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Abstract: This paper presents a novel robust reference governor (RG) for trajectory tracking of quadro-
tors. The proposed scheme is characterized by low computational complexity and straightforward
gain selection. Moreover, it considers safety constraints regarding speed limits and ensures the
stability and the proper operation of the closed-loop system. The proposed scheme imposes user-
specified performance attributes on the evolution of the tracking error when the safety constraints
allow it. When these constraints are at risk of violation, the proposed RG provides a relaxation of
the predefined performance specifications to ensure the stability of the plant. Lyapunov analysis
proves the boundedness of the closed-loop signals, while its efficacy is further clarified and verified
via extensive comparative experimental results against a well-established PI regulator.

Keywords: adaptive performance control; input constraints; reference governor

1. Introduction
1.1. Motivation

In recent years, there has been a notable surge of interest within the robotics and
control communities in the realm of autonomous quadrotor systems. These agile unmanned
aerial vehicles (UAVs), known for their mechanical simplicity, high maneuverability and
the ability to perform vertical take-off and landing, have found versatile applications
in areas such as payload transportation [1], search and rescue operations [2], forest fire
monitoring [3], building inspections [4] and border surveillance [5].

Quadrotors are inherently nonlinear and unstable systems, possessing six degrees of
freedom (DOFs) and only four control inputs, rendering them underactuated. Ensuring the
safe and efficient operation of quadcopters is a critical requirement for executing tasks in
real-world scenarios. The latter becomes more challenging when the designer considers
complex dynamic models involving limitations of the actuators and safety constraints re-
garding the cruise speed. Moreover, achieving precise and safe maneuvering of a quadrotor
is a formidable task when relying on manual control, which demands the execution of
complex control inputs to maintain the desired cruising speed along a predefined trajectory,
even in the absence of external disturbances. Consequently, the development of effective and
safe control strategies, capable of overcoming the limitations of manual operation and ensuring the
quadrotor’s precise and secure navigation, is of paramount importance.

1.2. Related Literature

Typically, the majority of commercial drones are equipped with conventional linear
control units, like PID and LQR schemes, owing to their low computational complexity,
which is essential for realistic applications, where the decisions made by the plant have
to be instantaneous. These controllers are suitable for shaping the dynamics locally, as-
suming that the quadcopter operates close to hovering conditions. However, in pursuit
of enhancing flight conditions and performance across a wider range of scenarios, non-
linear control methods have also been developed by researchers over the years to tackle
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the challenges posed by the nonlinear nature of quadrotors [6]. These include feedback
linearization methods [7–9] for transforming nonlinear dynamics into equivalent linear
forms, backstepping controllers [10], sliding mode controllers [11] for robust stabilization
and parameter adaptive laws [12]. Additionally, intelligent control approaches like fuzzy
logic [13] and artificial neural networks [14] have been proposed to alleviate the need for
precise knowledge of the dynamic model, though they often require substantial compu-
tational resources and trial-and-error parameter tuning, which renders these approaches
impractical for online implementation. Finally, to counteract external time-varying distur-
bances affecting quadrotors, disturbance observer-based tracking controllers have been
proposed (e.g., [15]).

As in most physical systems, quadrotors undergo severe actuation limitations. In
particular, the motors of the plant can move up to a maximum speed and thus the thrust
generated by the propellers of the system is bounded within a compact set. As a result,
reference trajectories that require control commands outside of this set put the actuator
at saturation conditions, since no further control effort can be applied to the system. The
saturation effect constitutes one of the most harsh input nonlinearities as it can lead the
system to instability. A few methods that address input constraints for quadrotor control
include optimization-based approaches [16,17]. The practical limitation of these techniques,
though, arises from their computational burden. Low-complexity control schemes in-
clude Lyapunov-based methodologies [18–20]. Funnel-based approaches [21–23] have also
been studied for the quadcopter’s tracking-control problem in [24,25]. However, when
the tracking-error approaches the constraint boundary the excessive control inputs can
potentially exceed input limits and lead to system instability. In [26], the authors intro-
duced an observer-based adaptive fuzzy attitude control approach that achieves finite-time
convergence while addressing input constraints. This scheme demonstrates exceptional
robustness in the face of system uncertainties and actuation constraints, making it a valu-
able contribution. Furthermore, it contributes to reducing the computational complexity
typically associated with fuzzy control methods. In [27], a method was introduced for
adaptive robust fault-tolerant control in spacecraft proximity operations. Additionally, the
tracking-control problem for small fixed-wing UAVs with input and state constraints was
addressed in [28] through a robust approximation-free control strategy. A novel control
approach considering output performance specifications while simultaneously addressing
magnitude and rate constraints with respect to the input control signal was recently pro-
posed in [29]. This controller was used to efficiently prevent the wing-rock phenomenon for
a delta wing UAV. An alternative method dealing with input constraints is reference gover-
nors (RGs) [30,31]. The key concept of RGs is the separation of the controller design from
the task of ensuring constraint satisfaction. More specifically, by assuming the presence of a
predesigned controller capable of stabilizing the system and ensuring effective tracking in
unconstrained scenarios, the RG is a nonlinear component integrated into the plant in order
to enforce constraints. That involves adjusting the reference signals fed to the stabilizing
control unit whenever it is necessary to ensure constraint satisfaction. Nevertheless, the
majority of RG approaches rely on online optimization methods; i.e., the computation time
and complexity increase with the number of constraints [32]. The issue of computational
complexity in RGs was addressed in [33], where the authors map the constraints into an
upper bound of a Lyapunov function regulating the applied reference signal to enforce
this boundary.

