by a 
threshold. 

By comparing with the four-linkage-bar synthesis cases in the literature, the pro-
posed scheme can obtain better or at least competitive solutions. When applied to the de-
sign of an industrial six-bar ladle mechanism, the proposed approach can successfully 

Figure 15. Redesign case due to local path changes.

6. Conclusions

The linkage synthesis problem described by the Fourier descriptor and normalization
allows for a systematic representation of coupled trajectory curves. However, a single
neural network for synthesizing methods results in poor learning quality due to multiple
solutions existing in the dataset. Therefore, this paper proposes using the MDE-RRLS
method to enhance the partition scheme of the solution space, employing multiple DNNs
to learn the partitioned subspaces, and using the MFQuery method on the trained DNNs
to predict additional candidate solutions. Finally, the candidate solutions are combined
to obtain a single optimal solution by the voting method or multiple feasible solutions by
a threshold.

By comparing with the four-linkage-bar synthesis cases in the literature, the proposed
scheme can obtain better or at least competitive solutions. When applied to the design of
an industrial six-bar ladle mechanism, the proposed approach can successfully synthesize
several candidate solutions by applying the proposed partition and training processes.
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Additionally, when the six-bar ladle requires redesigning due to local path changes, the
proposed approach can successfully obtain a feasible solution in a rather short time through
the cooperation of multiple DNNs.
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