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Abstract: Existing transportation infrastructure and traffic control systems face increasing strain as a
result of rising demand, resulting in frequent congestion. Expanding infrastructure is not a feasible
solution for enhancing the capacity of the road. Hence, Intelligent Transportation Systems are often
employed to enhance the Level of Service (LoS). One such approach is Variable Speed Limit (VSL)
control. VSL increases the LoS and safety on motorways by optimizing the speed limit according to
the traffic conditions. The proliferation of Connected and Autonomous Vehicles (CAVs) presents fresh
prospects for improving the operation and measurement of traffic states for the operation of the VSL
control system. This paper introduces a method for the detection of multiple congested areas that is
used for state estimation for a dynamically positioned VSL control system for urban motorways. The
method utilizes Q-Learning (QL) and CAVs as mobile sensors and actuators. The proposed control
approach, named Congestion Detection QL Dynamic Position VSL (CD-QL-DPVSL), dynamically
detects all of the congested areas and applies two sets of actions, involving the dynamic positioning
of speed limit zones and imposed speed limits for all detected congested areas simultaneously.
The proposed CD-QL-DPVSL control approach underwent an evaluation across six distinct traffic
scenarios, encompassing CAV penetration rates spanning from 10% to 100% and demonstrated a
significantly better performance compared to other control approaches, including no control, rule-
based VSL, two Speed-Transition-Matrices-based QL-VSL configurations with fixed speed limit zone
positions, and a Speed-Transition-Matrices-based QL-DVSL with a dynamic speed limit zone position.
It achieved enhancements in macroscopic traffic parameters such as the Mean Travel Time and Total
Time Spent by adapting its control policy to every simulated scenario.

Keywords: Variable Speed Limit; Connected and Autonomous Vehicles; Reinforcement Learning;
urban motorway; Intelligent Transportation Systems; traffic state estimation; dynamic speed limit
zone positioning; congestion detection

1. Introduction

Urban motorways represent an important part of the traffic infrastructure of the urban
traffic network and, as high-performance roads, represent key traffic routes. They serve
local and transit traffic, and due to the large number and dense arrangement of on- and
off-ramps, they are often congested, especially during the morning and afternoon peak
hours. One of the solutions to relieve congestion is to expand and upgrade the existing
traffic infrastructure by adding more traffic lanes. Such a solution is not always feasible
due to high costs and a lack of space, especially in larger urban cities.

For this reason, solutions from the field of Intelligent Transportation Systems (ITS)
are increasingly being used. The urban motorway operational service capacity and Level
of Service (LoS) can be improved in existing traffic infrastructure by using traffic control
approaches such as Ramp Metering (RM) and the Variable Speed Limit (VSL). In this
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paper, we apply the VSL to the existing urban motorway model to improve the traffic
Measures of Effectiveness (MoEs). The VSL aims to harmonize speeds in mainstream traffic,
reducing the sudden changes in speed that often cause shock waves [1]. Furthermore, by
controlling the speed of vehicles moving in a mainstream traffic flow, the flow of vehicles
to the conflicting areas where congestion occurs due to the interference of vehicles from the
on-ramp can be reduced. Slowing down the mainstream traffic flow before the on-ramp
enables the faster and safer entry of vehicles from the on-ramp to the mainstream flow and
increases the operational capacity of an urban motorway.

To implement a VSL control system, it is necessary to define speed limit activation
rules based on measurements of traffic and/or meteorological data. Recently, control
approaches based on Reinforcement Learning (RL) have been used for the VSL [2]. More
specifically, RL is employed for the optimization of the VSL control policy based on the
principle of maximizing the Quality value (Q-value) for each state–action pair. By doing so,
the action that produces the best results for a particular state will have the highest Q-value
and is considered the best action for that state. The assessment of the performance of such
systems is most often measured by certain MoEs that include the Mean Travel Time (MTT),
Total Travel Time (TTT), Total Time Spent (TTS), and total delay time.

The classic VSL control systems have a few major drawbacks that include the need to
have a fixed position for the applicable speed limit and a fixed position to measure traffic
states based on the traffic density, segment Travel Time (TT), or the exiting traffic flow
from the area of interest. The recent appearance and rapid development of Autonomous
Vehicles (AVs) and Connected Autonomous Vehicles (CAVs) present fresh prospects for
improving the measurement of traffic states for the operation of the VSL control system.
The appearance and implementation of such vehicles in the traffic flow alongside Human-
Driven Vehicles (HDVs) have created a recently emerged type of traffic flow commonly
named “mixed traffic flow”. The introduction of CAVs into the control loop of a VSL
control system presents new possibilities for the measurement of traffic states and the
imposition of speed limits, since CAVs have the ability to communicate with the VSL
control system and send relevant traffic data to approximate the position and the severity
of the congestion [3]. Furthermore, they can receive speed limit information with no fixed
position for the applicable VSL area. An overview of the optimization of such RL-based
VSL control approaches that include mixed traffic flows was conducted in [2].

In this paper, the Q-Learning VSL (QL-VSL) control approach based on dynamic
congested area detection, dynamic speed limit zone positions, and imposed speed limits
based on the computed gradients of sudden mean speed changes between consecutive
motorway edges, called Congestion Detection QL Dynamic Position VSL (CD-QL-DPVSL),
is proposed and analyzed. The proposed CD-QL-DPVSL is compared to several existing
control approaches including the classic Rule-Based VSL (RB-VSL) algorithm, the Speed
Transition Matrices-based QL-VSL (STM-QL-VSL), the STM-QL Dynamic VSL (STM-QL-
DVSL), previously developed in [3], and the baseline no-control scenario. This proposed
CD-QL-DPVSL control approach is an extension of our previous control approaches [3].
Thus, this paper presents the following key contributions:

• The proposal of a method that detects multiple congested areas on an urban motorway
to determine the dynamic position of the VSL;

• The proposal of a method that calculates the severity of the congestion in a congested
area by utilizing real-time data gathered from CAVs as the input for the QL algorithm
for the VSL;

• The introduction of a novel approach that incorporates the QL algorithm for VSL
control, involving the computation of positioning of speed limit zones and speed
limits applied to CAVs:

• A performance analysis of the proposed CD-QL-DPVSL control approach under
distinct mixed traffic flow scenarios on the simulated urban motorway.