1.3. Contributions

In this work, motivated by the aforementioned discussion, we propose a novel robust
RG for quadrotors with safety input constraints. In particular, we build on our previous
work on adaptive prescribed performance control (APPC) [34] to design an approximation-
free control scheme aiming at modifying the reference trajectory, regarding the translational
and yaw motion of the plant, to meet preassigned safety constraints. By safety constraints,
we mean a set of reference speeds within which the quadrotor moves safely, away from
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saturation and aerobatic flight effects. In other words, safety sets correspond to reference
trajectories for which the onboard controllers can effectively stabilize the system. The main
contributions of this work are listed as follows:

1. In contrast to the majority of the related literature [16,17,26,30,31], the proposed control
scheme is approximation-free and is characterized by low computational complexity.

2. Compared to [26], the values of control gains have a minor effect on the control
performance and the tuning procedure is simple.

3. The proposed scheme exhibits robustness on actuation and feedback faults that cause
control signal chattering.

4. Contrary to [33], the proposed RG imposes performance specifications on the output
tracking error in accordance with the safety constraints.

2. Problem Formulation and Preliminaries

Let us first define the inertial frame I := {eI
x, eI

y, eI
z}, which is located at a fixed position

on the ground and oriented in the north-west-up (NWU) convention as depicted in Figure 1.

Figure 1. The Crazyflie 2.1 nano-quadcopter. The inertial frame I is depicted with black color and
the body-fixed frame B with purple.

Furthermore, the body frame is attached at the center of gravity of the drone and it
is denoted B := {eB

x , eB
y , eB

z }. A quadrotor can be modeled as an underactuated six-DOF
nonaffine dynamical system as follows:

v̇ = −g

0
0
1

+ R(φ)
T
m

ẇ = I−1

 (Iyy − Izz)qr
(Izz − Ixx)χr
(Ixx − Iyy)χq

+ τ


(1)
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where v = [ẋ, ẏ, ż]T ∈ R3, w = [χ, q, r] ∈ R3 denote the linear and angular velocity of the
system, expressed in I . Additionally, g is the gravitational acceleration, R(φ) is a rotation
matrix that maps B into I , m denotes the mass of the quadrotor and I = diag(Ixx, Iyy, Izz)
with Ixx, Iyy, Izz denoting the moments of inertia with respect to the principal axes of B. The
net thrust generated by the propellers of the vehicle is denoted T and τ = [τφ, τθ , τψ]T ∈ R3

contains the rolling, pitching and yawing moments, respectively. Finally, the Euler rate
vector φ̇ = [φ̇, θ̇, ψ̇]T and the angular velocity w, expressed in I , are related via the follow-
ing equation:

φ̇ = E(φ)w.

A detailed presentation of R(φ), E(φ), I, T and τ can be found in [35].

2.1. Control Objective

Cascade PID control schemes are frequently utilized to achieve quadrotor stabilization
in realistic scenarios, owing to their inherent nonlinear attributes [36]. Such controllers
typically involve an outer loop for stabilizing the position of the plant and a second, faster
inner attitude controller responsible for stabilizing the quadcopter’s orientation. The
aforementioned stabilizing control unit is typically implemented onboard the system as it
relies on feedback from an onboard inertial measurement unit (IMU) that enables rapid
control command updates. As quadrotors are underactuated systems, we can only control
four out of six DOFs at a time. In this work, we aim at enforcing the quadrotor to track
a desired translational motion with specific yaw angle; i.e., the output of the system is
o(t) = [x(t), y(t), z(t), ψ(t)]T . Note that given a fast time-varying reference signal or a
sudden wind gust, the onboard controller will generate large control signals ω that may
degrade the overall performance of the system, giving rise to undesired actuation saturation
or high velocities that put the plant at risk. In order to address the aforementioned problem,
it is essential that the reference trajectory od(t) = [xd(t), yd(t), zd(t), ψd(t)]T is incorporated
into a control signal u(t) that remains constrained within a safety set U away from high
speeds and saturation effects, i.e., u(t) ∈ U with U := {u ∈ R4 : |ui(t)| ≤ ūi, i = 1, . . . , 4}
for some properly chosen upper bounds ūi > 0. Note that the vector u contains the velocity-
control commands regarding the translational and yaw motion of the system considering
safety constraints and it is fed to the internal controller that regulates properly the velocities
of each motor to achieve the desired response of the quadcopter. In this vein, the objective
of this work lies in proposing a low-complexity reference governor, i.e., a control command
u(t) ∈ U , with adaptive transient and steady-state performance specifications that regulates
the reference signal and guarantees:

• Adaptive performance characteristics on the output tracking error e(t) = o(t)− od(t) of
the closed-loop system.

