
Citation: Montgomery-Smith, S.;

Shy, C. Using Lie Derivatives with

Dual Quaternions for Parallel Robots.

Machines 2023, 11, 1056. https://

doi.org/10.3390/machines11121056

Academic Editors: Zhaokun Zhang,

Qizhi Meng, Zhiwei Cui and

Dan Zhang

Received: 2 November 2023

Revised: 14 November 2023

Accepted: 23 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Using Lie Derivatives with Dual Quaternions for
Parallel Robots
Stephen Montgomery-Smith 1,* and Cecil Shy 2

1 Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
2 Johnson Space Center, 2101 E. NASA Pkwy, Houston, TX 77058, USA; cecil.shy-1@nasa.gov
* Correspondence: stephen@missouri.edu

Abstract: We introduce the notion of the Lie derivative in the context of dual quaternions that
represent rigid motions and twists. First we define the wrench in terms of dual quaternions. Then we
show how the Lie derivative helps understand how actuators affect an end effector in parallel robots,
and make it explicit in the two cases case of Stewart Platforms, and cable-driven parallel robots.
We also show how to use Lie derivatives with the Newton-Raphson Method to solve the forward
kinematic problem for over constrained parallel actuators. Finally, we derive the equations of motion
of the end effector in dual quaternion form, which include the effect of inertia from the actuators.

Keywords: forward kinematics; dynamics; pose; twist; wrench; normalization; Stewart Platform

1. Introduction

This paper is broadly about poses and/or rigid motions, and how they can be represented
by unit dual quaternions. A pose is a description of a frame of reference with respect to
a fixed frame of reference, and consists of an orientation, and a position. A rigid motion
consists of a rotation followed by a translation. From a mathematical point of view, these
can be considered to be the same thing, and so we use these terms interchangeably (but
see [1] for a different point of view).

Along with poses and/or rigid motions, we have the notion of screws. First we have
rates of change of poses/rigid bodies, which are angular and translational velocities, and
are described by twists. Second we have descriptions of how to change the inertia of the
rigid body, the wrench, that is, the torque and the force applied to the body. For more
reading on rigid body kinematics and dynamics, including screw theory, we refer the
reader to [2–5].

The notion of the dual quaternion, and its use to represent poses and rigid motions,
seems to go back to McAulay [6], inspired by the earlier work by Clifford [7]. The notion of
using dual quaternions to represent twists may be found in [8,9]. A basic introduction to
dual quaternions may be found in [10,11], the latter also covering twists. Many authors
have used dual quaternions to represent hierarchies of poses, that is, chains of manipu-
lators [9,10,12–14]. Papers on representing kinematics or dynamics via dual quaternions
include [8,15–20]. Dual quaternions have also found great use in computer graphics [21,22].

(The reader should be aware that [8,17] have incorrect formulas for the logarithm and
exponential of dual quaternions—the correct formulas may be found in [23], and [24] for
the exponential.)

The purpose of this paper is to introduce the notion of using Lie derivatives for dual
quaternions. We show that these can be used to essentially automate the creation of rather
complex formulas, which are required for forward kinematics, and for dynamic equations
of motion.

The authors have successfully used these formulas, combine with the algorithm
described in [25], to create software for controlling a cable-driven parallel robot, which
was built by the Dynamic Systems Test Branch of the Software, Robotics, and Simulation

Machines 2023, 11, 1056. https://doi.org/10.3390/machines11121056 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11121056
https://doi.org/10.3390/machines11121056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0003-1979-5520
https://doi.org/10.3390/machines11121056
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11121056?type=check_update&version=2

Machines 2023, 11, 1056 2 of 22

Division (ER5) at the NASA Johnson Space Center. Because of Export Administration
Regulations we are unable to provide many more details.

The paper is quite heavy with mathematical formulas. For this reason, the proofs of
most of the statements, and many of the comments of a mathematical nature, relegated to
the Appendix A.

2. Notation

Rotations can be represented by unit quaternions [26,27], which we briefly describe
here. A quaternion is a quadruple of real numbers, written as A = w + xi + yj + zk, with
the algebraic operations i2 = j2 = k2 = ijk = −1. Its conjugate is A∗ = w− xi− yj− yk,
its norm is |A| = (w2 + x2 + y2 + z2)1/2 =

√
AA∗ =

√
A∗A, its normalization is Â = A/|A|,

its real part is Re(A) = w = 1
2 (A + A∗), and its imaginary part is Im(A) = ix + jy + kz =

1
2 (A − A∗). It is called a unit quaternion if |A| = 1, a real quaternion if Im(A) = 0,
and a vector quaternion if Re(A) = 0. If A 6= 0, the multiplicative inverse is given by
A−1 = A∗/|A|2. (Note that many sources use the word “pure” instead of “vector” in
this context).

We identify three dimensional vectors with vector quaternions, by identifying i, j, and
k with the three standard unit vectors. A unit quaternion Q represents the rotation which
takes the direction r to QrQ∗. A rotation by angle a about an axis s, where |s| = 1, has two
unit quaternion representations: ±(cos(1

2 a) + s sin(1
2 a)) = ± exp(1

2 as). Composition of
rotations corresponds to multiplication of unit quaternions.

We can represent quaternions as four dimensional vectors, and give it the inner product

A · B = Re(AB∗) = Re(A∗B). (1)

A dual quaternion is a pair of quaternions, written as η = A + εB, with the extra
algebraic operation ε2 = 0. We call A = P(η) the primary part of η, and B = D(η) the dual
part of η.

The conjugate dual quaternion of η = A + εB is η∗ = A∗ + εB∗. Conjugation reverses
the order of multiplication:

(η1η2)
∗ = η∗2 η∗1 . (2)

There is another conjugation for dual quaternions: A + εB = A− εB, but we have no cause
to use it in this paper, except in Equation (7) below.

A unit dual quaternion η = Q + εB is a dual quaternion such that η∗η = 1, equiva-
lently, that Q is a unit quaternion and B ·Q = 0. A vector dual quaternion A + εB is a dual
quaternion such that both A and B are vector quaternions.

If η = A + εB is a dual quaternion with A 6= 0, then its multiplicative inverse can be
calculated using the formula

η−1 = A−1 − εA−1BA−1. (3)

If η is a unit dual quaternion, then there is a computationally much faster formula (see [8]):

η−1 = η∗. (4)

We set DH for the set of invertible dual quaternions (that is, A + εB where A 6= 0), dh for
the set of dual quaternions, SDH for the set of unit dual quaternions, and sdh for the set of
vector dual quaternions.

A rigid motion of the form
r 7→ QrQ∗ + t, (5)

where here t is a translation, can be represented by the unit dual quaternion

η = Q + 1
2 εtQ. (6)

Composition of rigid motions corresponds to multiplication of unit dual quaternions, where
the notation η1η2 means to apply first the rigid motion represented by η2, and then by η1,

Machines 2023, 11, 1056 3 of 22

that is, the dual quaternion acts by left multiplication. If r is a 3-vector, and s is the image
of r under the action of the rigid motion η = Q + εB, then

1 + εs = η(1 + εr)η∗, (7)

but generally it is easier to use the formula

s = QrQ∗ + 2BQ∗ = (Qr + 2B)Q∗. (8)

For a dual quaternion, it is not really possible to mix its primary and dual parts
additively. For example, for a unit dual quaternion that represents a rigid motion, the
primary part is unitless, whereas the dual has units of length. For this reason, when
measuring how large such a dual quaternion is, everything must be with respect to a
characteristic length scale l. (For example, for a parallel robot, the characteristic length
might be the width of the workspace of the end effector). The size of a dual quaternion is
defined to be

sizel(η) =
(
|P(η)|2 + l−2|D(B)|2

)1/2
. (9)

A twist is the pair of vectors (w, v) that describes the rate of change of pose or rigid
motion, where w is the angular velocity, and v is the translational velocity. One can think
of the twist (w, v) as a rigid motion function of time t:

r 7→ r + t(w× r + v) + O(t2) as t→ 0. (10)

It has two possible meanings, depending upon whether the twist is understood to be with
respect to the fixed frame, or with respect to the moving frame. If it is understood to be
with respect to the moving frame, we have the formula

d
dt
(QrQ∗ + t) = Q(w× r + v)Q∗ + t, (11)

and if it is understood to be with respect to the fixed frame

d
dt
(QrQ∗ + t) = w× (QrQ∗ + t) + v. (12)

Then this twist can be represented by a vector dual quaternion [8,15]

ϕ = 1
2 w + 1

2 εv, (13)

where if we understand it to be with respect to the moving frame, we have the formula

ϕ = η−1η̇, or η̇ = ηϕ, (14)

and if we understand it to be with respect to the fixed frame

ϕ = η̇η−1, or η̇ = ϕη. (15)

In this paper, unless otherwise stated, we always understand the twist to be with respect to
the moving frame.

