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Abstract: The deep learning diagnosis of aircraft engine-bearing faults enables cost-effective predic-
tive maintenance while playing an important role in increasing the safety, reliability, and efficiency of
aircraft operations. Because of highly dynamic and harsh operating conditions of this system, such
modeling is challenging due to data complexity and drift, making it difficult to reveal failure patterns.
As a result, the objective of this study is dual. To begin, a highly structured data preprocessing
strategy ranging from extraction, denoising, outlier removal, scaling, and balancing is provided
to solve data complexity that resides specifically in outliers, noise, and data imbalance problems.
Gap statistics under k-means clustering are used to evaluate preprocessing results, providing a
quantitative estimate of the ideal number of clusters and thereby enhancing data representations.
This is the first time, to the best of authors’ knowledge, that such a criterion has been employed for
an important step in a preliminary ground truth validation in supervised learning. Furthermore, to
tackle data drift issues, long-short term memory (LSTM) adaptive learning features are used and
subjected to a learning parameter improvement method utilizing recursive weights initialization
(RWI) across several rounds. The strength of such methodology can be seen by application to realistic,
extremely new, complex, and dynamic data collected from a real test-bench. Cross validation of a
single LSTM layer model with only 10 neurons shows its ability to enhance classification performance
by 7.7508% over state-of-the-art results, obtaining a classification accuracy of 92.03 ± 0.0849%, which
is an exceptional performance in such a benchmark.

Keywords: aircraft engine; deep learning; fault diagnosis; inter-shaft bearing; long-short term
memory; vibration; weights initialization

1. Introduction

Deep learning for the fault diagnosis of aircraft engine bearing is a promising field
with immense potential. By using the computational capabilities of deep learning, the way
of faults detection and identification for such systems are changed, thus facilitating the ex-
ploration of a vast amount of data with remarkable accuracy and speed. Deep learning can
ultimately improve aircraft safety, reliability, and efficiency by enabling proactive mainte-
nance and preventing catastrophic failures [1]. Deep learning for such a particular problem,
however, faces challenges related to both data complexity and drift. Data complexity occurs
when systems generate large volumes of measurements while immersed in a higher level of
distortions including an imbalanced number of patterns driven with higher level of noise
and outliers, making it difficult for the deep learning models to capture underlying data
and their relationships. The impact of data complexity on deep learning models can be
mitigated by implementing adequate data preprocessing to address those challenges [2].
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On the other hand, data drift refers to continuous change in statistical properties over time.
In fault diagnosis, this can occur due to various factors such as variations in operating
conditions, equipment degradation, or changes in the underlying dynamics of the system.
Accordingly, poor generalization performance may result if the deep learning model is not
adaptive. To this end, it is highly recommended to discuss recent advances in this topic,
supporting the necessity of the contributions proposed in this paper. Accordingly, this
section is dedicated to analyzing related works, uncovering research gaps, and presenting
the contributions of this paper while dictating the outlines of the entire paper.

1.1. Related Work Analysis and Research Gaps

Related research analysis in this section is carried out based on a significant criterion
in order to disclose legitimacy of the paper’s proposal (i.e., data preprocessing and RWI
adaptive deep learning), uncover research gaps, and demonstrate the necessity of proposed
contributions. This means that any reviewed work is expected to address data complexity
(e.g., feature extraction, outlier removal, denoising, balancing, and so on) as well as data
drift issues (e.g., adaptive learning). Furthermore, because this paper is based on a realistic
dataset generated from a real engine test-bench, discussing such an important aspect as
an additional analytical criterion would be of paramount importance in uncovering extra
gaps in research.