• The safe operation of the quadrotor, considering velocity constraints.
• The boundedness of all signals in the closed-loop system.

Let us now define the position vector p = [x, y, z]T and the reference position vector
pd(t) = [xd(t), yd(t), zd(t)]T and pose the following necessary assumptions:

Assumption 1. The onboard controllers of the quadrotor are able to stabilize the states of the system
within a known compact safety set U .

Assumption 2. The dynamics of (1) is described by continuous, with respect to the states of the
system, functions.

Assumption 3. The reference trajectory od(t) = [pT
d (t), ψd(t)] ∈ R4 and its first derivative ȯd(t)

are known functions of time.

Remark 1. Assumption 1 plays a crucial role in the design of a Reference Generator (RG), as it
ensures the system’s stability by relying on the internal control unit of the plant. In this study,
we make the assumption that the onboard controllers of the quadrotor are capable of maintaining
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stability within a defined set U , which includes “safe” reference velocity signals. Assumption 2
ensures the avoidance of impulsive behaviour regarding the states of the system, which can lead
to PPC singularity; i.e., it forces the tracking error to exceed the performance envelope, resulting
in unbounded control signals. Finally, Assumption 3 pertains to the availability of knowledge
about the reference trajectory and its first derivative that serves as a feedforward term (refer to
Section 3) enhancing the closed-loop performance. Omitting reference velocity information is possible
without affecting the boundedness of the signals in the control loop, although it may result in larger
control inputs.

2.2. Preliminaries on Adaptive Performance Control

Adaptive performance [34] concerns the evolution of the output tracking error strictly
within a time-varying set that encapsulates the desired transient and steady-state perfor-
mance requirements. In particular, consider a tracking error e(t) available for measurement.
Adaptive performance is accomplished if e(t) evolves strictly within an envelope defined
by functions ρ(t),−ρ(t), with ρ : R+ → R∗+ called Performance Function (PF) and properly
designed to encapsulate the performance attributes and adjust according to the input
constraints. By appropriately designing an adaptive law for the differentiable performance
function ρ(t), performance specifications on the evolution of the tracking error e(t) are
imposed with respect to the transient period and the absolute steady-state error, while
also considering their conflict with the actuator’s constraints. Note that since the actua-
tor becomes saturated, the performance envelope has to be adjusted in order to enclose
the tracking error and ensure the adaptive performance and the boundedness of closed-
loop signals. On the other hand, when the actuator operates away from saturation the
performance envelope restores its prescribed form exponentially quickly.

3. Controller Design

In this section, we first propose a reference governor with adaptive performance con-
sidering safety constraints and then we prove that all closed-loop signals remain bounded.
The control design consists of two steps. First, we design the position controller and
subsequently we exploit the estimate of the yaw angle in order to design the orientation
control law.

Step 1. Given a desired translational trajectory pd(t), we define the output tracking error
ep(t)= p(t)−pd(t) ∈ R3. Next, let us define the matrix R(t) = diag(ρ1(t), ρ2(t), ρ3(t)) ∈ R3×3

with ρi(t), i = 1, 2, 3 denoting the adaptive performance function of the i-th output. Hence,

the normalized position error is given as ξ(t) = R−1(t)ep(t) ∈
3

∏
i=1

(−1, 1) for |epi | < ρi.

Exploiting the APPC technique, we select the diffeomorphism atanh : (−1, 1)→ (−∞, ∞) in
order to map ξ(t) onto R3. Thus, the transformed error is denoted as ε(t) = [atanh(ξ1(t)),
atanh(ξ2(t)), atanh(ξ3(t))]T . The proposed control law concerning the translational motion
of the quadrotor is given as follows:

vd(t) = −KD(t)
(

ε + A
∫ t

0
ε(τ)dτ

)
+ ṗd(t) (2)

where D(t) = diag(d1(t), d2(t), d3(t)) with di(t) = 1
(1−ξ2

i (t))ρi(t)
denoting a positive gain

that increases as |ξi(t)| → 1, scaling the control signal when the tracking-error approaches
the performance envelope. Furthermore, the diagonal matrices K = diag(k1, k2, k3)
A = diag(a1, a2, a3) with ki, ai > 0 are constant gain matrices and ṗd(t) is the deriva-
tive of the reference trajectory pd(t), i.e., the reference velocity. The input constraints
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are incorporated via a saturation function. In this work, we adopt a typical symmetrical
saturation function; thus, the constrained control signal is given by:

vi(t) = sat(vdi
(t)) =


ūi if vdi

> ūi

vdi
if |vdi

| ≤ ūi

−ūi if vdi
< −ūi

(3)

for all i = 1, 2, 3, with ūi denoting the maximum absolute value of a velocity to be considered
safe. The position controller is then augmented via an adaptive law that adjusts the
performance boundaries according to the saturation condition of the control signal. In
particular, the adaptive performance envelope is obtained by:

