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Abstract: An observer is proposed for a trapezoidal brushless DC motor composed of a cascade
connection of a reduced-order Luenberger observer and a high-order sliding mode (HOSM) differ-
entiator. This configuration can estimate the angular velocity and reconstruct the load torque, key
elements for the control of this type of motor, under the mild assumption that the variable load torque
and its k-th time derivatives are bounded. The proposed observer was tested on an experimental test
bench based on Texas Instruments (TI) High Voltage Digital Motor Control (HVMTR Kit) using a
Delfino F28379D micro controller. The results show that the velocity and load torque can be properly
estimated, despite the presence of noise in the current measurements.

Keywords: brushless DC motors; observer; state estimation; disturbance observers

1. Introduction

The Brushless Direct Current motor (BLDC) has become a good choice for variable
speed drives, given its simple structure, ruggedness, low cost, high efficiency, and good
speed versus torque characteristics, all of them well suited to demanding applications, such
as electric vehicles, as indicated in [1,2]. In these applications, it is important to estimate or
identify the disturbance, commonly the load torque, to compensate its effect. Most of the
recent articles in the study of load torque estimation for electric motors are designed for
permanent magnet synchronous motors (PMSM). An example is the work [3], where an
improved observer for a surface permanent magnet machine is proposed. This observer
utilizes injection-based self-sensing for position, velocity, and disturbance torque estimation.
Another example is [4], where the viscous friction coefficient and the moment of inertia
are obtained by an extended sliding mode observer and the load torque is identified by
a Luenberger observer working in parallel, and results are validated using simulations.
The article [5] proposes a double extended sliding-mode observer-based synchronous
estimation method of total inertia and load torque for a PMSM in a roller grinding machine,
and simulations and experiments are presented to validate the proposed method. More
recently, in the article [6] two observers are used, an adaptive-gain super-twisting load
torque observer and a variable-learning-rate Adaline inertia observer, with performance
validated via simulations and experiments.

In the case of the trapezoidal BLDC motor load estimation, the articles [7,8] present
a Generalized Proportional Integral Observer (GPIO) designed to compensate variable
lumped disturbances, such as load torque and friction terms. The work [9] studies an
Electro–mechanical Actuator (EMA) for aerospace applications which includes a trape-
zoidal BLDC. The proposed method estimates the residual torque, defined as the sum of all
the friction and viscous torques, from data acquired during the functioning of the EMA;
simulations are used to validate this scheme. Using another approach, in the work [10]
the torque is estimated from real-time data using five distinct Adaptive-Network Based
Fuzzy Inference Systems. Finally, the article [11] presents a comparison between Kalman
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and Extended Kalman Filters algorithms for torque estimation; simulations are also used to
validate the proposed approach.

For commutation purposes, BLDC motors are commonly equipped with Hall effect
sensors to provide a discrete measure of the angular position, used for back electromotive
force versus angular position calculations. These sensors are widely used because of their
small volume, light weight and low cost compared with traditional optical or capacitive en-
coders. Their disadvantage is that after processing the sensor signals, the obtained position
is discrete, and its resolution depends on the number of installed sensors. Furthermore,
the error in the position may vary depending on whether they are mounted externally
or internally, as was found in [12]. To solve this problem, various solutions have been
proposed. For example, in [13], a technique is proposed based on a novel dual observer for
the estimation of speed and rotor position, which utilizes low-resolution position sensors.
In [14] an observer is designed to reconstruct the electrical angular position, while in [15],
on the basis of a position error compensator, an online advanced angle adjustment method
using input voltage and input current is proposed. More recently, ref. [16] estimates the
position using the calculated rotational rotor’s speed and elapsed time.

Therefore, the problem to solve in this paper is the estimation of the torque load,
calculated as a variable lumped disturbance, in the rotor shaft of a trapezoidal BLDC
motor that uses Hall effect sensors. For this purpose, an interconnected observer [17,18] is
applied to the BLDC motor disturbance estimation problem. The observer is formed by
the cascade connection of a reduced-order Luenberger observer and a high-order sliding
mode (HOSM) differentiator, which reconstructs the disturbance by using the motor model.
Unlike several of the works mentioned above, the load torque in this technique may not
be constant or a predefined function, but a time-varying function, provided that both the
function and its k-th derivatives are bounded. In addition, to complement the cascade
observer implementation, a position estimation algorithm (PEA) is designed to obtain the
angular position from the Hall effect sensors signals.