We make the identification
dh ∼= R8, (16)

using the basis

(β1, β2, β3, β4, β5, β6, β7, β8) = (i, j, k, εi, εj, εk, 1, ε), (17)

and similarly, we make the identification

sdh ∼= R6, (18)

Machines 2023, 11, 1056 4 of 22

using the basis (β1, β2, β3, β4, β5, β6). With these identifications, we can define the dot
product between two dual quaternions by transferring the usual definition of dot product
on R8, that is

(A + εB) · (C + εD) = A · C + B · D. (19)

In this way, every dual quaternion η can be written in component form as

η =
8

∑
i=1

ηiβi, (20)

and every vector dual quaternion θ as

θ =
6

∑
i=1

θiβi. (21)

Finally, we give a few extra formulas. Let ϕm denote the twist with respect to the moving
frame, and ϕ f denote the twist with respect to the fixed frame. From Equations (14) and (15)
we obtain

ϕ f = ηϕmη−1. (22)

Since in any algebra we have
d
dt

η−1 = −η−1η̇η−1, (23)

we obtain the surprisingly simple formula for the change of frame for acceleration:

ϕ̇ f = ηϕ̇mη−1. (24)

Note that this does not generalize to higher derivatives, for example, the formula for change
of frame for jerk is

ϕ̈ f = ηϕ̈mη−1 + η(ϕϕ̇− ϕ̇ϕ)η−1. (25)

3. Dual Quaternions to Represent Wrenches

Let the pose η represent the reference frame that moves with the end effector. It is
not necessary (although it can simplify things) that the center of mass of the end effector
coincides with the origin of the moving frame.

The wrench dual quaternion is defined to be

τ = 2q + 2εp, (26)

where q and p are the torque and force, respectively, applied to the end effector at the origin
of the moving frame, measured with respect to the moving frame.

If r0 is the center of mass of the end effector in the moving frame, then the twist about
the center of mass is given by

ϕ0 = ϕ + 1
2 εw× r0, (27)

where ϕ = η−1η̇, and the wrench applied about the center of mass is

τ0 = τ + 2p× r0. (28)

The reason for introducing the factor 2 in definition (26) is so that the rate of change of
work done to the end effector is given by

d
dt

(work done) = τ · ϕ = τ0 · ϕ0. (29)

(The second equality follows from vector identities).
See [2] for the origins of the term twist and wrench as pairs of 3-vectors, which are

examples of screws. The ‘work done’ formulas are also known as reciprocal screw relationships.

Machines 2023, 11, 1056 5 of 22

4. The Normalization of a Dual Quaternion

A dual number is anything of the form a + εb, where a and b are real numbers. The
norm of a dual quaternion η = A + εB is the dual number defined by the two steps:

|η|2 = η∗η = ηη∗ = |A|2 + 2ε(A · B), (30)

|η| =
√
|η|2 = |A|+ ε(A · B)/|A|. (31)

The norm preserves multiplication, that is, if η1 and η2 are two dual quaternions, then

|η1η2| = |η1||η2|. (32)

If η = Q + εB is an invertible dual quaternion, then we define its normalization to be
the unit dual quaternion

η̂ = |η|−1η = η|η|−1 = Q/|Q|+ ε(B− (B ·Q)Q/|Q|2). (33)

(We remark that the normalization of an invertible dual quaternion is used in the computer
graphics industry [21,22]). While this normalization formula might seem initially quite
complicated, after thinking about it one can see that it is the simplest projection that enforces
|Q| = 1 and B ·Q = 0.

The normalization also satisfies the following properties.

• If η is a unit dual quaternion, then η̂ = η.
• Normalization preserves multiplication, that is, if η1 and η2 are two dual quaternions,

then
η̂1η2 = η̂1η̂2. (34)

5. Notation for Three by Three Matrices

Let I denote the (3× 3) identity matrix, and 0 denote the (3× 3) zero matrix. If r is a
3-vector, then the Hodge star operator of r is

S(r) =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

. (35)

Note that
S(r)s = r× s. (36)

If u is a unit vector, then the projection onto the complement of the unit vector u is defined by

Pux = x− (u · x)u. (37)

Consistent with the identification (18), if A, B, C, and D are (3× 3) matrices, and θ =
1
2 a + 1

2 εb, ψ = 1
2 c + 1

2 εd are vector dual quaternions, we have[
A B

]
θ = 1

2 Aa + 1
2 Bb, (38)[

A B
C D

]
θ = 1

2 Aa + 1
2 Bb + 1

2 εCa + 1
2 εDb, (39)

θ ·
[

A B
C D

]
ψ = 1

4 a · Ac + 1
4 a · Bd + 1

4 b · Cc + 1
4 b ·Dd. (40)

6. Lie Derivatives

The notion of the Lie derivative, sometimes in our context called the directional
derivative, is a combination of two ideas that may be found in the literature. First is the
concept of a Lie derivative with respect to a vector field [28]. Secondly, the definition
of the Lie algebra is that it is the vector space of vector fields that are invariant under
left multiplication by elements of the Lie group [29]. In this way, we can define the Lie

Machines 2023, 11, 1056 6 of 22

derivative of a function with respect to an element of the Lie algebra. One place in the
literature where they are combined is in [30] (Equation (5), Chapter II).

These standard abstract definitions can be made more concrete in our special case
where the Lie group is the set of unit dual quaternions, and the Lie algebra is the set of
vector dual quaternions.

Suppose one has a quantity that is a function of pose g(η), and whose range is any vec-
tor space. (But for intuition, consider the case when the range is the real numbers, and think
of the vector valued case as the formulas below simply being applied component wise).

Then we usually think of the derivative of g(η) as the Jacobian with respect to the
components of η. But it really makes more sense to compute the derivative with respect to
the components of the perturbation of η. The latter is the Lie derivative.

The definition is this. Given a differentiable function g whose domain is the unit dual
quaternions, SDH, and whose codomain is any vector space over the real numbers, we can
extend it arbitrarily to a differentiable function whose domain is an open neighborhood of
SDH in dh. Given a unit dual quaternion η and a vector dual quaternion θ, we define the
Lie derivative of g(η) in the direction of θ to be

Lθ g = lim
r→0

g(η(1 + rθ))− g(η)
r

=
d
dr

g(η(1 + rθ))

∣∣∣∣
r=0

. (41)

Since η(1 + rθ) isn’t necessarily a unit dual quaternion, it is not obvious that the definition
of the directional Lie derivative doesn’t depend upon how the domain of g was extended
from SDH, but it is, as is shown in Lemma A2 below.