ρ̇ = −Λ(ρ(t)− ρ∞) + Ξ−1(v(t)− vd(t)) (4)

where Λ = diag(λ1, λ2, λ3), Ξ(t) = diag(ξ1(t), ξ2(t), ξ3(t)), v(t) = [v1(t), v2(t), v3(t)]T ,
ρ(t) = [ρ1(t), ρ2(t), ρ3(t)]T , ρ∞ = [ρ∞

1 , ρ∞
2 , ρ∞

3 ]T with ρi(0) > |epi (0)| to ensure that

ξ(0) ∈
3

∏
i=1

(−1, 1) and the positive control performance parameters λi, ρ∞
i are properly

selected. More specifically, ρ∞
i represents the maximum allowable absolute value of the

tracking error in steady state and the choice of constant λ introduces a lower limit on
the speed at which e(t) converges to the steady state. Notice that the first term in (4)
corresponds to the decaying PF that incorporates the user-specified performance attributes,
while the second term is activated when the reference velocity reaches the safety bounds in
order to relax the performance constraints. Such a compromise is necessary for the bound-
edness of the closed-loop signals, since when the tracking errors approach the performance
boundary, i.e., ξi(t) ≥ 1, then the transformed error εi(t) becomes unbounded and there is
no guarantee that the tracking error will retain its prescribed attributes, putting the system
at risk.

Step 2. Following the same reasoning as in Step 1 and given a desired yaw trajectory
ψd(t) ∈ R, we first define the yaw tracking error eψ(t) = ψ(t)− ψd(t). Then, the trans-

formed error εψ(t) = atanh(ξψ(t)) ∈ R can be obtained by letting ξψ(t) =
eψ(t)
ρψ(t)

, for an

adaptive PF ρψ(t). Hence, the yaw angle governor is given by:

vψd(t) = −
εψ(t)

(1− ξ2
ψ)ρψ(t)

+ ψ̇d(t)

vψ(t) = sat(vψd(t))

ρ̇ψ = −λi(ρψ(t)− ρ∞
ψ ) +

vψ(t)− vψd(t)
ξψ(t)

(5)

with the performance parameters λψ, ρ∞
ψ selected to incorporate the desired convergence

rate and absolute steady-state error boundaries, respectively, and ρψ(0) > |eψ(0)|.
Consequently, the overall control signal u that is fed to the onboard controller of the

quadrotor and guarantees operation of the system that is safe and away from saturation
is given by u(t) = [v1(t), v2(t), v3(t), vψ(t)]T ∈ U . For the reader’s convenience, the
closed-loop system is depicted in Figure 2 and the proposed RG is visualised in Figure 3.

Remark 2. Note that the proposed control scheme neither leverages any knowledge about the
system nonlinearities nor utilizes any approximation mechanism such as neural nets. Both the
control signals and the adaptive performance laws are generated via simple calculations avoiding
the explosion of complexity for the proposed control algorithm. Furthermore, the gain tuning is
quite simple as it is shown in the stability analysis (the control gains do not affect the closed-loop
performance significantly). Thus, the low complexity in combination with the easy tuning facilitate
practitioners in implementing the proposed control approach and utilizing it in real tasks.
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Figure 2. The proposed closed-loop control scheme.

Figure 3. The proposed Reference Governor.

Theorem 1. Consider a quadrotor satisfying Assumptions 1 and 2 and a reference trajectory od(t)
that satisfies Assumption 3. The proposed RG (2)–(5) ensures the stability of the closed-loop system
for all t ≥ 0 and imposes adaptive performance evolution of the tracking error e(t) = o(t)− od(t),
i.e., ‖ei(t)‖ ≤ ρi(t), i ∈ {1, 2, 3, ψ}.

Proof. Let us first introduce the dynamics of the augmented closed-loop dynamical sys-
tem as:

ζ̇ := h(ζ, t) = [ξ̇T , ξ̇ψ, ρ̇T ]T . (6)

Subsequently, we define the open set:

Ω :=
4

∏
i=1

[(−1, 1)]× (0, ρ̄1)× (0, ρ̄2)× (0, ρ̄3)× (0, ρ̄ψ) ⊂ R8

with ρ̄i, i = 1, 2, 3, ψ denoting the upper bound of the i-th PF. Thenceforward, the proof
includes two distinct phases. Firstly, we establish the existence of a unique maximal
solution, denoted as ζ : [0, τmax) → Ω, for system (6). This entails that ζ(t) stays within
the set Ω for all time instances t within the interval [0, τmax). Subsequently, we provide
a proof that demonstrates the continuous evolution of ζ within a compact subset of Ω.
This particular insight has significant implications as it leads to a contradiction, eventually
establishing that τmax extends to infinity.