To prove the validity of the scheme, first, simulations are performed that can calibrate
the experimental platform and give an idea of the expected results. Then, experiments are
executed on a commercial platform, composed of a motor equipped with Hall sensors, a
power driver, a DC motor, and a standard micro-controller. The main contributions of this
article are as follows:

• The proposed method can estimate time-varying load torque, provided that this torque
and its k-th derivatives are bounded;

• A position estimation algorithm (PEA) is included to use with Hall effect sensor signals
when needed;

• The proposed scheme can guarantee a bounded error in the disturbance estimation,
the size of which depends on the measurement noise and sampling time.

The paper is organized as follows. Section 2 recalls the mathematical model of the
BLDC motor and the observability definitions needed for the observer design. Section 3
presents the interconnected observer design. Section 4 includes a numerical validation
of the observer. Section 5 presents the test bench, the PEA, and the experimental results.
Finally, Section 6 contains the conclusions of this work.

2. Preliminaries

This section presents the brushless DC motor model and the basic notions needed for
the observer design.

2.1. Brushless DC Motor Model

The brushless DC motor under study has three sets of windings on the inside surface
of the stator connected in a Y configuration and a permanent magnet rotor. The magnetic
fields in this motor are uniformly distributed, which implies that when the motor is at
constant speed, the back electromotive force has a trapezoidal shape. It it is assumed that
the stator phases are balanced.
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As described in [19], a mathematical model for a balanced 3–phases BLDC motor is

H
di
dt

= epE(θ)ω− Ri + u (1)

dθ

dt
= ω (2)

J
dω

dt
= −øpET(θ)i− dω− τL(t) , (3)

where i ∈ R3 is the vector of stator currents, with ij; j = 1, 2, 3 the components of i, that
under the assumption of balanced phases imply that i1 + i2 + i3 = 0 , u ∈ R3 is the vector
of voltage inputs, ω ∈ R is the angular velocity, ep ∈ R is the back electromotive force
constant, øp ∈ R is the torque constant, R ∈ R3×3 is a diagonal matrix accounting for the
winding resistances, τL ∈ R is the load torque, J ∈ R is the rotor inertia, d ∈ R is the viscous
friction coefficient, and the inductance matrix H is defined as

H =

Ls + M 0 0
0 Ls + M 0
0 0 Ls + M

 , (4)

where Ls ∈ R is the stator winding inductance and M ∈ R is the stator winding mutual
inductance. The vector of back electromotive force terms, E(θ), is defined as

E(θ) =


e(θ)

e
(

θ − 2π

3

)
e
(

θ − 4π

3

)
 , (5)

with e(θ) given by

e(θ) =



6θ

π
if− π/6 ≤ θ ≤ π/6

1 if π/6 ≤ θ ≤ 5π/6
−6(θ − π)

π
if 5π/6 ≤ θ ≤ 7π/6

−1 if 7π/6 ≤ θ ≤ 11π/6

, (6)

with e
(

θ − 2π

3

)
and e

(
θ − 4π

3

)
defined using Equation (6) with the respective

phase shift.

2.2. Observability Definitions

In order to present the observability definitions for Linear Time Invariant (LTI) sys-
tems with unknown inputs that will be used to define the main result, the next system
is presented

ẋ = Ax + Bu + Dw (7)

y = Cx ,

where x ∈ Rn is the state vector, u ∈ Rp is the input vector, y ∈ Rq is the output vector,
w ∈ R1 is the unknown input, and A, B, C, D have adequate dimensions. The observability
conditions, as defined by [20], for system (7) are summarized in the next definitions.
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Definition 1 ([20]). System (7) is called (strongly) observable if for any initial state x(0) and any
input w(t) 6= 0, ∀ t > 0 y(t) ≡ 0 implies that x = 0.