The paper follows a structured organization. Section 2 offers an overview of previous
research concerning the implementation of the VSL on urban motorways. Section 3 outlines
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the proposed methodology for the study. Section 4 provides a description of the utilized
simulation model. Moving on, Section 5 presents the findings, along with an analysis and
discourse on the conducted simulations. The paper ends with a conclusion in its final
section, where future research possibilities are also explored.

2. Related Work

As previously mentioned, urban motorways face the problem of increased traffic
demand during peak hours that often exceeds the operational capacity of the motorway.
Implementing VSL control helps to maintain the operational capacity of the congested
motorway area by limiting the incoming vehicles’ flow to the congested area by reducing
the incoming speed [4]. By doing so, the flow of vehicles to the congested area is reduced,
further capacity drops are eliminated, and the congestion can be relieved promptly [4].
Appropriately computed VSL speed limits aim to manage the congested area traffic flow
close to the maximal operational capacity. Furthermore, the flow of vehicles in the congested
area is also affected by applying the speed limits, resulting in a reduced number of incoming
vehicles to the congested area. This reduced flow ensures that the maximal operational
capacity of the congested area is not exceeded and the congestion is relieved promptly
or even averted. Furthermore, the appropriately computed variable speed limits help to
homogenize vehicle speeds and, thus, reduce the risk of accidents due to large discrepancies
in vehicle speeds before and in the congested area [5].

Figure 1 shows the relation between traffic flow q (displayed on the y-axis) and traffic
density ρ (displayed on the x-axis) that is commonly referred to as the fundamental traffic
flow diagram. According to the fundamental traffic flow diagram, as q increases to the
maximal value qmax, the traffic density increases to the critical value ρc. When the traffic
flow is below the qmax value and the density is below ρc, the traffic flow is stable and runs
smoothly with limited interactions among vehicles [6]. When the traffic density exceeds ρc,
it becomes unstable, and vehicles must interact with each other and travel at lower speeds
with an increased traffic density in the segment. Employing the VSL before the congested
area helps to reduce the inflow of vehicles to the congested area and increase the outflow
in the controlled area section [7].

Figure 1. The impact of the speed limit on the fundamental diagram [2].

The influence of employing CAVs in the mixed traffic flow on the acceleration rate
and vehicle speed disparities was analyzed in [8]. The influence of a gradual increase in the
CAV penetration rate from no CAVs to 100% CAVs showed a reduction in speed deviations
between vehicles and abrupt decelerations in the mixed traffic flow. Furthermore, the
operational capacity of each lane was examined by employing AVs and CAVs in the mixed
traffic flow [9]. By increasing the CAV penetration rate from 0 to 100%, the lane capacity
was improved by 188.2% with a near-linear characteristic. In [10], the authors analyzed
the impact of CAV penetration rates from 0 to 70% on the fundamental diagram. It was
concluded that the presence of CAVs in a mixed traffic flow increases the ρc and qmax. For
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example, ρc and qmax increased by 37% and 75%, respectively, in the scenario with a 70%
CAV penetration rate in the mixed traffic flow [10].

Current applications of VSL control are based on traffic flow measurement, which is
conducted within the spatially fixed segments of the motorway in the downstream section
of a Variable Message Sign (VMS) [11,12]. The segment for traffic flow measurement is
spatially defined by the positions of fixed road sensors on them. They are usually located
at the start of each measurement segment [13]. The traffic macroscopic parameters for each
of those segments are computed based on aggregated raw data from sensors. Thus, the
drawback of this approach is the spatial accuracy in detecting congestion on motorways,
which heavily depends on the lengths of those segments. Moreover, the length, start,
and end point of the congestion are difficult to determine by using fixed measurement
segments with longer lengths. Thus, it is possible to conclude that larger segments reduce
the accuracy in detecting the spatial parameters of congestion while their implementation
is lower in cost since fewer sensors are required.

The limitations in the detection of congestion on motorways are bounded by the tech-
nologies used for measuring the behavior of mainstream traffic flow. The most commonly
used approach is based on fixed road sensors which are used to compute traffic parameters
for the segments of the motorway that they are covering. Those data are passed to the
rule-based algorithm which determines the motorway segments with congestion [14,15].
The cellular-probe-based motorway congestion detection approach relies on on-call wire-
less location technologies with signal transition data. The accuracy of those approaches
depends on related problems, such as the small sample size, frequent road tests, safety,
and privacy issues. Thus, the cellular activity features, the link pseudo speed, and link
probe activity are defined and calculated by a rule-based algorithm for the estimation of
the traffic congestion state [16]. The latest approach in congestion detection on motorways
concerning the used sensors involves CAVs in interactions with vehicle-to-infrastructure
communication environment. They generate floating car data which are used to detect
congestion in real-time [17,18]. The accuracy when detecting congestion in a spatial context
is heavily dependent on the percentage and distribution of CAVs in motorway networks.
Due to CAVs’ communication capabilities to send real-time position and speed data, CAVs
can be used as moving VSL actuators in the control loop [3]. These data were aggregated to
estimate the traffic state at a fixed position on an urban motorway by applying the Speed
Transition Matrices (STMs) to determine the congestion severity. The main drawbacks of
the proposed STM methodology lie in the fixed measuring position on an urban motorway
and the large amount of computational resources needed to construct the STMs, calculate
the congestion probability, and estimate the environment states.

Previously analyzed VSL control approaches applied in mixed traffic flow environ-
ments considered the state space based on the occupancy rates reported by the loop
detectors mounted on fixed positions [19], with the loop detectors placed on four measured
mainstream lanes [20], while in [21], traffic data collected using loop detectors included
local speed, occupancy, and traffic flow data, which were used to transmit the environment
state to the fuzzy controller that computes speed limits. In [12], traffic states were obtained
at the initial position of each cell by collecting traffic information such as the number of
vehicles, vehicle speed, and density of the cell, and the inflow of vehicles was calculated.
If the inflow was less than the bottleneck capacity, no control was taken; otherwise, the
VSL was activated, and the speed limit was displayed on the VMS. The downside of this
approach is using VMSs in a fixed position on an observed motorway. In a recent paper [22],
the authors designed a PID-based VSL controller to mitigate the negative effect of the shock
wave forming on a motorway using speed and position data from CAVs as the input to the
controller. The downside of this approach is the assumption of the formation of only one
bottleneck alongside the observed motorway. In [23], the VSL input traffic state prediction
was based on the data collected by loop detectors during the observed time interval, while
in [13], the traffic state was calculated based on data from 10 loop detectors equally spaced
by 1 km on the observed motorway segment. The traffic states in [24] were based on the
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density and average speed of HDVs and AVs in each lane for five observed segments and
the outflow at the bottleneck area. The main problems for such traffic state measurements
are based on the fixed positions of loop detectors and the predetermined observed segment
positions and lengths.