Given a generic function g whose domain is the invertible dual quaternions, DH, and
whose codomain is any vector space over the real numbers, we define its Jacobian to be the
dual quaternion

∂g
∂η

=
8

∑
i=1

[
∂

∂ηi
g(η)

]
βi, (42)

where the partial derivative
∂

∂ηi
is interpreted using the identification of ηi with the βi

components of η as described in (17).
If the domain of g is the vector dual quaternions, sdh, we have Equation (42) except

with 8 replaced by 6.
We have the following formula, which is useful for explicitly calculating the Lie

derivative if an extension of g to an open neighborhood of SDH in dh is known:

Lθ g =
∂g
∂η
· (ηθ) :=

8

∑
i=1

(
∂g
∂ηi

)
(ηθ)i, (43)

where the notation (ηθ)i means the βi component of ηθ, as described in (17).
We define the partial Lie derivatives to be

Lig = Lβi g, (1 ≤ i ≤ 6), (44)

and its full Lie derivative to be the vector dual quaternion (or if the range of g is a vector
space, the tensor product of a vector dual quaternion with a vector)

Lg =
6

∑
i=1
Ligβi, (45)

so that for all vector dual quaternions θ it satisfies:

θ · Lg = Lθ g. (46)

To gain some intuition, write

θ = 1
2 a + 1

2 εb. (47)

Machines 2023, 11, 1056 7 of 22

Since we have that
∂

∂θ
= 2

∂

∂a
+ 2ε

∂

∂b
, (48)

we see that θ represents a change in pose by an infinitesimal translation b and an infinites-
imal rotation a, measured in the moving frame of reference. Thus Lg is a vector dual
quaternion giving twice the change in g with respect to an infinitesimal rotation, plus ε
times twice the change of g with respect to an infinitesimal translation.

One important property of the Lie derivative is that if η represents a pose, with twist
ϕ, then by Equation (41), with r replaced by t, we see that

d
dt
[g(η)] = Lϕg. (49)

The Lie derivative satisfies various rules, which easily follow from either
Equation (41) or (43), which are also useful for explicitly calculating the Lie derivative
when g is known.

• If g(η) is linear in η, then
Lθ g(η) = g(ηθ). (50)

• The product rule: if ∗ is any binary operator which is bilinear over the real numbers,
such as the product of real numbers, the inner product, the cross product, or the dual
quaternion product, then

Lθ(g1 ∗ g2) = g1 ∗ (Lθ g2) + (Lθ g1) ∗ g2. (51)

• The chain rule:

Lθ(h(g1, g2, . . . , gm)) =
m

∑
i=1

∂

∂gi
h(g1, g2, . . . , gm)Lθ gi. (52)

• Let s̃ be a constant position vector, and ñ be a constant direction. Let s and n be their
corresponding values with respect to the moving frame. Then

Lθs = 2
[
S(s) −I

]
θ, (53)

Lθn = 2
[
S(n) 0

]
θ. (54)

To simplify the writing of application software, Using these rules, one can create a software
library in C++ that performs automatic Lie differentiation. Since the domain, and hence
range, of the Lie derivative can be any vector space, the sensible way to do this is using
templates to allow for a variety of different data types. Note also that the product rule (51)
has to be implemented for every product that is used, and similarly the chain rule (52) for
every function h that is used.

7. Applications to Parallel Robots

To aid our description, we show the example of a cable-driven parallel robot in
Figures 1 and 2. In Figure 1, we show the end effector in green, controlled by eight cables
shown in red, which go around pulleys shown in green. Each cable, and how it is attached
to the pulley, is shown in Figure 2.

Suppose that the position of the end effector of a parallel robot is given by n actuators,
described by quantities

` = (`j)1≤j≤n. (55)

For example, for a cable-driven parallel robot, these represent the lengths of the cables, and
typically n = 8. The numbers `j only need to be determined up to a fixed number. Thus,
for example, in Figure 2, the number `j could represent the length of cable from the end
effector attachment point, to the small cross marked at the top of the pulley.

Machines 2023, 11, 1056 8 of 22

Figure 1. Schematic of a cable-driven parallel robot.

p

r

Cable

h1

n

m

Axis of
rotation

of assembly

h2

xw

Figure 2. The pulley and attached cable.

For the Gough or Stewart Platforms [4], we have n = 6, and `j is simply the distance
between the end effector attachment point and the ground attachment point.

Let us also denote the force exerted by the actuators by

f = (f j)1≤j≤n, (56)

defined so that the rate of change of work performed through the actuators is given by

d
dt

(work done) = f · ˙̀ . (57)

Suppose we have a function L : SDH → Rn, which calculates the required actuator
values, `, from the pose η of the end effector frame. This is the inverse kinematics function.

We also define the (n× 6) matrix Λ by

Λθ = LθL = Lθ`, (58)

Machines 2023, 11, 1056 9 of 22

or more explicitly, by
Λi,j = Lj`i. (59)

From Equation (49) we obtain
˙̀ = Λϕ. (60)

There is also a (6 × n) matrix T that maps the actuator forces to the wrench dual
quaternion:

τ = T f . (61)

This can be computed by balancing the force and torque exerted upon the end-effector. But
it can also be computed with the following important identity:

T = ΛT . (62)

8. Second Lie Derivatives

If g is a function of dual quaternions with codomain any vector space over the real
numbers, we define its Hessian to be the (8× 8) matrix[

∂2g
∂η2

]
=

[
∂2g

∂ηi∂ηj

]
1≤i,j≤8

. (63)

Thus the expression
[

∂2g
∂η2

]
γ should be interpreted as a matrix product with γ treated as an

eight dimensional column vector.
Second Lie derivatives will be used in Newton’s Method, as well as in our statements

of the equations of motion, both described below.
We have that

LθLψg = (ηψ) ·
[

∂2g
∂η2

]
(ηθ) +

∂g
∂η
· (ηθψ)

:=
8

∑
i=1

8

∑
j=1

(ηψ)i

(
∂2g

∂ηi∂ηj

)
(ηθ)j +

8

∑
i=1

(
∂g
∂ηi

)
(ηθψ)i.

(64)

Another way one might try to define the second derivative is to use the formula
∂2

∂θ2 g(η(1 + θ))
∣∣∣
θ=0

. Unfortunately, this definition doesn’t work, as it depends upon the
choice of how to extend the domain of g to all dual quaternions. The obvious choice of
extension is to use the normalization g̃(η) = g(η̂). We have the following formula for the
Hessian of g̃:

∂2

∂θ2 g̃(η(1 + θ))

∣∣∣∣
θ=0

=
[

1
2 (LiLjg(η) + LjLig(η))

]
1≤i,j≤6

. (65)

9. The Examples of a Stewart Platform, and a Cable-Driven Parallel Robot

As an example, let us consider parallel robots such as cable-driven robots, or Stewart
Platforms. In this case, the end effector has certain ‘attachment points’ on it, r1, r2, . . . , rn
where the cables or legs attach, the cables or legs are attached at the other end to sk, and
unit vectors u1, u2, . . . , un which are directions the cables or legs come into the end effector,
all of these being measured in the end effector’s frame of reference. Note that for 1 ≤ k ≤ n

uk =
rk − sk
|rk − sk|

. (66)

Then

L`k = 2rk × uk + 2εuk = 2
[

S(rk)
I

]
uk, (67)

or representing vectors as columns, we have

Machines 2023, 11, 1056 10 of 22

Λ = 2


(r1 × u1)

T uT
1

(r2 × u2)
T uT

2
...

...
(rn × un)T uT

n

. (68)

For calculating the second Lie derivative of `k, we need only know the first Lie
derivative of uk. Note that in the simple case that the attachment point of the cable to the
frame is fixed in the fixed frame (for example, as in a Stewart Platform), we have

Luk =
1

|rk − sk|
Puk

[
−S(sk) I

]
, (69)

and therefore

L2`k = 2
[

S(rk)
I

]
1

|rk − sk|
Puk

[
−S(sk) I

]
. (70)

Let us also describe a more complicated situation, which matches the cable-driven
parallel robot the NASA Johnson Space Center described in the introduction. For simplicity
of notation, we drop the subscripts k. See Figure 2 for reference. Let us suppose that the
cable attaches via an assembly, which is free to rotate about an axis parallel to the unit
vector n, and passing through the point x. Attached to the assembly, at a fixed distance w
from the fixed point x, by a rod perpendicular to n, is the center of a pulley of radius p,
which rotates in the plane containing the axis of rotation and the point on the end effector r.
A cable passes over the pulley in the n direction from the center of the pulley. All of the
vectors are expressed in the moving frame of reference.