Definition 2 ([21]). The relative degree of system (7) with respect to the unknown input w(t) is
the number r such that CAjD = 0 , j = 1, 2, ...r− 2 , CAr−1D 6= 0.

Based on these definitions, [17] establishes a relation between strong observability
and relative degree with respect to the unknown input to facilitate the perturbed LTI
characterization and observer design as follows:

Lemma 1 ([17]). System (7) is strong observable if and only if the system output has relative degree
n with respect to the unknown input w(t).

2.3. Mechanical System

To design the cascade observer, two assumptions are required:

Assumption 1. The time constant of the mechanical subsystem is much larger than the time constant
of the electrical subsystem, i.e., only Equations (2) and (3) are considered for the observer design.

Assumption 2. The stator current vector, i, and the angular position, θ are measured.

From the first assumption, define the state vector x = [x1 x2]
T = [θ ω]T , thus

Equations (2) and (3) can be written as

ẋ1 = x2,

ẋ2 = −d
J

x2 + u− w, (8)

y = x1,

where the state dimension is n = 2 and u = 1
J øpET(x1)i. From the second assumption, u is

a known input and w is the unknown input. Finally, defining matrices A, B, C and D as

A =

[
0 1
0 − d

J

]
B =

[
0
1

]
C =

[
1 0

]
D =

[
0
1

]
, (9)

system (8) can be written as system (7). Consequently, system (8) from Definitions 3 and 4
is strongly observable and moreover the following fact can be stated:

Fact 1. System (8) has relative degree r = n with respect to the unknown input w.

3. Main Result

This section presents the design of the unknown input observer to recover the load
torque that consists of two parts.

3.1. Luenberger Observer

Given that system (8) is strongly observable, it is possible to design a Luenberger
observer for this system of form

v̇1 = v2 + l1(y− v1) (10)

v̇2 = −d
J

v2 + u + l2(y− v1),
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with gains l1 > 0 and l2 > 0 and vi the estimated states for xi, i = 1, 2. Defining the
estimation error vector ẽT = [ẽ1, ẽ2]

T = [x1 − v1, x2 − v2]
T the estimation error dynamics

can be written as
˙̃e = (A− LC)ẽ + Dw , (11)

where vector gain L is designed so matrix (A− LC) is Hurwitz. Up to this point, the
state estimates will be confined to a region around the origin. In order to analyze the
convergence properties of the linear observer, propose a Lyapunov candidate function
V = ẽTPe ẽ with Pe = PT

e > 0, the solution of Lyapunov’s algebraic equation

Pe(A− LC) + (A− LC)TPe = −Qe . (12)

with Qe = QT
e > 0.

Consequently, the first time derivative of V is

V̇ = −ẽTPe((A− LC)ẽ + Dw) + ((A− LC)ẽ + Dw)TPe ẽ, (13)

Considering (12), Equation (13) can be rewritten as

V̇ = −ẽTQe ẽ + 2(Dw)TPe ẽ. (14)

Therefore, V̇ is negative definite for any estimation error that satisfies the following
inequality:

‖ẽ‖ > 2K+‖DTPe‖
‖Qe‖

. (15)

where K+ is an upper bound on the unknown input signal w, to be described below.
This inequality means that this Luenberger observer can only ensure the convergence

of the estimation error to a bounded region around the origin. Note, in addition, that both
ẽ and ˙̃e remain bounded.

3.2. HOSM Differentiator

For the HOSM design, it is necessary to impose one additional assumption on the
unknown input:

Assumption 3 ([18]). The unknown input w is a bounded Lebesgue function with |w(t)| ≤
K+; t ≥ 0, with k derivatives bounded also by K+

1 , i.e., the k-th derivative has a Lipschitz constant
no larger than K+

1 .