The application of intelligent control methods in mixed traffic flows includes a lane-
level adaptive speed control method [25]. The proposed approach uses traffic state esti-
mation based on the traffic density measured per lane and applied the VSL control to one
CAV in each lane to harmonize the traffic. The control approach considers the influence of
the random mixing of CAVs and HDVs. The downside of the approach proposed in [25] is
based on the known fixed position of a congested area, without considering the detection
of possible multiple congested areas. In [26], an optimal differential VSL control strategy in
a mixed traffic flow environment for freeway off-ramp bottlenecks was developed. The pro-
posed optimal differential VSL control method was developed to implement varying speed
limits for individual lanes, incorporating a multi-objective approach near the off-ramp. A
comprehensive approach to managing traffic flow in the merging area of highways was
introduced in [27], integrating CAVs’ active lane change technology with conventional VSL
and RM strategies. Traffic state estimation of the mainline and on-ramp traffic flow was
performed by using an upgraded cell transmission model, while the genetic algorithm was
used to compute the optimal speed limit of mainline traffic flow, the number of mainline
vehicles changing lanes, and RM control to maximize the traffic flow in the merging area.
This method only considers the merging area control. In [28], a framework that devises an
integrated action of several control strategies such as RM, lane changing control for CAVs
and lane changing recommendations for HDVs, VSL control for CAVs, and VSL recom-
mendations for HDVs with minimal safety gap control measures for lane changing and
merging maneuvers was proposed. The proposed method considers three fixed-position
VSL zones for VSL and VSL recommendations for HDVs and does not consider the dynamic
positioning of VSL zones.

In this paper, a centralized agent-based approach for QL-VSL control is developed
by utilizing real-time data sent and received from CAVs. The novelty of the proposed
approach is the use of real-time data collected from CAVs to detect multiple congested areas
and determine the length of each congested area as an input state to QL-VSL alongside
the whole observed urban motorway, as well as calculating the speed limits and speed
limit zone placements imposed on CAVs without the need for physical road sensors and
VMSs. Mixed traffic flow scenarios containing HDVs and varying CAV penetration rates
are analyzed in a synthetic urban motorway model. The shared data are assumed to be
transmitted and received by Road Side Units (RSUs) and CAVs equipped with an On-Board
Unit (OBU). For the purpose of this paper, the data loss and communication delay are
ignored. CAVs also act as actuators to the QL-VSL, which sends speed limit data to each
CAV. Therefore, CAVs are utilized as moving sensors and actuators. Using CAVs as moving
sensors discards the need for hardware traffic detection, such as induction loops, and the
usage of CAVs as actuators discards the need for VMSs. Furthermore, congested areas
can be identified more accurately and on a larger scale whilst obtaining real-time data on
the positions and lengths of all detected congested areas in the observed urban motorway
segment. An in-depth explanation of the congestion detection based traffic state estimation
on an urban motorway is provided in Section 3.2.

3. Spatial-Temporal Variable Speed Limit Based on Q-Learning and
Congestion Detection

This section describes the methodology of the proposed dynamic spatial-temporal
VSL based on QL and congestion detection.

3.1. Q-Learning and Spatial-Temporal Variable Speed Limit

The QL algorithm is based on the premise of storing and updating each of the state–
action pair’s Q-values in each iteration. The knowledge retained in the Q-matrix is updated
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by providing feedback by a positive or a negative reward for a selected action a in a
particular state s. The longer the QL algorithm runs, the more the Q-values converge to the
best possible value for each state–action pair. The highest Q-value is acquired when the
optimal action within a specific environment state is selected. The Q-value Q∗ is revised
after every successful action selection, based on [29]:

Q∗(st, at) := (1− α)Q(st, at) + α(rt + γ max
a′∈A

Q(st+1, a′)), (1)

where the current Q-value is defined as Q(st, at) and is calculated for the specific state–
action combination (st, at) at the control time step t. The significance of future rewards in
the subsequent state is determined by the discount factor, denoted as γ. The assessment
of the action taken at time t, denoted as at, depends on the reward rt obtained in state st.
Additionally, st+1 represents the subsequent state in the environment, while α signifies
the learning rate responsible for controlling the rate at which QL aggregates updated
information and revises its Q-values.

The primary objective addressed when using QL is optimizing the speed limit selection
within the framework of the VSL traffic control strategy to enhance the traffic flow and alle-
viate congestion. The decision-making process conforms to a Markovian Decision Process,
where the agent computes speed limits, as described in prior research papers [11,30,31]. At
each control timestamp t, the agent takes actions that lead to feedback based on changes
in the environment state, determined by a well-defined reward function. In this context,
the agent selects an action at, a speed limit value chosen from a discrete set of choices
A = {60, 70, 80, 90, 100, 110, 130} km/h within the current state of the environment st.
Notably, a constraint is imposed, limiting speed limit changes between consecutive control
time steps to a maximum range of ±30 km/h, ensuring adherence with regulations and
facilitating smooth transitions in speed limits to avoid abrupt speed changes. The updating
of the learning rate α was performed based on [32]:

α(s,a) =

(
1

1 + nv(s,a)

)u

+ c, (2)

where the frequency of visits to each state–action combination is denoted as nv(s,a) and
is measured before the learning rate α is updated. In this research, a gradual reduction
in α was employed in order to address non-deterministic traffic patterns. This approach
aims to mitigate uncertainties while facilitating the convergence towards optimal Q-values
for every state–action combination according to previous research presented in [32]. To
maintain ongoing learning over numerous traffic simulation epochs and to retain the
learning capability, this is facilitated by the introduction of a constant parameter c, which
remains fixed at 0.1. The parameter u was set to 0.8, according to the sensitivity analysis
previously performed in [32].