Phase A. Consider the closed-loop dynamical system described by Equation (6). By
design, we have the initial conditions such that |ξi(0)| < 1, ρi(0) ∈ (0, ρ̄i) for i = 1, 2, 3, ψ,
ensuring that ζ(0) ∈ Ω. Additionally, we note that ζ̇ is piece-wise continuous and locally
integrable with respect to time t and locally Lipschitz with respect to ζ over the open set Ω.
Therefore, by exploiting Theorem 54 in [37] (p. 476) we establish the existence of a unique
maximal solution ζ : [0, τmax) → Ω, which is valid for all instances within the interval
[0, τmax).
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Phase B. In Phase A of our proof, we demonstrated that ζ(t) ∈ Ω holds true for all
instances within the interval [0, τmax). The aforementioned implies that the transformed
errors, denoted as εi, are well defined and bounded for every t ∈ [0, τmax). This is be-
cause ξi(t) ∈ (−1, 1) for all i = 1, 2, 3, ψ. We first elaborate on the boundedness of the
translational motion signals. In this vein, consider the Lyapunov function candidate

L1 = 1
2 rTKr + 1

2 sT A2Ks with s = [
t∫

0
ε1(τ)dt,

t∫
0

ε2(τ)dt,
t∫

0
ε3(τ)dt]T and r = ε + As. By

time differentiating L1 we obtain:

L̇1 = rTKε̇ + (ε + As)T AKε + sT A2Kε

= rTKε̇ + εT AKε + 2sT A2Kε.

Let us define the Jacobian of the error transformation vector as J(ξ) = diag(J(ξ1), J(ξ2), J(ξ3))
with J(ξi) =

1
1−ξ2

i
, which entails ε̇ = J(ξ)ξ̇. Exploiting the latter, adding and subtracting

sT A3s and substituting (2), (4) into L̇1, we arrive at:

L̇1 =rTKJ(ξ(t))R−1(t)
(

ṗ + Ep(t)Λ(1− R−1(t)ρ∞)− v− KJ(ξ(t))R−1(t)r
)
+ rT AKr− sT A3s. (7)

where Ep(t) = diag(ep1(t), ep2(t), ep3(t)) and rT AKr = εT AKε + εT A2Ks + sT A2Kε +
sT A3Ks. Next, owing to the boundedness of the reference input v, the fact that
ξi(t) ∈ (−1, 1), ρi(t) ∈ (0, ρ̄i) for i = 1, 2, 3 and invoking Assumptions 1 and 2, we obtain:

b̄ := max
ζ∈Ω

{∥∥∥KJ(Ξ(t))R−1(t)
(

ṗ + Ep(t)Λ(1− R−1(t)ρ∞)− v
)∥∥∥}.

Additionally, J(ξi(t))
ρi(t)

= ρi(t)
(ρ2

i −e2
pi (t))

> |ξi(t)|
(1−ξ2

i (t))e
∗
pi

with e∗pi
denoting the upper bound of the

tracking error owing to Assumption 1. Since J(ξi(t))
ρi(t)

is increasing on ξi(t), there exists a

vector ξ∗ such that the square matrix Γ = (KJ(ξ∗)R−1(t))2 − KA is positive definite; thus,
L̇1 satisfies:

L̇1 ≤b̄‖r‖ − ‖Γr‖2 − amin‖s‖2 (8)

where amin denotes the smallest value of the diagonal matrix A3. Thus, L̇1 < 0 when
ri(t) > r̄i, i = 1, 2, 3 for the positive constants r̄i = b̄

ki(ki(ξ
∗
i /e∗pi )

2−ai)
, leading to the ul-

timately uniform boundedness of r(t) with respect to a compact set R :=
3

∏
i=1
Ri with

Ri :=
{

ri : |ri(t)| ≤ max
ζ∈Ω
{|ri(0)|, r̄i}

}
. Note that r̄i does not depend on the upper bound

of the adaptive PF ρ̄i for all i = 1, 2, 3, because of the boundedness of the tracking error
epi (t), by construction. Notice also that the second term of (4) is activated when ξi(t) ≥ ξ̃
for ξ̃ > 0 which depends on the size of U . Moreover, the boundedness of ri(t) entails the
boundedness of εi(t), ξi(t), i.e., |εi(t)| < ε̄i, |ξ(t)| < ξ̄i. Thus, there exists a performance
bound ρ̄i at a time instant t = tp, such that the right hand side of (4) becomes negative
when ρi(t) = ρ̄i. In particular, leveraging (4), we conclude that ρ̇i < 0 when:

ρi(t) >
ki J(ξ̄i)r̄i − vi

λi ξ̃i
+ ρ∞. (9)

for all i = 1, 2, 3. The latter implies the existence of a small positive constant δi such that
ρi(t) ∈ [ρ∞

i , ρ̄i − δi], ∀t ∈ [0, τmax).
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Next, we condiser the yaw dynamics which is decoupled from the position. Hence,
we select the Lyapunov function candidate L2 = 1

2 ε2
ψ. By differantiating L2 with respect to

time and manipulating as in the previous step, we can easily arrive at:

L̇2 ≤
∣∣∣∣ J
(
ξψ(t)

)
εψ(t)

ρψ(t)

∣∣∣∣c̄− ∣∣∣∣ J
(
ξψ(t)

)
εψ(t)

ρψ(t)

∣∣∣∣2. (10)

where:

c̄ := max
ζ∈Ω

{∥∥∥∥∥
(

ψ̇ + (ψ(t)− ψd(t)λψ

(
1−

ρ∞
ψ

ρψ(t)

)
− vψ(t)