To guarantee the finite time estimation of the states and the unknown input, a high-
order differentiator is defined as

ż1 = −α3L1/3
f ‖z1 − ē1‖2/3 sign(z1 − ē1) + z2

ż2 = −α2L1/2
f ‖z2 − ż1‖1/2 sign(z2 − ż1) + z3 (16)

ż3 = −α1L f sign(z3 − ż2) ,

where ē1 = v1− y, gains α3, α2 and α1 are chosen so the states z1, z2 and z3 tend in finite time to
ē1, ˙̄e1 and ¨̄e1 with L f large enough, in particular L f > |κ|K+ with κ = (CAn−1D). Considering
ē1 = (Cv− y) and that ẽ and its derivative remain uniformly bounded, then so will ē1 and
its time derivatives. Now consider the functions σ1 = z1 − ē1, σ2 = z2 − ˙̄e1, σ3 = z1 − ¨̄e1
and a Lebesgue-measurable noise function η ∈ [−ε, ε], then any solution of (16) satisfies the
following differential inclusion, if L f is large enough:
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σ̇1 ∈ α3L1/3
f |σ1 + η| 23 sign(σ1 + η) + σ2

σ̇2 ∈ α2L1/2
f |σ2 − σ̇1|

1
2 sign(σ2 − σ̇1) + σ3 (17)

σ̇3 ∈ α1L f sign(σ3 − σ̇2) + [−L f , L f ],

The proof of the non-linear part of the estimation scheme is based on the following
lemma:

Lemma 2 ([17]). Suppose α3 > 1 and α2, α1 are selected large enough. Therefore, after a finite time
of the transient process, any solution of (17) satisfies the inequalities |σi| ≤ µiL

(i−1)/k
f ε(k−i+1)/k

with i = 1, 2, ..., k where µi > 1 are some positive constants that depend only on the selection of αi.

If the assumptions are met, then L f > sup|Cz− y(t)|(3), will ensure finite-time con-
vergence of (16) and establishes the equalities z1 = ē1, z2 = ˙̄e1, z3 = ¨̄e1 with ε = 0.

3.3. Estimated States and Load Torque Reconstruction

To obtain the expression of the state estimates, the next variable’s inversion is used

x̂1 = v1 − z1

x̂2 = v2 + l1 ē1 − z2, (18)

where x̂1 and x̂2 are the estimates of states x1 and x2, respectively, obtained after the use of
the HOSM differentiatior.

On the other hand, from [17] the estimation ŵ of the unknown input estimation w is
defined as

ŵ =
1
κ
(zn+1 − (a1z1 + a2z2 + ... + an zn)) , (19)

where the coefficients a1, ...an are obtained using the polynomial

sn − an sn−1 − ...− a1 = (−1)n det(A− LC− sI) , (20)

with I the identity matrix of n dimension. Therefore, the disturbance term, τ̂L, can be
reconstructed using the states of the differentiator (16) as

τ̂L = −J(z3 − (a1z1 + a2z2)) . (21)

4. Simulations

In this section, a numerical validation of the cascade observer is presented. Simula-
tions were carried out in Simulink-Matlab (R2022b Update 3) using the parameters of the
Anaheim BLDC BLY-344S-240V-3000 motor, which are listed in Table 1, that also include
several parameters that were derived from experimental data. In the case of the inertia and
viscous friction, they were determined by considering all the devices coupled to the BLDC
motor in the experimental platform, which is described in the experiments section.

For motor control, the field oriented control (FOC) technique was employed to regulate
both currents and speed, while the generation of PWM signals sent to the inverter was
achieved through the use of the Space Vector Modulation (SVM) technique. Figure 1 shows
the control and observer implementation.
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Figure 1. Block diagram of FOC, PEA, and cascade observer.

Table 1. BLDC motor parameters.

Parameter Value

Rated Voltage 240 [V]
Rated Torque 2.1 [N m]
Rated Power 600 [W]

Resistance 1.2 [Ω]
Inductance 0.00205 [mH]

Electric constant 0.40355 [V/rad/s]
Mechanical constant 0.65997 [Nm/A]

Inertia 0.00027948 [kgm2]
Viscous friction coefficient 0.0006738 [N m s]

The estimator gains were chosen in such a way that the matrix (A− LC) becomes
Hurwitz with L determined by solving an LQR problem, and the gain L f selected to be
sufficiently large to ensure that the estimation error converges to zero. In the simulation,
the specific gain values employed were: LT = [l1, l2]T = [1.0954, 0.4835]T and L f = 5000.
With the selection of this particular set of gains and utilizing Equations (21) and (20), the
expression for the estimated load torque τ̂L = −J(z3 − (−3.1246z1 − 3.50645z2)) is derived.