To accommodate the integration of the mapping of speed limits and the position
of speed limit zones as applicable action pairs, the modified QL algorithm is expressed
as follows:

Q∗(st, [a, z]t) := (1− α)Q(st, [a, z]t) + α(st ,[a,z]t)(rt + γ max
[a,z]′∈A

Q(st+1, [a, z]′t+1)), (3)

where the selected speed limit zone position is denoted as z. In this variant of the QL
algorithm, the decisions regarding the speed limit zone position z implemented upstream
of the congested area on the urban motorway are also made by the agent. This represents an
enhancement over conventional methods, which typically only compute speed limit values.
The [a, z] matrix encompasses all available actions, consisting of speed limit a selection
and speed limit zone z selection from the set of available speed limit actions A and a set
of speed limit zone positions Z = {0, 50, 100, 150, 200} m before the detected congested
segment, with each speed limit zone z having a fixed length of 500 m.
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In [32], a sensitivity analysis was employed to assess the significance of future traffic
environment states on the agent learning process. Additionally, the parameter γ was
set to a specific value of 0.9, as referenced in [32]. The proportions of exploration and
exploitation during the learning process was determined using the ε-greedy policy. This
policy involves the probability of selecting random speed limit actions denoted as a and
speed limit zone positions denoted as z for a given state s, drawing from the available
sets of actions A and positions Z. Particularly, when the ε value is set to a notably high
level, the likelihood of random actions a and z will be high. This ε-greedy policy with
the dynamic ε value adjustments approach plays a crucial role in optimizing the learning
agent’s performance [32]. The ε value was adjusted as follows:

ε =

{
1, if n ≤ 300

0.98
1+(e(n−500))0.02 + 0.05, if n > 300

, (4)

where, in the context of the ongoing simulation, denoted as n, the calculation of the Q-value
for a given state–action pair involves the parameter ε, which is designed to promote a
higher probability of exploration at the beginning of the learning process. To achieve this
objective, ε is set to 1 during the initial 300 simulation epochs, ensuring the guaranteed
selection of random actions. To diminish the likelihood of selecting actions randomly over
time, a systematic reduction is applied to the parameter ε within the range of simulations
from the 300th to the 800th simulation epoch, ultimately stabilizing at a fixed value of 0.05.
The ε value is stabilized to 0.05 in the later stages of learning to allow the agent to adapt to
possible changes in the traffic behavior. The computation of rewards for the QL algorithm
was rooted in the objective of reducing the TTS across the entire observed urban motorway.
Consequently, this reward structure incentivized the algorithm to mitigate congestion
effects and prevent their occurrence. Consequently, it tends to reduce the overall TTS by
targeting the most problematic congested area segments on the observed urban motorway.

3.2. Congestion Detection

The proposed approach is based on aggregated real-time data collected from CAVs in
a determined control time step ∆t, in this case, 5 min. Relevant vehicle data include the
vehicle position on the given edge ei and the corresponding vehicle speed vj. After each
time interval ∆t, the mean speed vei for every motorway edge e is calculated according to

vei =
∑nveh

x=1 vx

nveh
, (5)

where nveh represents the number of vehicles on an edge i. The calculated mean speed for
every edge is then used to calculate the changes in speeds between three consecutive edges.
This is conducted by calculating the gradient gei for every mean speed vei on an edge ei
according to

gei =
vei+1 − vei−1

2
. (6)

The calculated gradient value provides information about sudden mean speed changes
between consecutive edges. If the value of gei on an edge ei is ≤−0.65, where the edge ei is
considered to be the starting edge of a congestion area. The gradient value −0.65 is chosen
as a threshold value, since it represents a mean deceleration value of 1.3 m/s2, which is
the mean deceleration value for HDVs driving with speeds above 80 km/h according
to the study conducted in [33]. This value is, therefore, sufficient to conclude that the
speed is declining unusually and, thus, a bottleneck is forming. All detected starting edges
of a congestion area are stored in an array Cs for each control time step ∆t. The end of
the congested area is then found by searching for the gradient value ≥0.5 from the edge
where the congestion started to form. The threshold gradient value of 0.5 corresponds to a
mean acceleration value of 1 m/s2 for HDVs driving with speeds ranging from 40 km/h to
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70 km/h when they start to accelerate, based on research conducted in [33] and is, therefore,
chosen as a threshold value to determine the end of the congested area. The traffic state
is then calculated by the number of congested edges between the starting and ending
congestion edges. All calculated traffic states are stored in an array Ds for each control time
step ∆t. If the number of congested edges exceeds 20, then the traffic state is considered to
be 20 for the most severe cases of congestion, corresponding to congestion of longer than
1 km on the observed urban motorway. The overlapping of congested areas is prevented
by looking at whether start points of two consecutive congested areas are further apart
than 16 consecutive edges totaling 800 m to ensure that the CD-QL-DPVSL agent can be
placed between the two congested areas. If the start points of the congested areas are closer
than 16 consecutive edges totaling 800 m, they are combined into one larger congested area,
beginning from the start of the upstream congested area and ending with the end of the
downstream congested area. This method of detecting congestion is very useful, since it
can detect the existence of multiple congested areas on the observed urban motorway.

When all congested areas have been detected, the proposed CD-QL-DPVSL agent
is then placed directly before each of the congested area starting edges. Furthermore,
this also improves the learning of the CD-QL-DPVSL agent, since it learns on multiple
motorway segments under varying traffic conditions on the observed urban motorway
simultaneously in a control time step ∆t. The pseudocode for the proposed CD-QL-DPVSL
control approach is given in Algorithm 1.