)∥∥∥∥∥
}

which applies because of the boundedness of vψ(t) and exploiting Assumptions 1 and 2.
Thus, L̇2 < 0 for |εψ(t)| >

c̄ēψ

ξ∗ψ
with ξ∗ψ denoting the smallest value of ξψ(t) for which the re-

laxation of the performance envelope of yaw tracking error is activated and

ēψ = max{|ψ(t)− ψd(t)|}. The latter implies that |εψ(t)| ≤ ε̄ψ = max
{

εψ(0),
c̄ēψ

ξ∗ψ

}
. Fi-

nally, since ε̄ψ does not depend on the magnitude of the adaptive PF ρψ(t) there exists a
ρ̄ψ > 0 such that ρ̇ψ < 0 when ρψ(t) > ρ̄ψ, ensuring the existence of a positive constant δψ

such that ρψ(t) ∈ [ρ∞
ψ , ρ̄ψ − δψ], ∀t ∈ [0, τmax).

Hence, we have established the boundedness of the transformed error εi(t) = atanh(ξi(t))
within a compact subset of R, entailing the boundedness of normalized errors ξi(t) within
Ωξi = [ξ i, ξ i] ⊂ (−1, 1) and adaptive performance functions ρi(t) within Ωρi ⊂ (0, ρ̄i)
∀t ∈ [0, τmax) for all i = 1, 2, 3, ψ. Notably, the augmented system’s solution, i.e., ζ(t), con-
sistently resides in the set Ω′, with Ω′ := Ωξi ×Ωρi , i = 1, 2, 3, ψ. Assuming a finite τmax,
Proposition C.3.6 in [37] leads to a contradiction, asserting the existence of a time instant
τ′ where ζ(τ′) exits Ω′. Consequently, we deduce that τmax must be infinite, affirming the
boundedness of closed-loop signals. Finally, exploiting the fact that ξi(t) ∈ Ωξi , i = 1, 2, 3, ψ
for all t ≥ 0 we conclude that:

|oi(t)− odi
(t)| < ρi(t) < ρ̄i

for all i = 1, 2, 3, ψ and ∀t ≥ 0, which completes the proof.

Remark 3. The stability results of Theorem 1 are semi-global, owing to Assumption 1. According
to that, the onboard controllers of the quadrotor are capable of stabilizing the system for a given
set of reference signals that are strictly within the compact set U . The size of U depends on the
characteristics of the system, e.g., the load of the quadrotor, the maximum thrust that can be
generated by the propellers as well as the feedback update speed. Thus, internal uncertainties and
faults are encountered by the onboard control unit, while the proposed control RG enhances the
robustness of the closed-loop system against external disturbances, e.g., wind gusts, by modifying the
reference input. Specifically, by imposing constraints on the control input commands, the low-level
internal controller can manage input perturbations more efficiently, allocating more resources to the
stabilization of the plant.

Remark 4. Theoretical analysis has revealed semi-global stability characteristics for the closed-
loop system that remain unaffected by the choice of control parameters, simplifying the process of
parameter selection. Nonetheless, there are certain factors that need to be considered in the gain-
tuning procedure. Firstly, the performance parameter ρ∞

i , i ∈ {1, 2, 3, ψ}, corresponding to the
maximum steady-state absolute error, should align with the precision of the sensors, as information
below this level of accuracy cannot be reliably obtained from the plant. Furthermore, regarding
the convergence rate parameters λi, i ∈ {1, 2, 3, ψ}, it is essential to take into account the initial
tracking error ei(0). Opting for excessively large values of λi might result in significant control
signal magnitude, potentially leading to saturation and, consequently, relaxing the achievable
convergence rate specifications. Lastly, it is advisable to keep the control gains ki, ai, i = 1, 2, 3
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relatively small. This strategy helps prevent excessive amplification of the control signal, particularly
in steady-state conditions, which could ultimately lead to saturation, i.e., performance degradation.

Remark 5. While we initially assumed the quadrotor to be a symmetrical mechanical system, it is
important to note that the results obtained in this study remain applicable even when dealing with
mass asymmetry. Mass asymmetry is a common characteristic in real-world scenarios, especially in
applications like parcel-delivery quadrotors. This assertion can be straightforwardly validated as the
proposed control method does not rely on specific knowledge of the system dynamics. However, in
cases of mass asymmetry, certain rotors of the UAV may need to spin faster to counterbalance the
effects of uneven mass distribution. This, in turn, can lead to quicker rotor saturation, potentially
affecting the safety compact set U within which the system’s stability is assured by internal con-
trollers. Therefore, further investigation in this direction is warranted to address and understand
these implications. Additionally, there are other limitations in this work that need consideration.
Those include the incorporation of acceleration constraints in addition to velocity constraints and
the development of an identification mechanism capable of leveraging system knowledge. Such a
mechanism would help prevent the controller from generating excessively large input signals that
might result in unnecessary saturation activation.