The sampling time of the observer and the current control was Ts = 0.05 [ms]. It
was also assumed that continuous measurement of the angular position and currents
was available.

To verify the observer’s performance, two tests are presented below. The first one
involves applying a variable load torque over time while the rotor is spinning at a constant
speed of 80 rad/s. In the second test, both the speed reference and the applied load torque
are time-varying. The error metric used to evaluate the results is the root-mean-square
error (RMSE), expressed as:

RMSE =

√
∑N

i=1(xi − x̂i)2

N
. (22)

Figure 2 illustrates the behavior of the estimated angular velocity ω̂, the simulated
velocity ω, and the velocity estimation error eω , while Figure 3 displays the estimated load
torque τ̂L, the simulated load torque τL, and the load torque estimation error eτ , for the
first test. Figure 4 shows the behavior of the estimated angular velocity ω̂ compared with
the simulated velocity ω and the velocity estimation error eω, and Figure 5 depicts the
estimated load torque τ̂L, the simulated load torque τL, and the load torque estimation
error eτ for the second test, where the velocity and the load torque are time-varying.
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Figure 2. Simulation results, test 1: estimated velocity ω̂ (−−) vs. velocity ω (−) and the velocity
estimation error eω (−).

Figure 3. Simulation results, test 1: estimated load torque τ̂L (−−) vs. load toque τL (−) and the load
torque estimation error eτ (−).

Figure 4. Simulation results, test 2: estimated velocity ω̂ (−−) vs. velocity ω (−) and the velocity
estimation error eω (−).
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Figure 5. Simulation results, test 2: estimated load torque τ̂L (−−) vs. load toque τL (−) and the load
torque estimation error eτ (−).

Table 2 displays the RMSE values obtained in the two tests. The error between the
estimated load torque and the actual load torque is attributed to the sampling period
with which the observer is executed, as well as to the noise present in the currents. How
these two factors impact the estimation of the states is analyzed in [17]. However, even
in the presence of noise, the observer reconstructs the states and the load torque with a
small error.

Table 2. RMS error values.

Test 1 eω = 0.046329
eτ = 0.0012986

Test 2 eω = 0.0411790
eτ = 0.0018641

5. Experimental Results

In this section, the experimental validation of the proposed estimator is presented.
First, the experimental platform used is described, as well as the algorithm employed to
calculate the angular position from the information provided by the Hall effect sensors.
Lastly, the experimental results are presented and analyzed.

5.1. Experimental Test Bench

The brushless DC motor utilized in this study was the BLY344S-240V-3000 model
from Anaheim Automation (Anaheim, CA, USA). Detailed parameters extracted from the
datasheet and experiments can be found in Table 1. This BLDC motor is equipped with
three Hall effect sensors positioned at 120 electrical degrees apart on the rear side of the
motor. The Hall effect sensors work with additional magnets mounted on the rotor shaft.
These sensors are essential for a rough calculation of position and speed and are commonly
used to ensure the correct commutation of the motor phases during each transition of these
sensors, which occurs every 60 electrical degrees.

Furthermore, the absolute capacitive encoder AMT333S-V from CUI Devices (Tualatin,
OR, USA), which offers configurable resolution ranging from 48 to 4096 pulses per rev-
olution, was attached to the motor shaft. This encoder was used to calculate the rotor’s
speed and compare it with the speed estimated by the proposed observer. In this case, the
encoder was configured with a resolution of 2000 PPR.

The inverter employed for this setup was the high-voltage digital motor control and
power factor correction kit (TMDSHVMTRPFCKIT) from Texas Instruments (TI) (Dallas,
TX, USA). This board includes a 3-phase inverter stage designed to control motors with
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voltages up to 450 [V] DC, and an AC rectifier stage for generating the DC bus voltage
required by the inverter, and it is compatible with a wide variety of Texas Instruments
microcontroller cards. The current measurement was carried out on the low side of the
inverter using shunt resistors for each stator phase.