We work in the (m, n) coordinate system in which the origin is r. Let (h1, h2) be the
coordinates of the center of the pulley. Then

u = u1m + u2n, (71)

where

(u1, u2) = −
1

(h2
1 + h2

2)

[
h1 −h2
h2 h1

][√
h2

1 + h2
2 − p2

p

]
. (72)

The cable length, up to an additive constant, is

` =
√

h2
1 + h2

2 − p2 + p tan−1
(

u2

u1

)
. (73)

To avoid singularities, the optimal way to compute the inverse tangent, at least with the
configuration shown in Figure 2, is to use atan2(−u2,−u1), where the commonly available
atan2(y, x) function solves for θ where x = r cos θ, y = r sin θ, r > 0, −π < θ ≤ π.

The various required quantities are

d = Pn(x− r), (74)

m = d̂ =
d
|d| , (75)

h2 = n · (x− r), (76)

h1 = m · (x− r)− w =
√
|x− r|2 − h2

2 − w. (77)

The Lie derivatives of these quantities can be calculated using the automatic Lie differentia-
tion described at the end of Section 6. The only second Lie derivative required is that of `,
and since we have Equation (67), no automatic second Lie differentiation is required.

Singularity Analysis for Stewart Platforms

When operating a Stewart Platform, a singularity occurs when there are no viable
cable forces that can create an arbitrary wrench, or equivalently, when there exists infinites-
imal perturbations of the end effector pose that don’t require a leg length change. These

Machines 2023, 11, 1056 11 of 22

singularities are often called bifurcations, because after a Stewart Platform encounters a
singularity, the end effector is free to move in more than one direction. Encountering a
singularity can cause great damage to the Stewart Platform.

From these considerations, it becomes clear that a singularity happens for a Stewart
Platform if and only if det(Λ) = det(T) = 0. This is in agreement with the results obtained
by Gosselin and Angeles [31].

Note that when considering more complex parallel robots, that a singularities can
happen in other situations as well (see, for example, [32]).

10. Forward Kinematics

In robotics, there are several ways to find the pose of the end effector. One method is
to use an optical system, but this is not very accurate. Another is to use a proprioceptive
sensor, where the pose is found by integrating the acceleration and angular velocity of the
end effector, but this is subject to drift. It would be extremely helpful if the end effector
could be computed from the numbers `k. These numbers lengths can be found easily and
with high sampling frequency using, for example, encoders.

Let the set of admissible actuator values, L ⊂ Rn, be the range of the function L. Then the
forward kinematics function is

Y : L→ SDH, (78)

which is a left inverse to L. Because of possible measurement errors, Y should produce
decent answers even if the actuator values are merely close to L.

The methods described here are essentially the Newton-Raphson Method, and are all
iterative methods. Given a guess ηk, we create a new guess ηk+1:

ηk+1 = ηk
̂(1 + θk+1), (79)

and iterate until some criterion is met. We measure sizel(ηk+1 − ηk), and see when it is
smaller than some preset value, like 10−16.

Here we merely describe the method. In Appendix A, we explain why they work.
We would also like to mention a different approach to using dual quaternions to

solve forward kinematics problems in [33], although we don’t think it will cover the more
complicated situation described in Section 9.

10.1. Forward Kinematics for Stewart Platforms

First we describe how to solve the exact-constrained problem, that is, when n = 6.
This would be the case for a Stewart Platfom. Typically this is solved by writing the pose
using Euler angles, which provides a way to represent the pose using a 6-vector. However,
in the opinion of the authors, this becomes a rather complicated set of equations, resulting
in quite lengthy code.

Our algorithm is
θk+1 = −Λ(ηk)

−1(L(ηk)− `). (80)

This is easy to code, certainly simpler than methods which use Euler angles.

10.2. Forward Kinematics for Over-Constrained Parallel Robots

Next we focus on the over-constrained problem, that is, when the number of actuators
n is greater than 6.

This problem has been solved by many others, for example, [33,34]. But we feel that
this is more easily solved using dual quaternions. For example, using the programming
language C++, one can quickly build classes representing dual quaternions, and then these
formulas can be applied without any real thought.

We compute

δk =

(
n

∑
m=1

Λm,i(Lm(ηk)− `m)

)
1≤i≤6

, (81)

Machines 2023, 11, 1056 12 of 22

and

Hk =

[
n

∑
m=1

Λm,iΛm,j +
1
2LiΛm,j(Lm(ηk)) +

1
2LjΛm,i(Lm(ηk))

]
1≤i,j≤6

. (82)

The algorithm is
θk+1 = H−1

k δk. (83)

10.3. Results of Simulations for Forward Kinematics

The software used to check these algorithms described here is currently proprietary,
and so we cannot give too many details. We hope to get permission to release the software
at a later date, and make it available to everyone.

To test the simple Stewart Platform algorithm, we created 10,000 random poses. The
orientation of each pose had an angle no greater than 30◦ from the identity pose. For each
pose, the cable lengths were calculated. The Newton-Raphson Method was then applied to
the cable lengths, with a random initial guess pose.

All runs were successful. The average number of required iterations was about 4.8.
The run time for each forwards kinematics calculation was a little under 100 microseconds,
using a fairly modern but low-end laptop. Increasing the allowed angle to 45◦ gave a
failure rate of 2 in 10,000.

The Newton-Raphson Method for the over-constrained robot given by the more
complicated situation described in Section 9 was more delicate. In particular, since it is
minimizing a loss function rather than directly solving the problem, it is possible that it
might find local minima of the loss function which didn’t correspond to the solution.

For the first test, we created 1000 random poses, and computed their cable lengths.
The Newton-Raphson Method was applied, with a random initial guess pose, and was
allowed up to 50 iterations. If the loss function of the final answer was greater than 10−16,
the Newton-Raphson Method was applied again.

All poses were found, but the average number of times the Newton-Raphson had to
be applied was about 80. The average time to find a pose was about 5 ms.

For the second test, we again created 1000 random poses and computed their cable
lengths. Then the Newton-Raphson was applied, with an initial guess that was 1% different
from the original pose. Again success was measured by computing the loss function. But
there were no second chances.

All poses were found, the average number of iterations required was 4.2, and the
average time taken was a little under 100 microseconds.

Increasing the allowable difference between the initial guess and the original pose to
5% resulted in only about 88% of the runs being successful.

Note that in all these trials, since the poses were randomly created, it is quite likely
that some of the poses were non-feasible for the parallel robots under consideration. (For
example, it might be impossible to maintain that pose while keeping the cables under
tension, or moving to that pose might require crossing cables).

When using this algorithm, to find the initial pose, we suggest to use the first method
of trying 1000 different initial guesses, and choosing the pose with the lowest loss function.
But thereafter, sample the cable lengths often, and use the previously measured pose as the
initial guess. In our numerical simulations, the pose changes by about 0.3% per time step
(about 1 ms), and the algorithm has never failed to solve the forward kinematics problem.

11. Dynamics of the End Effector

The dynamics equations of motion of rigid bodies is well known. But in this section, we
also consider the additional effect of overcoming inertia from the actuators. Furthermore,
we feel that it is nice to see this stated and derived in the context of dual quaternions.

Let us suppose that the kinetic energy of the parallel robot is given by

e = 1
2 ϕ ·Mϕ, (84)

Machines 2023, 11, 1056 13 of 22

where M is a (6× 6) positive definite matrix, which depends only upon η, and which we
call the effective mass of the parallel robot.

We define the no-load forces to be the actuator forces if there is no end effector present:

f0 = M0 ῭ , (85)

where M0 is a positive definite (n × n) matrix denoting what we shall call the effective
no-load mass of the actuators. This might be caused by, for example, the reflected moment of
inertia of the motor that drives each actuator, in which case M0 is simply a constant multiple
of the identity. Since 1

2
˙̀ ·M0 ˙̀ = 1

2 ϕ · ΛTM0Λϕ is part of the kinetic energy, it follows that
M− ΛTM0Λ is a positive semi-definite matrix.