Algorithm 1 CD-QL-DPVSL
Define: S, A, Z, R
Initialize: Q(s, [a, z]) = 0 ∀s ∈ S, a ∈ A, z ∈ Z
For each epoch do:

For each control time step, do:
Initialize: Cs, Ds as empty arrays of integers
For each edge i do:

Calculate vi using Equation (5)
Calculate gi using Equation (6)

End for
For each edge i do:

if gi ≤ −0.65 :
edge i = congested area start
append i in Cs
For each edge j starting from i do:

if gj > 0.5 :
Calculate state s = j− i
if s > 20 :

s = 20
End if
append s in Ds
i = j
break

End if
End for

End if
End for
For each state from Ds and congested area, start from Cs do:

Choose a, z using selection policy (ε-greedy)
Execute a, z
Observe r, s′
Update α using Equation (2)
Update Q(s, a) using Equation (3)

End for
Update ε using Equation (4)

End for
End for

4. Simulation Framework

The evaluation of the proposed CD-QL-DPVSL control approach was conducted using
a synthetic motorway model, which was previously introduced in our prior paper [3].
This model, depicted in Figure 2, should be noted as being unscaled compared to the
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original model. Within this model, there are two on-ramps denoted as r1 and r2 and one
off-ramp designated as s1, all of which are depicted in Figure 2. The on-ramps and off-ramp
include acceleration and deceleration lanes, each measuring 250 m in length, and the main
section of the model has no vertical slopes. The model is subdivided into 160 segmented
edges, denoted as ei, with each segment measuring 50 m in length. Figure 2 shows the
case of two detected congested areas near two on-ramps. The CD-QL-DPVSL agent is
placed before each of the congested areas, as described in Section 3. The simulations were
executed utilizing the microscopic traffic simulator known as Simulation of Urban MObility
(SUMO) [34]. The CD-QL-DPVSL control approach was externally integrated into SUMO
via the TraCI interface through a Python script. This interface facilitated the retrieval of
essential traffic data and enabled real-time control of the simulation, including dynamic
adjustment of the speed limit values and positions of speed limit zones. Each simulated
scenario represented a two-hour time frame, spanning 24 control time steps. To simulate
the increased peak hour traffic demand, the traffic demand pattern depicted in Figure 3
was replicated.

Figure 2. Simulation model configuration. Adapted with permission from Ref. [3]. 2023, Filip Vrbanić.

Figure 3. Traffic demand on the mainstream and on-ramps during the simulation. Reprinted with
permission from Ref. [3]. 2023, Filip Vrbanić.
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Traffic parameters were collected in each one-second time frame throughout every
control time step ∆t, which lasted for 5 min, and then the mean values were calculated.
These measured traffic parameters encompassed the density (ρ), quantified in veh/km/ln,
speed (v), expressed in km/h, and MTT, quantified in seconds. Furthermore, the TTS was
computed in veh·h and was aggregated for the entire simulated motorway. In contrast,
measurements of ρ and v were specifically taken in the observed merging area of the
second on-ramp, as depicted in Figure 2. Conversely, the MTT was solely calculated for
the mainstream flow of traffic, excluding the on- and off-ramps from consideration.

The SUMO microscopic traffic simulator was utilized to establish car-following models
and vehicle class parameters for both CAVs and HDVs, as previously applied in prior
research [3,35]. The default Krauss car-following model was used for both HDVs and
CAVs [36]. It is worth noting that CAVs were assumed to exhibit reduced time headways,
decreased driver imperfections, and a higher propensity of adhering to imposed speed
limits when compared to HDVs.

Due to the absence of publicly accessible real-world data for CAVs, which are chal-
lenging to obtain through direct measurements in practical experiments, certain parameter
values were predefined. Specifically, the parameter representing driving imperfections (σ)
was assigned a value of 0.7 for HDVs and 0 for CAVs. A value of 0 implies flawless driving
behavior, while lower σ values indicate more strict acceleration and deceleration actions.
The parameter SpeedDev, which signifies the permissible deviance from the posted speed
limit, was configured as 0.2 for HDVs and 0.05 for CAVs. The lane speed limit multiplier
(SpeedFactor) remained at 1 for both CAVs and HDVs, as both lanes adhered to an identical
speed limit. The minimum desired headway time parameter (τ), derived from the net time
gap between the rear of the leading vehicle and the front of the following vehicle, was
established at 1.1 for HDVs and 0.5 for CAVs. It is worth noting that lower τ values have
been demonstrated to improve the traffic flow [8,37].

Furthermore, the impact analysis of CAVs with varying levels of automation, char-
acterized by the σ and τ values, indicated that increasing the CAV penetration rate with
lower σ and τ values enhanced the operational capacity of the road network. This resulted
in higher ρc values on individual roads [37]. In fact, when transitioning from no CAVs
to a 100% CAV penetration rate in mixed traffic flow, the ρc value increased by nearly
48%, as demonstrated in a previous simulation study [37]. The evaluation of the proposed
CD-QL-DPVSL method encompassed six distinct simulation scenarios, each characterized
by varying CAV penetration rates, spanning from 10% to 100%.

5. Results and Discussion

To assess the effectiveness of the proposed CD-QL-DPVSL control approach, its per-
formance was compared against the following other control approaches, namely STM-
QL-VSL1 and STM-QL-VSL2, STM-QL-DVSL [3], RB-VSL, and the no-control scenario.
The CD-QL-DPVSL control policy in each distinct scenario underwent training through
10,000 simulation epochs for each mixed traffic flow scenario.

Simulations for the scenario without any control employed a constant speed limit of
130 km/h. The implementation of the RB-VSL control approach was based upon prior
research efforts [32], following the principles of the Highway Capacity Manual (HCM)
LoS [38]. The fundamental difference between RB-VSL and CD-QL-DPVSL resides in their
methodologies for VSL control. RB-VSL relies on a traditional approach to post speed limits
imposed on all vehicles using VMS, whereas CD-QL-DPVSL leverages CAVs that serve as
moving VSL actuators and sensors.

The STM-QL-VSL1 and STM-QL-VSL2 control approaches employ predetermined
positions for speed limit zones. The STM-QL-VSL1 control approach computes and posts
speed limits within a single predetermined speed limit zone closest to the observed merging
area shown in Figure 2. Conversely, the STM-QL-VSL2 control approach computes and
posts speed limits in two adjacent speed limit zones nearest to the observed merging area



Machines 2023, 11, 1058 11 of 20

shown in Figure 2. Further details on the configuration of these two control approaches
can be found in our referenced prior paper [3].