The control card used was based on the F28379D Delfino microcontroller also from TI,
which is a 32-bit floating-point microcontroller unit with dual CPUs optimized for real-time
control applications. Similar to the simulation, the method employed for motor control
was field-oriented control. The gains of the speed PI controller were tuned, taking into
consideration all the devices coupled to the BLDC motor. This was done with the aim of
minimizing the impact of the load torque on speed tracking, as the main objective was
to demonstrate the operation of the observer. The sampling time at which the cascade
observer and current control were executed was the same as in the simulations, namely
Ts = 0.05 [ms]. A direct current motor was employed, connected to the shaft of the BLDC
motor as a variable load torque. This was achieved by following a current trajectory that
generated a load torque similar to that in the simulations. To measure the torque generated
by this motor, the FSH01996 torque sensor from Futek was mounted between the DC motor
and the BLDC motor. This sensor can measure up to 5 Nm of load torque and was used
to compare the estimated torque from the observer with the measured value of the sensor.
Figure 6 provides an illustration of the experimental setup.

Figure 6. Experimental test bench.

5.2. Position Estimation Algorithm-PEA

While it is possible to use an encoder to obtain angular position, it was decided to
utilize Hall effect sensor signals for this purpose, as BLDC motors typically come equipped
with them. However, it should be noted that three Hall effect sensors only provide new
information at intervals of π

3 [rad] electrical degrees, whereas the proposed observer
requires continuous measurement of angular position. To address this limitation, a position
estimation algorithm (PEA) was developed, making use of the state of the Hall effect
sensors and the elapsed time between transitions.

In summary, the PEA operates as a saturated integrator with a variable initial condition.

The integrator takes the speed estimate, ωHall =
∆θ

∆t
, where ∆θ = π

3 [rad], and ∆t represents
the time elapsed between transitions of the Hall effect sensors, as its input. Whenever one
of these transitions occurs, the integrator is reset, and a new initial condition is determined.
The initial condition of the integrator depends on the current state of the Hall effect sensors
and the rotation sequence. Figure 7 illustrates the relationship between the state of the Hall
effect sensors and the position for a constant speed motion, where 0 and 1 in the upper
right part of the figure indicate whether a given Hall effect sensor is active or not. The
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numbers 5, 4, 2, 6, 3, 1 at the bottom show the switching state considering the three Hall
effect sensors, related to the electrical angular position indicated on the right that goes from
0 to 2π, and Figure 8 shows a simple diagram of the position estimation algorithm.

Figure 7. Relationship between Hall sensor signals and wrapped position θelec (−). With Hall effect
sensor signal A (−), Hall effect sensor signal B (−) and Hall effect sensor signal C (−).

Figure 8. Position estimation algorithm block diagram.

5.3. Disturbance Estimation

Similar to the simulations, two experiments were conducted on the platform. One
involved maintaining a constant speed with a variable load torque, where the load torque
applied to the BLDC motor was controlled using the DC motor current control. In the
second experiment, both speed and load torque varied over time. The estimator gains used
in these tests were the same as those used in the simulations. Figure 9 shows the electrical
position calculated with PEA and the measured position with the encoder.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0

2

4

6

Figure 9. Experimental results with flywheel: estimated electrical position with PEA θ̂e (−−) vs.
encoder position θenc (−).

In the first test the speed reference was the same as in the first simulation, that is,
constant speed and time-varying load torque. Figure 10 illustrates the behavior of the
estimated angular velocity ω̂,the measured velocity ω, and the velocity estimation error eω ,
with Figure 11 showing the estimated load torque τ̂L, the measured load torque τL and the
load torque estimation error eτ .
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In the second test, the speed reference and the load torquewere both time-varying,
similar to the second simulation. Figure 12 illustrates the behavior of the estimated angular
velocity ω̂ compared with the measured velocity ω and the velocity estimation error eω.
Figure 13 depicts the estimated load torque τ̂L, the measured load torque τL, and the load
torque estimation error eτ .

Figure 10. Experimental results, test 1: estimated velocity ω̂ (−−) vs. measured velocity ω (−) and
the velocity estimation error eω (−).