If me is the mass of the end effector, Me is the moment of inertia tensor of the end
effector about its center of mass, and r0 is the center of mass of the end effectors, all
measured with respect to the moving frame, then

e = 1
2 me|v + w× r0|2 + 1

2 w ·Mew + 1
2

˙̀ ·M0 ˙̀ , (86)

that is

M = 4
[

Me −meS(r0)
2 meS(r0)

−meS(r0) meI

]
+ ΛTM0Λ. (87)

Theorem 1. If the kinetic energy satisfies Equation (84) with Equation (87) holding, and the
potential energy v is calculated in the usual manner from the mass of the end effector in a constant
gravitational field whose value is g measured with respect to the moving frame, then the equation of
motion is

τ = µ + Mα, (88)

where

µ = 2w× (Mew) + 2εmew× v

+ 2me((w · r0)(w× r0) + r0 × (w× v) + εw× (w× r0))

+ ΛTM0(LϕΛ)ϕ− 2me(r0 × g + εg), (89)

and
Mα = 2Meẇ + 2me(r0 × v̇) + 2εmev̇ + 2εme(ẇ× r0) + ΛTM0Λα. (90)

The various terms in Equation (89) can be interpreted as follows.

• Meẇ and mev̇ are inertial resistance to change of angular and translational velocities.
• mew× v is the centripetal force required to rotate and move at the same time.
• w× (Mew) is the precession torque (so that if the moment of inertia is not isotropic,

then the body spins in a counter-intuitive manner, see, for example, [35]).
•

ΛTM0(LϕΛ)ϕ + ΛTM0Λα = T f0 (91)

is the wrench required to move the actuators, where the no-load forces may be com-
puted using

f0 = M0Lϕ(Λϕ) + M0Λα. (92)

• meg is the force due to gravity.
• All terms containing r0 are corrections required since the center of gravity isn’t nec-

essarily the same as the origin of the moving frame of reference. They could be
derived by first finding the equations of motion when r0 = 0, and then applying
Equations (27) and (28).

Numerical Verification of the Dynamics Equations

The way we numerically verified these equations was by running a simulated motion,
and then calculating the work done in three ways. The first method was to integrate the
inner product of the twist and the wrench on the end effector. The second method was to

Machines 2023, 11, 1056 14 of 22

integrate the sum of the actuator force times the rate of change of the length of the actuator.
The third method was to calculate the total kinetic energy using Equation (86), and the
potential energy using the standard mass times gravity time height formula. The numerical
simulations gave the same results for all three methods up to machine precision.

12. Conclusions

This paper has given a comprehensive and consistent description of how to use dual
quaternions to represent poses, rigid motions, twists, and wrenches. We have introduced
the notion of the Lie derivative for dual quaternions. We have shown how these formula are
helpful for first producing Newton-Raphson methods for solving the forward kinematics
problem for parallel robots, and secondly for a self contained derivation for the dynamic
equations of motion of the end effector that includes the inertia of the actuators.

Finally, in Equation (A1), we give an approximation of the normalization of a vector
dual quaternion perturbation of the identity, which shows that it is equal up to the second
order to the exponential of the vector dual quaternion. This equation was essential for
calculating the Hessian in the forwards kinematics algorithms. We feel that this formula
will be of independent interest to other researchers in the field of dual quaternions.

Author Contributions: Conceptualization, S.M.-S. and C.S.; software, S.M.-S.; formal analysis,
S.M.-S.; investigation, S.M.-S. and C.S.; resources, C.S.; writing—original draft preparation, S.M.-S.;
writing—review and editing, S.M.-S. and C.S.; project administration, C.S.; funding acquisition, C.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: We hope to have software available sometime in the future at
https://stephenmontgomerysmith.github.io/software (accessed on 1 November 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proofs

Lemma A1. If θ is a vector dual quaternion, then

(̂1 + θ) = 1 + θ + 1
2 θ2 + O(θ3). (A1)

We remark that since the exponential of a unit dual quaternion θ [19] satisfies

exp(θ) =
∞

∑
k=0

θk

k!
, (A2)

then by Equation (A1) we have

exp(θ) = (̂1 + θ) + O(θ3). (A3)

Let us clarify the big-Oh notation. We say that

η(θ) = O(γ(θ)) (A4)

if there exists a constant c > 0 such that if sizel(θ) is sufficiently small, then

sizel(η(θ)) ≤ c sizel(γ(θ)). (A5)

Let us show that this definition does not depend upon the characteristic length l. In [23],
we show how to define the ‘functional calculus’ of dual quaternions. That is, given a
continuously differentiable function f : C→ C, satisfying f (z̄) = f (z), we can make sense
of f (η) for any dual quaternion η = A + εB. First we can define f on quaternions by
realizing that any unit vector n satisfies n2 = −1, and hence one merely treats n as an
imaginary unit. Next, if B is decomposed as B1 + b2, where B1 commutes with A, and b2 is
a vector quaternion that anti-commutes with Im(A), and setting

https://stephenmontgomerysmith.github.io/software

Machines 2023, 11, 1056 15 of 22

fx(z) = lim
h→0,h∈R

f (z + h)
h

, (A6)

fiy(z) = lim
h→0,h∈R

f (z + ih)
ih

, (A7)

h f (z) =


f (z)− f (z̄)

z− z̄
if Re(z) 6= 0

fiy(z) if Re(z) = 0,
(A8)

then we have

f (A + εB) = f (A) + ε fx(A)Re(B1) + ε fiy(A) Im(B1) + εh f (A)b2. (A9)

This means that for any functions f and g, that sizel(f (A + εB)) ≤ sizel(g(A + εB)) for
all quaternions B if and only if | f (A)| ≤ |g(A)|, | fx(A)| ≤ |gx(A)|, | fiy(A)| ≤ |giy(A)|,
and |h f (A)| ≤ |hg(A)|. In particular, the comparison of size does depend upon which
characteristic length l is used.

Proof of Lemma A1. Since θ∗ = −θ, we have

|1 + θ|2 = 1− θ2. (A10)

Hence using Taylor’s series

|1 + θ|−1 = 1 + 1
2 θ2 + O(θ3) (A11)

from which it follows that

(̂1 + θ) = (1 + θ)(1 + θ)−1 = 1 + θ + 1
2 θ2 + O(θ3). (A12)

Lemma A2. The definition of Lθ g in Equation (41) does not depend upon the extension of g from
SDH to a neighborhood of SDH in DH.

Proof. First note that from Equation (A1) we have

d
dr

̂(1 + rθ)

∣∣∣∣
r=0

= θ. (A13)

Let g1 and g2 be two extensions of g from SDH to a neighborhood of SDH in DH. Define

g̃(η) = g1(η̂) = g2(η̂). (A14)

Then
d
dr

g̃(η(1 + rθ))

∣∣∣∣
r=0

=
d
dr

g1(η ̂(1 + rθ))

∣∣∣∣
r=0

=
d
dr

g1(η(1 + rθ))

∣∣∣∣
r=0

,
(A15)

where the second equality follows from the chain rule and Equation (A13). Similarly
for g2.

Proof that Definition (41) implies Equation (43). Using the chain rule for partial deriva-
tives, we obtain

d
dr

g(η(1 + rθ)) =
8

∑
i=1

(
∂g
∂ηi

(η(1 + rθ))

)
d
dr

(η(1 + rθ))i

=
8

∑
i=1

(
∂g
∂ηi

(η(1 + rθ))

)
(ηθ)i.

(A16)

Now set r = 0.