4. Experimental Results

In this section, we present the experimental results of the integration of the proposed
RG on a commercial quadrotor, the Crazyflie 2.1 (https://www.bitcraze.io/products/
crazyflie-2-1/, accessed on 17 September 2023), equipped with a cascade PID onboard
control scheme that compensates for the inertial dynamics. In order to show the ef-
fectiveness and the superiority of our approach, we consider two different experimen-
tal scenarios and we compare the obtained results with a well established PI control
unit utilized as RG. In particular, given the position-tracking error e(t) = p(t) − pd(t)
the control signal fed by the PI RG to the onboard controllers of the drone is given as

u(t) = KPe(t) + KI

t∫
0

e(τ)dτ + ṗd with KP = diag(kpx, kpy, kpz), KI = diag(kix, kiy, kiz) for

some gain matrices. A fine-tuning procedure was followed to select the gains of the PI
RG. We decided to select the PI scheme as a benchmark owing to its simplicity and low
computational complexity, which are comparable to the ones in our approach. All the
experiments were conducted in our lab using the associated Loco Positioning system (https:
//www.bitcraze.io/documentation/system/positioning/loco-positioning-system/, ac-
cessed on 17 September 2023) to measure the position of the quadcopter with respect to its
inertial frame I . Additionally, since the estimates of the yaw angle appeared inaccurate
because of the noisy sensing, we dropped the specification regarding the yaw angle tracking
and we only consider the tracking problem of translational reference trajectories with fixed
orientation. The performance parameters and the safety constraints for the proposed RG
as well as the control gains for both schemes are presented in Table 1 and they are kept
unaltered in all experimental studies.

Table 1. Control Scheme Parameters.

PPC Parameter Value PI Parameter Value

ki, i = 1, 2, 3 1 kpx 0.55
ai, i = 1, 2, 3 1 kpy 0.55
λi, i = 1, 2, 3 0.5 kpz 0.8
ρ∞

i , i = 1, 2, 3 0.15 kix 0.5
ūi i = 1, 2 0.45 kiy 0.4

ū3 0.25 kiz 0.35

https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/products/crazyflie-2-1/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
https://www.bitcraze.io/documentation/system/positioning/loco-positioning-system/
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4.1. Circular Trajectory

In the first experimental study, we force the robot to move towards a desired position
and then implement a circular trajectory twice. In particular, the reference trajectory is
given by:

pd(t) =


[0, 0, 0.6]T , 0 ≤ t < T1

[−0.4, 0, 1.3]T , T1 ≤ t < T2

[0.4 cos(0.45(t− T2) + π), 0.4 sin(0.45(t− T2) + π), 1.3]T , t ≥ T2

with T1 = inft>0{t ∈ R+ : ep(t) ≤ 0.1} and T2 = inft>T1{t ∈ R+ : ep(t) ≤ 0.1}. The output
response of the plant along with the reference trajectory with respect to its principal axis
is depicted in Figure 4, where the left subfigures illustrate the output performance of the
proposed RG while the right ones depict the tracking performance of the PI regulator. The
superiority of the proposed scheme is evident and it is also shown in Figure 5, where the
evolution of the tracking errors is depicted, both for the proposed APC scheme (left) and
the PI one (right). Note that the proposed RG maintaints the absolute tracking error less
than 0.15 m at steady state while the corresponding tracking error under the PI scheme is
significantly larger. Notice that the duration of motion of the quadrotor under the proposed
scheme is greater than the one under the PI unit. The reason is the speed limits that are
imposed by the proposed RG to prevent jerky movements and saturation nonlinearities
until the drone reaches the first two fixed reference positions, i.e., t = T1 and t = T2. Finally,
the control signals produced by each Reference Governor (RG) are displayed in Figure 6.
It is apparent that the control effort with the proposed RG (on the left) is more intense
than that of the PI controller. This increased control effort is a result of the imposition of
output performance specifications by the proposed controller, which effectively regulates
the control signal to ensure the tracking error converges nearly to zero at a predefined rate.
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Figure 4. Circular trajectory: Time response of the quadrotor under the proposed (left) and PI (right)
RGs. The orange dashed line corresponds to the reference trajectory with respect to its principal axis.
The blue solid line corresponds to the actual response of the system.
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4.2. Spiral Trajectory

In this experimental study, we set the robot to move again towards a fixed position
and then track a spiral trajectory which is given by:

pd(t) =


[0, 0, 0.6]T , 0 ≤ t < T1

[−0.4, 0, 1.3]T , T1 ≤ t < T2

[−0.4 cos(0.45(t− T2)),−0.4 sin(0.45(t− T2)), 1.3− 0.035(t− T2)]
T , t ≥ T2

with T1 = inft>0{t ∈ R+ : ep(t) ≤ 0.1} and T2 = inft>T1{t ∈ R+ : ep(t) ≤ 0.1}.
As in the previous scenario, Figure 7 illustrates the system’s response along with