Figure 11. Experimental results, test 1: estimated load torque τ̂L (−−) vs. measured load toque τL (−)
and the load torque estimation error eτ (−).

Figure 12. Experimental results, test 2: estimated velocity ω̂ (−−) vs. measured velocity ω (−) and
the velocity estimation error eω (−).
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Figure 13. Experimental results, test 2: estimated load torque τ̂L (−−) vs. measured load toque τL (−)
and the load torque estimation error eτ (−).

5.4. Results Discussion

Comparing the experimental results with the numerical simulations, it is clear to
see that the signals are much noisier than in the simulations; however, the RMS errors
displayed in Table 3 are relatively small despite this in both tests. The size of the RMS
velocity estimation error is the most affected and it is clearly influenced by the inclusion
in the experiments of the PEA, that was not used in the simulations; the size of the RMS
torque estimation error was also impacted by noise, although the increase on the error size
was modest in this case.

Table 3. RMS error values.

Test 1 eω = 0.3256
eτ = 0.0030

Test 2 eω = 0.3946
eτ = 0.0043

The effect of obtaining the position through the PEA, which relies on Hall effect
sensors, in the estimation of the angular velocity is larger at low velocities. This is evident
in Figure 14, which illustrates the relative velocity estimation error across a wide range
of velocities. This relative error remains below 2% for velocities exceeding 30 [rad/s]. In
contrast, Figure 15 displays the relative velocity estimation error using the position obtained
through the encoder mounted on the platform, rather than the one obtained through the
PEA. It is clear to see that the estimation error remains small even at low speeds. Therefore,
the suggested cascade observer, when utilizing the PEA, can effectively estimate torque
and velocity within a range of medium to high velocities, and for low-velocity applications,
it is recommended to use an encoder in conjunction with the proposed observer.
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Figure 13. Experimental results, test 2: estimated load torque τ̂L (−−) vs. measured load toque τL (−)
and the load torque estimation error eτ (−).

5.4. Results Discussion

Comparing the experimental results with the numerical simulations, it is clear to
see that the signals are much noisier than in the simulations; however, the RMS errors
displayed in Table 3 are relatively small despite this in both tests. The size of the RMS
velocity estimation error is the most affected and it is clearly influenced by the inclusion
in the experiments of the PEA, that was not used in the simulations; the size of the RMS
torque estimation error was also impacted by noise, although the increase on the error size
was modest in this case.

Table 3. RMS error values.

Test 1 eω = 0.3256
eτ = 0.0030

Test 2 eω = 0.3946
eτ = 0.0043

The effect of obtaining the position through the PEA, which relies on Hall effect
sensors, in the estimation of the angular velocity is larger at low velocities. This is evident
in Figure 14, which illustrates the relative velocity estimation error across a wide range
of velocities. This relative error remains below 2% for velocities exceeding 30 [rad/s]. In
contrast, Figure 15 displays the relative velocity estimation error using the position obtained
through the encoder mounted on the platform, rather than the one obtained through the
PEA. It is clear to see that the estimation error remains small even at low speeds. Therefore,
the suggested cascade observer, when utilizing the PEA, can effectively estimate torque
and velocity within a range of medium to high velocities, and for low-velocity applications,
it is recommended to use an encoder in conjunction with the proposed observer.

Figure 14. Relative estimation error with respect to angular velocity using Hall effect sensors.Figure 14. Relative estimation error with respect to angular velocity using Hall effect sensors.
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Figure 15. Relative estimation error with respect to angular velocity using encoder.

6. Conclusions

A load torque observer for a BLDC motor was proposed in this article. It was demon-
strated through simulations and experiments that the observer can estimate the load torque
and velocity with relatively small errors, under the reasonable assumption that the variable
torque and its time derivatives are bounded, even in the presence of noise in the current
measurements. In addition to this, it was possible to estimate the state variables and the
load torque. For medium to high speeds it is possible to use the position information from
the Hall effect sensors, that are typically mounted on these type of motors. For low speeds,
the inclusion of an encoder is recommended. In all cases, the use of expensive torque
sensors for high-performance control applications can be avoided.
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