Machines 2023, 11, 1056 16 of 22

Proof that Equation (47) implies Equation (48). Equation (47) can be written as

a = 2(θ1i + θ2j + θ3k), b = 2(θ4i + θ5j + θ6k), (A17)

where θi is the βi component of θ as described in (17). If f is any function of the vector dual
quaternions, we have

∂

∂θi
f (θ) =

3

∑
j=1

∂aj

∂θi

∂

∂aj
f (θ) +

3

∑
j=1

∂bj

∂θi

∂

∂bj
f (θ)

=


2

∂

∂ai
f (θ) if 1 ≤ i ≤ 3

2
∂

∂bi−3
f (θ) if 4 ≤ i ≤ 6.

(A18)

Proof of Equations (53) and (54). We have

s̃ = QsQ∗ + 2BQ∗, (A19)

ñ = QnQ∗, (A20)

or
s = Q∗(s̃Q− 2B), (A21)

n = Q∗ñQ. (A22)

Now if θ = 1
2 a + 1

2 εb, then

Lθ(η) = ηψ = 1
2 Qa + 1

2 ε(Qb + Ba), (A23)

that is
Lθ(Q) = 1

2 Qa, (A24)

Lθ(B) = 1
2 (Qb + Ba). (A25)

Remembering a∗ = −a, and that as− sa = 2 a× s, we obtain

Lθs = −a× s− b, (A26)

Lθn = −a× n. (A27)

Proof of Equation (62). The rate of change of work done on the parallel robot can be
computed in two different ways, either using Equations (29) or (57). Substituting in
Equations (60) and (61), we obtain

T f · ϕ = f · Λϕ = ΛT f · ϕ, (A28)

the last equality being a standard formula for the transpose of a matrix. Since this is true
for arbitrary actuator forces f and end effector twists ϕ, the result follows.

Proof of Equation (64). Applying the rules given in Section 6, we obtain

Machines 2023, 11, 1056 17 of 22

LθLψg = Lθ

(
∂g
∂η
· (ηψ)

)
(A29)

=
8

∑
i=1
Lθ

(
∂g
∂ηi

)
(ηψ)i +

∂g
∂η
· Lθ(ηψ) (A30)

=
8

∑
i=1

(
8

∑
j=1

(
∂2g

∂ηjηi

)
(ηθ)j

)
(ηψ)i +

∂g
∂η
· (ηψθ) (A31)

= (ηψ) ·
[

∂2g
∂η2

]
(ηθ) +

∂g
∂η
· (ηθψ). (A32)

As a corollary to Equation (64), we obtain the well known identity:

LθLψg−LψLθ g = L(θψ−ψθ)g, (A33)

which implies that Lie derivatives do not necessary commute.

Proof of Equation (65). We wish to find the Jacobian δ and the Hessian H of b̃ at the
origin, where

b̃(θ) = b(η(̂1 + θ)). (A34)

We can find this by considering its Taylor series expansion

b̃(θ) = b̃(0) +
6

∑
i=1

δiθi +
1
2

6

∑
i,j=1

Hi,jθiθj + O(θ3), (A35)

where
θ =

6

∑
i=1

θiβi. (A36)

Using the Taylor series, and using Equation (A1), one obtains

b̃(θ) = b(η(̂1 + θ)) = b(η(1 + θ + 1
2 θ2 + O(θ3)))

= b(η) +
∂b
∂η
· (η(θ + 1

2 θ2))

+ 1
2 (ηθ) ·

[
∂2b
∂η2

]
(ηθ) + O(θ2)

= b(η) +
∂b
∂η
· (η(θ))

+ 1
2 (ηθ) ·

[
∂2b
∂η2

]
(ηθ) +

∂b
∂η
· (1

2 ηθ2) + O(θ3).

(A37)

Now by comparing coefficients, and considering Equations (43) and (64), we obtain

δi = Lib(η), (1 ≤ i ≤ 6), (A38)

and

Hi,j = (ηβi) ·
[

∂2b
∂η2

]
(ηβ j) +

∂b
∂η
· (1

2 η(βiβ j + β jβi))

= 1
2 (LiLjb(η) + LjLib(η)), (1 ≤ i, j ≤ 6).

(A39)

Proof of Equation (67). Suppose that the end effector is moving with pose η = Q + εB,
and twist φ = 1

2 w + 1
2 εv, then with respect to the fixed frame of reference, the velocity of

the attachment point rk is Q(v + w× rk)Q∗. And if a force fk is applied along the direction
uk, then the force applied to the end-effector is fkQukQ∗ with respect to the fixed frame
of reference.

Machines 2023, 11, 1056 18 of 22

Hence computing the rate of change of virtual work, we obtain

fk ˙̀ k = (v + w× rk) · fkuk. (A40)

Therefore ˙̀ k = uk · v + rk × uk ·w. (A41)

The result follows by Equation (60).

For complex situations, where the cables might pass through pulleys, the simplicity of
Equation (67) can be a bit surprising. This might best be intuitively understood by seeing
that the involute of the curve describing the shape of the pulley is the curve traced by the
end effector attachment point when the cable length of that actuator is kept fixed, and that
the evolute is the opposite process.

Proof of Equation (69). Note that

Lψuk = −
1

|rk − sk|
PukLψsk. (A42)

Now apply Equation (53).

Next, we justify the Newton-Raphson Methods for forward kinematics. The method
as usually states only applies to linear vector spaces, whereas we are working on the
non-linear manifold of unit dual quaternions. Thus given ηk, we need to define a map from
the vector space of vector dual quaternions to unit dual quaternions close to ηk. See, for
example, [36].

Most papers on the Newton-Raphson Method on manifolds construct this map using
the so called exp function [37–39]. So the map is

θ 7→ ηk exp(θ). (A43)

The exp map in these papers is following the path of a geodesic on the manifold, and this is
equivalent to using the equations of motion of the end effector as described in Section 11.
Another exp map is to follow a one-parameter subgroup, or equivalently, Equation (A2).
We do not take these approaches. Our approach is to normalize:

θ 7→ ηk (̂1 + θ). (A44)

(However, this is numerically close to the second approach, as is shown by Equation (A3).
Using normalization instead of the exp map slightly reduces the complexity of the calcula-
tions as transcendental trigonometric functions are not required. But if one wants to use

the exp map, simply replace (̂1 + θ) by exp(θ) throughout.)
The main substantive difference between these methods, and the standard method

that is used on linear vector spaces, is that the map from the linear space of vector dual
quaternions to the manifold of unit dual quaternions changes with each iteration, since the
map depends upon ηk. But the theory that the Newton-Raphson Method converges with
quadratic order is based upon examination of each iteration separately, so this shouldn’t
pose a great issue.

Justification of Equation (80). If F : R6 → R6 is a function for which we wish to solve for
F(x) = 0, the method is to iterate

x−
[

∂F

∂x

]−1
F(x). (A45)

Our approach, then, is to consider the map

θ 7→ F(θ) := L(ηk (̂1 + θ))− `. (A46)

The prior guess is then θk = 0. We have that

Machines 2023, 11, 1056 19 of 22

∂F

∂θ

∣∣∣
θ=0

= Λ(ηk). (A47)

The result follows.

Justification of Equation (83). We seek to find the pose η so that L(η) is close as possible
to `. This is performed by minimizing the loss function

b(η) = 1
2 |L(η)− `|2. (A48)

The standard Newton-Raphson Method for optimizing the real valued quantity F(x), where
x is an element of a vector space, is to iterate

x−
[

∂2F
∂x2

]−1
∂F
∂x

. (A49)

In our case x is θ,
F(θ) = b(ηk (̂1 + θ)), (A50)

and our previous iterate is θk = 0. The Jacobian is

δk =
∂F(θ)

∂θ

∣∣∣∣
θ=0

= (Lib(ηk))1≤i≤6 =

(
n

∑
m=1

Λm,i(Lm(ηk)− `m)

)
1≤i≤6

, (A51)

and the Hessian is Hk, which by Equation (65) is

Hk =
[

1
2 (LiLjb(ηk) + LjLib(ηk))

]
1≤i,j≤6

, (A52)

noting that

LiLjb(ηk) =
n

∑
m=1

Λm,iΛm,j + LiΛm,j(Lm(ηk)− `m). (A53)

Now we work on proving Theorem 1. We use the Euler-Lagrange equations. (However,
one could also use standard formulas for rotating bodies, and Newtonian physics, to obtain
the same result).