In contrast, the STM-QL-DVSL control approach, as described and analyzed in [3],
employs the dynamic speed limit zone positioning of one VSL zone closest to the ob-
served merging area shown in Figure 2 and does not rely on a predetermined VSL zone
location. The key distinction between the proposed CD-QL-DPVSL and STM-QL-DVSL
control approaches, as presented in this paper, is that the control approach introduced here
dynamically identifies all congested areas on an entire analyzed motorway and selects
the appropriate speed limit zone positions and speed limit accordingly. Therefore, this
work represents a natural extension of our previous research efforts to create a completely
dynamic VSL that primarily includes the detection of congested areas and subsequently
includes the setup and application of the needed VSL control to alleviate the detected
congestion. Table 1 demonstrates the fundamental distinctions between CD-QL-DPVSL
and all other evaluated control approaches. In summary, the key enhancement of the
CD-QL-DPVSL control approach lies in its ability to identify multiple congested areas
across the entire motorway and determine speed limits and speed limit zone positions for
each identified congested area.

Table 1. Comparison of the analyzed control approaches.

Control Approach Traffic State Estimation Actions

No control - -

RB-VSL Fixed measurement in the
observed merging area Speed limit

STM-QL-VSL1
Dynamic measurement in the

observed merging area

Speed limit for a single
fixed-speed limit

zone position

STM-QL-VSL2
Dynamic measurement in the

observed merging area

Speed limit for two fixed,
adjacent speed limit

zone positions

STM-QL-DVSL Dynamic measurement in the
observed merging area

Speed limit and speed limit
zone position

CD-QL-DPVSL Dynamic spatial measurement
of multiple congested areas

Speed limits and speed limit
zone positions for all

congested areas

The outcomes for all examined traffic scenarios are detailed in Table 2. These findings
originate from a chosen representative simulation, which exemplifies the average outcome
observed over the final 500 simulation epochs for every mixed traffic flow scenario. Ac-
cording to the findings, CD-QL-DPVSL consistently demonstrated a better performance
compared to all other control strategies in every simulated scenario. This advantage was
particularly pronounced in its ability to reduce both TTS and MTT throughout the whole
simulated urban motorway.

In contrast, the RB-VSL algorithm demonstrated limited effectiveness and, in some
cases, even underperformed when compared to the no-control case. The exception was
seen for scenario 2, where predefined speed limit control rules based on HCM LoS density
thresholds managed to improve MoEs compared to the no-control case.

STM-QL-VSL1 and STM-QL-VSL2 exhibited more significant improvements at lower
CAV penetration rates, with their efficacy gradually diminishing at scenarios with higher
CAV penetration rates. On the other hand, the STM-QL-DVSL control approach demon-
strated the ability to enhance MoEs more prominently at lower penetration rates. This
enhancement can be primarily attributed to the advanced driving capabilities of CAVs
when compared to HDVs, coupled with the utilization of microscopic-level traffic state
measurements (with each CAV acting as a mobile sensor). Nonetheless, as the quantity of
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CAVs within the mixed traffic flow grew, the advantageous impacts of the STM-QL-DVSL
control approach gradually diminished.

The CD-QL-DPVSL approach exhibited a superior performance consistently across all
examined scenarios with varying CAV penetration rates. Notably, it demonstrated notable
enhancements in traffic MoEs in the 100% CAV penetration rate scenario, a distinction not
observed in the performance of the other control approaches being compared.

Table 2. Obtained performance levels for defined scenarios with different CAV penetration rates [3].

Scenario

Results Improvement

Motorway Observed Motorway Observed
Segment Merging Area Segment Merging Area

Number CAV Penetration Control TTS MTT Mean v Mean ρ TTS MTT Mean v Mean ρ
Rate Strategy [veh·h] [s] [km/h] [veh/km/ln] [%] [%] [%] [%]