the reference trajectory. In the left subfigures, we showcase the output performance of
the proposed RG, while the right subfigures depict the tracking performance of the PI
regulator. The superiority of our scheme becomes evident, as further illustrated in Figure 8,
which demonstrates the evolution of the tracking errors for the proposed scheme (left)
and the PI controller (right). Notably, the absolute tracking error under the proposed
controller remains again less than 0.15 meters at steady state, whereas the PI scheme fails to
maintain similar tracking accuracy. Additionally, similar to the circular trajectory case, the
enforcement of performance specifications results in a more intensive control effort under
the proposed RG compared to the PI RG, as can be seen in Figure 9. Finally, Figure 10
provides a three-dimensional representation of the motion alongside the reference trajectory.
The upper subfigures offer different perspectives of the motion under the proposed scheme,
while the lower ones depict the motion under the PI governor.
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Figure 5. Circular Trajectory: Output tracking-error evolution of the quadrotor under the proposed
(left) and PI (right) RGs. The light blue dotted lines correspond to the adaptive PFs. The grey dash-
dotted lines correspond to the prescribed steady-state error bounds. The red solid line corresponds to
the tracking error with respect to its principal axis.
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Figure 6. Circular Trajectory: Control command of the proposed (left) and PI (right) RGs. The blue
solid line corresponds to the control signal. The red dashed lines correspond to the saturation levels
ūi i = 1, 2, 3.
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Figure 7. Spiral trajectory: Time response of the quadrotor under the proposed (left) and PI (right)
RGs. The orange dashed line corresponds to the reference trajectory with respect to its principal axis.
The blue solid line corresponds to the actual response of the system.
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Figure 8. Spiral Trajectory: Output tracking-error evolution of the quadrotor under the proposed (left)
and PI (right) RGs. The light blue dotted lines correspond to the adaptive PFs. The grey dash-dotted
lines correspond to the prescribed steady-state error bounds. The red solid line corresponds to the
tracking error with respect to its principal axis.
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Figure 9. Spiral Trajectory: Control command of the proposed (left) and PI (right) RGs. The blue
solid line corresponds to the control signal. The red dashed lines correspond to the saturation levels
ūi i = 1, 2, 3.
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Figure 10. Spiral Trajectory: Three-dimensional motion of the quadrotor under the proposed (upper
subfigures) and PI (bottom subfigures) RGs. The red dashed line corresponds to the reference
trajectory. The blue solid line corresponds to the actual response of the system.

4.3. Performance Analysis

The tracking performance of the control schemes is evaluated using four key perfor-
mance indices, each offering a unique perspective on the system’s behavior. In particular,
the Average Squared Error index (µASE) places greater emphasis on larger errors, indicating
a faster convergence rate when its value is lower; the Average Absolute Error index (µAAE),
in contrast to ASE, reflects a slower convergence rate but with reduced persistent oscilla-
tions; the Average Time-Weighted Absolute Error index (µATAE) focuses on the steady-state
error while downplaying initial errors; and finally there is the Total Energy Consumption
index (µTEC), where a lower µTEC value signifies more efficient energy utilization and
reduced energy loss in the control process, quantifying the system’s energy efficiency.
Furthermore, it should be emphasized in particular that these indices are anticipated to be
as small as possible to indicate better control performance and efficiency in the tracking
process. For detailed analytical expressions of the performance indices, readers are referred
to [38]. In Table 2, we present the aforementioned performance indices as well as the energy
of each control input for the two experimental scenarios, allowing a direct and thorough
comparison between the proposed RG and the conventional PI controller. Notably, it is
essential to highlight that in each case, our method outperforms the PI regulator with
respect to the tracking-error metrics, signifying its superior control capabilities. However,
the imposition of performance specifications on the system’s output demands a more
intensive control effort, which consequently leads to higher energy consumption compared
to the PI scheme. This is evident from the respective indices presented in Table 2.
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Table 2. Tracking Performance Indices.

Circular Trajectory Spiral Trajectory

Performance Index Proposed RG PI RG Proposed RG PI RG

µASE 0.043 0.092 0.039 0.093
µAAE 0.184 0.389 0.163 0.386
µATAE 27.771 55.132 23.255 54.698
µTEC 0.497 0.0.421 0.473 0.395

∞∫
0
|v1(τ)|2dτ 1.560 1.160 1.453 1.105

∞∫
0
|v2(τ)|2dτ 2.561 0.579 2.171 0.737

∞∫
0
|v3(τ)|2dτ 1.345 1.421 1.401 1.364

5. Conclusions

In this work, we proposed a low-complexity robust RG that addresses input constraints
for the safe operation of a quadrotor. The exploitation of the adaptive performance control
methodology imposes transient and steady-state performance specifications on the output
tracking error of the closed-loop system. The straightforward gain selection enables the
proposed scheme to be easily integrated in different control tasks without the need of further
gain tuning. The theoretical results provide semi-global stability properties for the closed-
loop system which are clarified and verified via extensive comparative experimental results
between the proposed RG and the well-established PI unit on a commercial quadrotor with
limited actuation capabilities.

Regarding future directions, our aim is to extend the proposed RG to multi-robot
systems in order to achieve collaborative tasks considering safety constraints to guarantee
obstacle and inter-agent collision avoidance as well as communication constraints. Another
challenging research direction concerns the development of an adaptive performance
control scheme to replace the onboard stabilizing controllers of the quadrotor, further
enhancing the performance and the robustness of the closed-loop system.
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