Define the cross product of two vector dual quaternions α = a + εb and β = c + εd by

α× β = 1
2 (αβ− βα) = a× c + ε(a× d + b× c). (A54)

Define the adjoint products of vector dual quaternions by

α n β = c× a + d× b + ε(c× b), (A55)

α o β = −β n α, (A56)

which can also be defined by the property that for all vector dual quaternions α, β, and γ
we have

(α× β) · γ = α · (γ n β) = β · (α o γ). (A57)

(Note that in the Lie algebra literature, the map β 7→ α× β is often denoted adα. Thus the
map γ 7→ α o γ is the formal dual of adα).

Theorem A1. If the kinetic energy e satisfies Equation (84), and v = v(η) denotes the potential
energy, then the equation of motion is

τ = µ1 + µ2 + Mα, (A58)

where
µ1 = LϕMϕ− 1

2L(ϕ ·Mϕ) + Lv, (A59)

and for any constant vector dual quaternion ψ we have

Machines 2023, 11, 1056 20 of 22

ψ · µ2 = 2ϕ ·M(ψ× ϕ) = 2Mϕ · (ψ× ϕ), (A60)

that is,
µ2 = 2(Mϕ)n ϕ. (A61)

Proof. In preparation to apply the Euler-Lagrange Equation, given η0 ∈ SDH, we define a
map from an open neighborhood of the origin in R6 to an open neighborhood of η0 in SDH

θ 7→ η(θ)

= η0 (̂1 + θ)

= η0(1 + θ + 1
2 θ2) + O(θ3),

(A62)

where in the last inequality we used Equation (A1). Then we have

ϕ = η−1η̇

= (̂1 + θ)
−1

(θ̇ + 1
2 (θ̇θ + θθ̇)) + O(θ2)

= θ̇ + 1
2 (θ̇θ − θθ̇) + O(θ2),

(A63)

and
α = θ̈ + O(θ). (A64)

The Lagrangian of the parallel robot is

l = e− v = 1
2 ϕ ·Mϕ− v. (A65)

We use the local coordinate system θ given by Equation (A62). The Euler-Lagrange Equa-
tion [40,41] tells us

d
dt

(
∂l
∂θ̇

)
− ∂l

∂θ
= τ. (A66)

We suppose that η0 = η(t0), and θ(t0) = 0, and from now on in this proof, all equations
are stated assuming the condition t = t0. Thus we only prove our results when t = t0. But
since t0 is arbitrary, this is not a limitation. However, it is important that derivatives are
calculated before setting t = t0. In particular, this means that for any function f of η that

∂ f
∂θ

= L f . (A67)

We have
d
dt

(
∂e
∂θ̇

)
= Mα + Ṁϕ

= Mα +

(
θ̇ · ∂M

∂θ

)
θ̇

= Mα +

(
ϕ · ∂M

∂θ

)
ϕ,

(A68)

and
∂e
∂θ

= θ̇ ·M ∂

∂θ
(θ̇θ − θθ̇) + 1

2 θ̇ ·
(

∂M

∂θ

)
θ̇

= ϕ ·M ∂

∂θ
(ϕθ − θϕ) + 1

2 ϕ ·
(

∂M

∂θ

)
ϕ.

(A69)

Note that if f is any linear function whose domain is the vector dual quaternions, then

ψ ·
(

∂

∂θ
f (θ)

)
= f (ψ). (A70)

Thus taking the dot product of Equation (A69) with any constant vector dual quaternion ψ,
we obtain the result.

Machines 2023, 11, 1056 21 of 22

Lemma A3. If v is the potential energy of the end effector in a constant gravity field, whose value
with respect to the moving frame is g, then

Lv = −2m0(r0 × g + εg). (A71)

Proof. Let r be a constant point expressed with respect to the moving frame. We have

v = m0g · (r− r0). (A72)

If θ = 1
2 a + 1

2 εb is a vector dual quaternion, then by Equation (54), it follows that

Lθv = −m0((a× g) · (r− r0) + g · (a× r + b))

= −m0(a · r0 × g + b · g).
(A73)

Proof of Theorem 1. The potential energy part is covered by Lemma A3. For the parts
coming from the kinetic energy, using linearity, it is sufficient to prove it for the additive
parts of M. The part not involving m0 is proved using Theorem A1, various vector identities,
and remembering Equation (36).

So we only need to prove the kinetic energy portion in the case M = ΛTM0Λ. The
easiest way to show this is to simply differentiate M0 ˙̀ = M0Λϕ with respect to time. To
do it directly from the formulas is more complicated, as we now show. For any constant
vector dual quaternion ψ, we have

ψ · (Lϕ(Mϕ)− 1
2L(ϕ ·Mϕ))

= (Lϕ(ψ ·Mϕ)− 1
2Lψ(ϕ ·Mϕ))

= Lϕ((Λψ) ·M0(Λϕ))− 1
2Lψ((Λϕ) ·M0(Λϕ))

= LϕLϕL ·M0LψL + LϕLψL ·M0LϕL−LψLϕL ·M0LϕL

= Lϕ(Λϕ) ·M0Λψ + L(ϕψ−ψϕ)L ·M0Λϕ

= ψ · ΛTM0Lϕ(Λϕ) + Λ(ϕψ− ψϕ) ·M0Λϕ

= ψ · ΛTM0Lϕ(Λϕ) + (ϕψ− ψϕ) ·M0 ϕ,

(A74)

where we used Equation (A33). Then it is simply a matter of collecting terms.

References
1. Chirikjian, G.S.; Mahony, R.; Ruan, S.; Trumpf, J. Pose Changes From a Different Point of View. J. Mech. Robot. 2018, 10, 021008.

[CrossRef]
2. Ball, R.S. The theory of Screws: A Study in the Dynamics of a Rigid Body; Hodges, Foster and Co.: Dublin, Ireland, 1876.
3. Bottema, O.; Roth, B. Theoretical Kinematics; North-Holland: Amsterdam, The Netherlands, 1979.
4. Gallardo-Alvarado, J. Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory; Springer: Cham, Switzerland, 2016.
5. Selig, J.M. Geometric Fundamentals of Robotics, 2nd ed.; Springer Inc.: New York, NY, USA, 2005.
6. McAulay, A. Octonions: A development of Clifford’s Biquaternions; Cambridge University Press: Cambridge, UK, 1988.
7. Clifford, M.A. Preliminary Sketch of Biquaternions. Proc. Lond. Math. Soc. 1871, 1–4, 81–395. [CrossRef]
8. Adorno, B.V. Robot Kinematic Modeling and Control Based on Dual Quaternion Algebra—Part I: Fundamentals. 2017. Available

online: https://hal.science/hal-01478225v1 (accessed on 24 November 2023).
9. Perez, A.; McCarthy, J.M. Dual Quaternion Synthesis of Constrained Robotic Systems. ASME. J. Mech. Des. 2004, 126, 425–435.

[CrossRef]
10. Kenwright, B. A Beginners Guide to Dual-Quaternions, What They Are, How They Work, and How to Use Them for 3D Character

Hierarchies. Available online: https://cs.gmu.edu/~jmlien/teaching/cs451/uploads/Main/dual-quaternion.pdf (accessed on 1
November 2023).