1

No control 713.0 373.3 61.5 36.9 - - - -

RB-VSL 717.4 375.6 62.3 36.5 −0.6 −0.6 1.3 1.1

10%
STM-QL-VSL1 702.4 366.5 62.8 35.3 1.5 1.8 2.1 4.3

STM-QL-VSL2 712.2 372.2 61.4 36.9 0.1 0.3 -0.2 0.0

STM-QL-DVSL 691.6 360.6 64.2 34.8 3.0 3.4 4.4 5.7

CD-QL-DPVSL 671.1 352.2 66.9 32.5 5.9 5.6 8.8 11.9

2

No control 664.4 340.5 75.1 29.5 - - - -

RB-VSL 649.3 333.0 75.7 29.2 2.3 2.2 0.8 0.7

30%
STM-QL-VSL1 642.8 330.3 76.7 27.9 3.3 3.0 2.1 5.4

STM-QL-VSL2 635.8 328.2 77.9 27.4 4.3 3.6 3.7 7.1

STM-QL-DVSL 628.3 324.6 79.5 26.2 5.4 4.7 5.9 11.2

CD-QL-DPVSL 613.8 319.5 82.2 23.6 7.6 6.2 9.4 20.0

3

No control 628.1 315.2 81.0 27.3 - - - -

RB-VSL 627.4 315.5 81.3 26.6 0.1 −0.1 0.4 2.6

50%
STM-QL-VSL1 618.6 311.7 83.0 25.3 1.5 1.1 2.5 7.3

STM-QL-VSL2 620.7 313.0 83.3 25.3 1.2 0.7 2.8 7.3

STM-QL-DVSL 609.9 309.4 85.7 24.1 2.9 1.8 5.8 11.7

CD-QL-DPVSL 594.6 305.4 84.2 25.4 5.3 3.1 3.9 7.0

4

No control 548.4 278.6 95.4 19 - - - -

RB-VSL 565.1 284.7 92.7 21.5 −3.0 −2.2 −2.8 −13.2

70%
STM-QL-VSL1 542.6 276.7 96.3 18.3 1.1 0.7 0.9 3.7

STM-QL-VSL2 548.9 279.1 95.4 19.2 −0.1 −0.2 0.0 −1.1

STM-QL-DVSL 546.5 279 95.9 19.4 0.4 −0.1 0.5 −2.1

CD-QL-DPVSL 535.8 278.6 96.6 18.8 2.3 0.0 1.3 1.0

5

No control 489.2 254.2 103.4 16.8 - - - -

RB-VSL 506.5 259.2 100.2 18.9 −3.5 −2.0 −3.1 −12.5

90%
STM-QL-VSL1 488.5 253.7 103.4 16.4 0.1 0.2 0.0 2.4

STM-QL-VSL2 489.2 253.8 103.6 16.2 0.0 0.2 0.2 3.6

STM-QL-DVSL 486.4 252.9 104.2 15.9 0.6 0.5 0.8 5.4

CD-QL-DPVSL 473.2 255.1 107.0 14.7 3.3 −0.3 2.7 12.5

6

No control 412.9 230.7 112.5 12.3 - - - -

RB-VSL 412.9 230.7 112.5 12.3 0.0 0.0 0.0 0.0

100%
STM-QL-VSL1 412.9 230.7 112.5 12.3 0.0 0.0 0.0 0.0

STM-QL-VSL2 412.9 230.7 112.5 12.3 0.0 0.0 0.0 0.0

STM-QL-DVSL 412.9 230.7 112.5 12.3 0.0 0.0 0.0 0.0

CD-QL-DPVSL 412.2 233.0 113.6 11.8 0.2 −1.0 1.0 4.0

The results obtained for scenarios 1 and 2, which include measures such as ρc, vc, and
TTS, are displayed in Figure 4. These outcomes originate from an exemplary simulation
based on an average outcome among the final 500 simulation epochs after a series of
10, 000 simulation epochs for each simulated scenario. In scenario 1, the application of
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CD-QL-DPVSL demonstrated an improvement of 5.9% in the TTS compared to the no-
control case. Conversely, the utilization of RB-VSL resulted in a slight 0.6% increase in
the TTS. For scenario 1, the implementations of STM-QL-VSL1, STM-QL-VSL2, and STM-
QL-DVSL only brought about marginal improvements in the TTS of 1.5%, 0.1%, and 3.0%,
respectively, compared to the no-control case. In scenario 2, the proposed CD-QL-DPVSL
strategy was proven to be better than the rest of the control methods, leading to a significant
7.6% reduction in the TTS. In contrast, RB-VSL, STM-QL-VSL1, STM-QL-VSL2, and STM-
QL-DVSL resulted in reductions in the TTS by 2.3%, 3.3%, 4.3%, and 5.4%, respectively.
All Reinforcement-Learning-based VSL control approaches exhibited improvements in
the mean ρ, mean v, and MTT compared to both the no-control and RB-VSL control
cases. Between these control approaches, CD-QL-DPVSL exhibited the most promising
performance. Using real-time CAV data for the state estimation and their ability to act as
VSL actuators on an urban motorway, the proposed CD-QL-DPVSL approach significantly
improved several traffic MoEs (primarily TTS and MTT). These enhancements measured
in scenario 1 imply that, even with a low CAV penetration rate of 10%, the evaluated
control approach has access to enough input data to estimate the traffic flow state, detect
congestion areas, and make the best-computed decisions about speed limit zone placement
and the speed limits imposed on CAVs.

A more precise representation of traffic flow conditions enables the agent to learn
actions in multiple congested areas concurrently, without requiring knowledge of the
specific congestion causes. This enhancement significantly boosts the performance of the
proposed CD-QL-DPVSL. Furthermore, the findings suggest that the impact of the growing
CAV penetration rate on the performance of the evaluated control approaches becomes
less prominent after the penetration rate of CAVs surpasses 30%. Consequently, it can be
concluded that the performance of the proposed CD-QL-DPVSL control approach does not
increase linearly with the increasing penetration rate of CAVs.

Once sufficient input data from CAVs become obtainable, the quality of the state
estimation becomes adequate to ensure that the operating conditions of the modeled VSL
control approach are effective. In this study, even at a modest CAV penetration rate of 10%,
the state estimation quality was proven to be sufficient to ensure the proper functioning of
the VSL control approach. As a result, the improvements observed were more evident in
scenarios 1 and 2, where the low penetration rate of CAVs supplied enough data to estimate
traffic states, enabling the detection of congestion areas and informed decisions regarding
speed limit zone placement and speed limits imposed on CAVs.

The incorporation of CAVs into the mixed traffic flow impacted the metrics of TTS
and MTT, as illustrated in Figure 5. The reduced TTS can be primarily attributed to the
more strict and precise driving characteristics of CAVs, which are distinguished by reduced
vehicle headways and quicker reaction times. On the other hand, as the CAV penetration
rate increased from 10% to 100%, the MTT improvements started to diminish and even
worsen in the high-CAV-penetration-rate scenarios 5 and 6. This is mainly attributed to
the goal of the control approach to optimize the TT in the congested areas, resulting in
a reduced MTT for mainstream vehicles but allowing on-ramp vehicles to merge more
easily and, therefore, travel faster. As a result, the TTS improved, but the MTT was slightly
worse in those scenarios.

Comparing the observed merging area mean ρ and mean v, the CD-QL-DPVSL per-
formed better than the second-best STM-QL-DVSL control approach in all scenarios, except
scenario 3. This performance is attributed to the proposed CD-QL-DPVSL objective, which
optimizes the entire analyzed urban motorway by placing multiple CD-QL-DPVSL agents
where it detects congested areas. Previously analyzed control approaches only measure
traffic states in the observed merging area and post speed limits accordingly. Consequently,
they have the objective of improving the observed merging area MoEs, while CD-QL-
DPVSL has the objective of improving MoEs in every congested area at each control time
step ∆t. Therefore, the objective is not strictly set to the only observed merging area. This
increased performance is due to the more refined control of the entire observed urban
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motorway, again by detecting multiple congested areas and placing speed limit zones
accordingly. This causes the inflow of vehicles to the observed merging area to be more
controlled and harmonized, resulting in a better performance in terms of the mean ρ and
mean v. Figure 6 illustrates a space–time diagram of the mean speeds for the CD-QL-
DPVSL control approach (Figure 6(a–f)) and a space–time diagram of the mean speeds for
the STM-QL-DVSL control approach (Figure 6(g–l)) on all motorway segments during the
simulation in scenarios with CAV penetration rates spanning from 10% to 100%. The green
rectangles represent the VSL zone positions during the simulation. One key observation
is that, in all scenarios, speeds were more harmonized, while the speeds in the observed
merging area were generally higher for the CD-QL-DPVSL control case compared to the
second-best STM-QL-DVSL control case. Furthermore, the congestion in the observed
merging area for the CD-QL-DPVSL control case is less pronounced compared to that in
the STM-QL-DVSL control case.

Figure 4. Obtained TTS, speeds, and densities for scenario 1 (a–c) and scenario 2 (d–f).

On the other hand, the improved CD-QL-DPVSL performance in scenarios 5 and 6 is
mainly attributed to the more refined control, again by detecting multiple congested areas
and placing speed limit zones accordingly. In scenario 5, the proposed CD-QL-DPVSL
outperformed the second-best STM-QL-DVSL control approach in terms of the measured
TTS, mean ρ, and mean v by 2.7%, 2.7%, and 7.5%, respectively. On the other hand, the
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proposed CD-QL-DPVSL worsened the MTT by 0.9% compared to the second-best STM-
QL-DVSL control approach, mainly due to the goal of optimizing the TT in the detected
congested areas, which resulted in a worsened MTT for the mainstream vehicles, but
ensured that the on-ramp vehicles merged more easily and therefore traveled faster. In
scenario 6, all other compared VSL approaches did not affect the traffic flow, while CD-QL-
DPVSL managed to improve the TTS, MTT, mean ρ, and mean v slightly by 0.2%, 0.9%,
1.0%, and 4.9%, respectively.

Figure 5. Changes in the TTS (a) and MTT (b) for different CAV penetration rates.

The choice of suitable speed limit zone positions and the specific speed limits adopted
in scenario 1 and scenario 2 are visualized in Figure 7. A noteworthy observation when
contrasting the placement of the speed limit zones between these two scenarios is that, as
the presence of CAVs increases, the CD-QL-DPVSL control approach appears to identify
congested areas more effectively. Consequently, it deploys multiple speed limit zones along
the observed urban motorway. This phenomenon can be ascribed to the increased volume of
vehicles contributing data to detect congested areas and calculate traffic states. Furthermore,
the CD-QL-DPVSL control approach opted for reduced speed limits in scenario 2 when
compared to scenario 1. With more input data in scenario 2, the control approach detected
more congested areas and placed more speed limit zones with generally lower speed
limits. Furthermore, speed limit zones near the observed merging area were placed further
downstream between the 50th and 100th minute of the simulation in scenario 2, while in
scenario 1, the speed limit zones were placed further upstream of the observed merging
area. This concludes that the congested area detected near the observed merging area is
more severe in scenario 1.
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Figure 6. Space–time diagram of the mean CAV speeds on segments and speed limit zone placements
for the CD-QL-DPVSL (a–f) and STM-QL-DVSL (g–l) control approaches in various CAV penetration
rate scenarios.



Machines 2023, 11, 1058 17 of 20

Figure 7. Space–time diagram of the computed speed limits and speed limit zone positions for
scenario 1 (a) and scenario 2 (b).

6. Conclusions

The primary aim of this study was to propose a VSL control approach that utilizes
CAVs as mobile actuators and sensors. The proposed CD-QL-DPVSL control approach
derives traffic state estimates based on gradient values calculated for mean speeds along
each segment of the observed urban motorway. The research also investigates how the
detection of the congested areas and the dynamic positioning of CD-QL-DPVSL zones
affect traffic flow. The most important conclusions of this paper are as follows:

• The gradient values calculated for the mean speeds collected from CAVs along each
segment of the observed urban motorway can be used to estimate congested areas;

• Real-time CAV data can be used to estimate traffic states, improving the performance
of the VSL control approach;

• The detection of congested areas and the dynamic positioning of CD-QL-DPVSL zones
outperforms other analyzed control approaches for all measured MoEs.

To evaluate the algorithm’s performance under various mixed traffic flow scenarios,
a simulation framework was employed. The results indicate that the CD-QL-DPVSL
control approach performs better for all MoEs in contrast to other control approaches
and the no-control scenario. The most notable improvements with the CD-QL-DPVSL
control approach are observed in the scenario with a 30% penetration rate for the CAVs.
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Remarkably, enhancements in all MoEs were evident even at low CAV numbers, including
scenarios with 10% and 30% penetration rates for CAVs. The CD-QL-DPVSL control
approach effectively identifies congested areas, primarily near on-ramps and off-ramps,
and adjusts speed limit zones accordingly. Notably, in a scenario with a 100% penetration
rate for CAVs, CD-QL-DPVSL succeeded in enhancing MoEs, whereas all other analyzed
control approaches had no impact on the measured MoEs.

The scope of this paper is limited to personal vehicles, including both CAVs and
HDVs, within a mixed traffic flow at different penetration rates. Moreover, CAVs must
adhere to the imposed speed limits within designated speed limit zones, in accordance
with the limitations imposed by the specific physical attributes governing the maximum
acceleration capabilities of each CAV. The simulation model has no physical VMSs, as it
becomes obsolete in mixed traffic flows containing CAVs, and virtual VMSs are placed at the
start of each of the applicable VSL zones. In this paper, the CD-QL-DPVSL control approach
operates under the assumption of error-free data transmission and zero information latency
between CAVs and the control agent.

Future research endeavors will examine the multi-agent approach to the CD-QL-
DPVSL control approach, incorporating the dynamic lengths of VSL zones. Additionally,
the analysis will be extended to scenarios with increased traffic demand to understand
the influence of CAV penetration rates on the VSL requirements. The influence of adding
heavy-duty vehicles and buses into the mixed traffic flow will also be examined. Dynamic
adjustments to the length of VSL zones will be investigated as an extended action selection
set and a potential avenue for future research. Moreover, the study will examine urban
motorways with more intricate geometric designs, including vertical slopes.
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Abbreviations
The following abbreviations are used in this manuscript:

AV Autonomous Vehicle
CAV Connected Autonomous Vehicle
CD-QL-DPVSL Congestion Detection Q-Learning Dynamic Position Variable Speed Limit
HDV Human-Driven Vehicle
HCM Highway Capacity Manual
ITS Intelligent Transportation Systems
LoS Level of Service
MoE Measure of Effectiveness
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MTT Mean Travel Time
OBU On-Board Unit
QL Q-Learning
RB-VSL Rule-Based Variable Speed Limit
RL Reinforcement Learning
RM Ramp Metering
RSU Road Side Unit
STM Speed Transition Matrix
STM-QL-VSL Speed-Transition-Matrices-based Q-Learning Variable Speed Limit
STM-QL-DVSL Speed-Transition-Matrices-based Q-Learning Dynamic Variable Speed Limit
SUMO Simulation of Urban Mobility
TTS Total Time Spent
TT Travel Time
TTT Total Travel Time
VMS Variable Message Sign
VSL Variable Speed Limit
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