11. Montgomery-Smith, S.; Shy, C. An introduction to using dual quaternions to study kinematics. arXiv 2023, arXiv:2203.13653.
12. Schilling, M. Universally manipulable body models—Dual quaternion representations in layered and dynamic MMCs. Auton

Robot 2011, 30, 399. [CrossRef]
13. Schilling, M. Hierarchical Dual Quaternion-Based Recurrent Neural Network as a Flexible Internal Body Model. In Proceedings of

the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. Available
online: https://ieeexplore.ieee.org/abstract/document/8852328 (accessed on 24 November 2023). [CrossRef]

http://doi.org/10.1115/1.4039121
http://dx.doi.org/10.1112/plms/s1-4.1.381
https://hal.science/hal-01478225v1
http://dx.doi.org/10.1115/1.1737378
https://cs.gmu.edu/~jmlien/teaching/cs451/uploads/Main/dual-quaternion.pdf
http://dx.doi.org/10.1007/s10514-011-9226-3
https://ieeexplore.ieee.org/abstract/document/8852328
http://dx.doi.org/10.1109/IJCNN.2019.8852328

Machines 2023, 11, 1056 22 of 22

14. Silva, F.F.A.; Quiroz-Omaña, J.J.; Adorno, B.V. Dynamics of Mobile Manipulators using Dual Quaternion Algebra. J. Mech. Robot.
2022, 14, 061005. [CrossRef]

15. Agrawal, O.P. Hamilton operators and dual-number-quaternions in spatial kinematics. Mech. Mach. Theory 1987, 22, 569–575.
[CrossRef]

16. Dooley, J.R.; McCarthy, J.M. Spatial rigid body dynamics using dual quaternion components. In Proceedings of the 1991 IEEE
International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; Volume 1, pp. 90–95. [CrossRef]

17. Han, D.-P.; Wei, Q.; Li, Z.-X., Kinematic Control of Free Rigid Bodies Using Dual Quaternions. Int. J. Autom. Comput. 2008, 5,
319–324. [CrossRef]

18. Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; Wiley: Hoboken, NJ, USA, 2006.
19. Wang, X.; Han, D.; Yu, C.; Zheng, Z. The geometric structure of unit dual quaternions with application in kinematic control. J.

Math. Anal. Appl. 2012, 389, 1352–1364. [CrossRef]
20. Kussaba, H.T.M.; Figueredo, L.F.C.; Ishihara, J.Y.; Adorno, B.V. Hybrid kinematic control for rigid body pose stabilization using

dual quaternions. J. Frankl. Inst. 2017, 354, 2769–2787. [CrossRef]
21. Kavan, L.; Collins, S.; Zára, J.; O’Sullivan, C. Skinning with Dual Quaternions. In Proceedings of the I3D ’07: Proceedings of the

2007 Symposium on Interactive 3D Graphics and Games, Seattle, WA, USA, 30 April–2 May 2007. [CrossRef]
22. Kavan, L.; Collins, S.; Zára, J.; O’Sullivan, C. Geometric Skinning with Approximate Dual Quaternion Blending. ACM Trans. Graph.

2008, 27, 105. [CrossRef]
23. Montgomery-Smith, S. Functional calculus for dual quaternions. Adv. Appl. Clifford Algebr. 2023, 33, 36. [CrossRef]
24. Selig, J.M. Exponential and Cayley Maps for Dual Quaternions. Adv. Appl. Clifford Algebr. 2010, 20, 923–936. [CrossRef]
25. Montgomery-Smith, S. Control of systems by parallel actuators. Wseas Trans. Syst. Control 2022, 17, 207–213. [CrossRef]
26. Altmann, S.L. Hamilton, Rodrigues, and the Quaternion Scandal. Math. Mag. 1989, 62, 291–308. [CrossRef]
27. Pujol, J. Hamilton, Rodrigues, Gauss, Quaternions, and Rotations: A Historical Reassessment. Commun. Math. Anal. 2012, 13, 1–14.
28. Yano, K. The Theory of Lie Derivatives and its Applications; North-Holland: Amsterdam, The Netherlands, 1957; ISBN 978-0-7204-2104-0.
29. Lee, J. Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218, 2nd ed.; Springer: New York, NY, USA; London, UK,

2012; ISBN 978-1-4419-9981-8.
30. Helgason, S. Differential Geometry, Lie Groups and Symmetric Spaces; Academic Press: New York, NY, USA, 1978.
31. Gosselin, C.; Angeles, J. Singularity analysis of closed-loop kinematic chains. IEEE Trans. Robot. Autom. 1990, 6, 281–290. [CrossRef]
32. Merlet, J.-P. Singularity of Cable-Driven Parallel Robot with Sagging Cables: Preliminary Investigation. In Proceedings of the

International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 504–509. [CrossRef]
33. Yang, X.; Wu, H.; Li, Y.; Chen, B. A dual quaternion solution to the forward kinematics of a class of six-DOF parallel robots with

full or reductant actuation. Mech. Mach. Theory 2017, 107, 27–36. [CrossRef]
34. Pott, A.; Schmidt, V. On the Forward Kinematics of Cable-Driven Parallel Robots. In Proceedings of the 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015.
35. Kawano, D.T.; Novelia, A.; O’Reilly, O.M. A Tumbling T-Handle in Space: The Dzhanibekov Effect. Available online: https:

//rotations.berkeley.edu/a-tumbling-t-handle-in-space (accessed on 1 November 2023).
36. Huper, K.; Trumpf, J. Newton-like methods for numerical optimization on manifolds. In Proceedings of the Conference Record

of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2004;
Volume 1, pp. 136–139. [CrossRef]

37. Dedieu, J.-P.; Priouret, P.; Malajovich, G. Newton’s Method on Riemannian Manifolds: Covariant Alpha-Theory. Ima J. Numer.
Anal. 2003, 23, 395–419. [CrossRef]

38. Fernandes, T.A.; Ferreira, O.P.; Yuan, J. On the Superlinear Convergence of Newton’s Method on Riemannian Manifolds. J. Optim.
Theory Appl. 2017, 173, 828–843. [CrossRef]

39. Ferreira, O.P.; Svaiter, B.F. Kantorovich’s Theorem on Newton’s Method in Riemannian Manifolds. J. Complex. 2002, 18, 304–329.
[CrossRef]

40. Goldstein, H.; Poole, C.P.; Safko, J.L. Classical Mechanics, 3rd ed.; Addison-Wesley: Boston, MA, USA, 2001.
41. Arnold, V.I. Mathematical Methods of Classical Mechanics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1989.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1115/1.4054320
http://dx.doi.org/10.1016/0094-114X(87)90052-8
http://dx.doi.org/10.1109/ROBOT.1991.131559
http://dx.doi.org/10.1007/s11633-008-0319-1
http://dx.doi.org/10.1016/j.jmaa.2012.01.016
http://dx.doi.org/10.1016/j.jfranklin.2017.01.028
http://dx.doi.org/10.1145/1230100.1230107
http://dx.doi.org/10.1145/1409625.1409627
http://dx.doi.org/10.1007/s00006-023-01282-y
http://dx.doi.org/10.1007/s00006-010-0229-5
http://dx.doi.org/10.37394/23203.2022.17.24
http://dx.doi.org/10.1080/0025570X.1989.11977459
http://dx.doi.org/10.1109/70.56660
http://dx.doi.org/10.1109/ICRA.2019.8794218
http://dx.doi.org/10.1016/j.mechmachtheory.2016.08.003
https://rotations.berkeley.edu/a-tumbling-t-handle-in-space
https://rotations.berkeley.edu/a-tumbling-t-handle-in-space
http://dx.doi.org/10.1109/ACSSC.2004.1399106
http://dx.doi.org/10.1093/imanum/23.3.395
http://dx.doi.org/10.1007/s10957-017-1107-2
http://dx.doi.org/10.1006/jcom.2001.0582

	Introduction
	Notation
	Dual Quaternions to Represent Wrenches
	The Normalization of a Dual Quaternion
	Notation for Three by Three Matrices
	Lie Derivatives
	Applications to Parallel Robots
	Second Lie Derivatives
	The Examples of a Stewart Platform, and a Cable-Driven Parallel Robot
	Forward Kinematics
	Forward Kinematics for Stewart Platforms
	Forward Kinematics for Over-Constrained Parallel Robots
	Results of Simulations for Forward Kinematics

	Dynamics of the End Effector
	Conclusions
	Appendix A
	References