As a result, a set of recent works carried out on aeronautical bearing fault diagnosis
topic are selected. The selection procedures are limited to most recent papers published in
2023 in world-renowned databases. Search keywords include deep learning, fault diagnosis,
bearing, and aircraft engine. For example, the authors of [3] targeted the presence of noise,
class imbalance (i.e., data complexity), and data unavailability issues. This is achieved
by considering the use of a domain adaptation approach integrated, respectively, with a
meta-bi-classifier gradient divergence method. Their work focuses on improving learning
performance by focusing on both approximation and generalization processes and not on
data representation specifically as for deep learning. The mathematical formulation of their
proposal pays more attention to the learning process and gradient discrepancy while data
drift and adaptive learning do not receive much attention. In this case, feature extraction is
done automatically using a set of residual classifiers, and problems with class imbalance are
resolved through a particular weighting procedure. The authors have employed numerous
bearing datasets in order to validate their model. One of these datasets is an aeronautical
bearing dataset, which was produced using a test bench system [4]. In [5], the authors inves-
tigated a Grampian noise reduction convolutional neural network to deal with the problem
of noise presence and data complexity issues. Data complexity is targeted via automatic
feature extraction of convolutional filters. While involving the same dataset from [4], the
methodology does not discuss outlier detection and removal, data imbalance, data drift or
any other data preprocessing paths for reducing data complexity and improving its quality.
In [6], authors proposed a correlated feature distribution matching approach to serve as a
cross-domain fault diagnosis model. Adaptive learning rules are involved to make sure
that the model is up-to-date to any possible data change. Likewise, the same dataset used
by previous works is exploited in this case [4]. However, obtained results could suffer
from several drawbacks related to model generalizability which resulted due to not taking
into account resiliency against data drift problem. In [7], an approach combining succes-
sive variational mode decomposition and blind source separation based on slap swarm
optimization for bearing fault diagnosis is proposed. The study basically targets data com-
plexity from the power spectrum analysis perspective of improving the noise-to-ratio of
vibration signals. A similar dataset that is generally generated from a test-bench experiment
is involved in evaluating this methodology. Accordingly, this work is well-thought-out
less generalized considering analysis criteria proposed in this section. In [8], an interesting
work was carried out on a realistic test-bench aircraft engine. Adaptive learning features
of LSTM network are involved in the case. As a result, obtained conclusions are more
realistic than those of previously discussed works. Nevertheless, owing to the fact that the
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paper aims to discuss data generation process and experiment circumstances as a primary
goal, no additional tests are carried out in the context of aforementioned data complexity
criteria considering noise and outlier more specifically. This means that accordingly, Table 1
in this case is dedicated to a better illustration of important insights about research gaps
in state-of-the-art-literature while using previously discussed criterion to provide further
critical conclusion.

Table 1. A summary of related works according to the proposed criterion.

Refs.

Data Complexity

Data Drift Realistic
Test Bed?Feature

Extraction Denoising Outliers
Removing

Class
Balancing

[3] 3 3
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According to the previous analysis, the following research gaps can be listed.

1. None of the discussed works consider realistic datasets except for reference [8]. In-
stead, a test-bench is always used to generate these data. In terms of conclusions, the
results cannot be projected in real-world circumstances at this moment.

2. Only the works introduced in [6,8] consider the data drift problem. A significant
gap in data change research is created by biasing prediction algorithms toward new,
unseen data samples.

3. Outlier removals received no attention in this case. In fact, this ignores real operat-
ing conditions that always result in massive data distortions, leading to increasing
prediction uncertainties.

4. Other data complexity reduction issues related to feature extraction, noise removal,
and class imbalance, receive less reasonable attention, but there is undoubtedly a need
to consider such constraints since driven sequential data are always exposed to such
uncertainty under real-world operational conditions.

1.2. Contributions

The contributions of this paper are built on the previous analysis results addressing
specifically extracted research gaps. Accordingly, the contributions of this paper can be
highlighted as follows:

1. In an attempt to reach more realistic conclusions and generalize obtained results via
investigating new unseen samples, a realistic dataset of inter-shaft bearing faults is
used in this case [8]. This enables obtained further reliable conclusions compared to
ones obtained from non-realistic test-benches experiments in the state of the art by
exploring a further challenging feature space emulating real condition.

2. Real systems are usually subject to change either in physical properties (i.e., degrada-
tion) or in operating conditions. In this context, our work considers using adaptive
learning features of LSTM strengthened by root-mean-square propagation to improve
its adaptability and allow better generalization on upcoming data.

3. With the aim of improving data quality, a set of data preprocessing layers are well
constructed for this purpose. These layers integrate algorithms for future extraction,
outlier removal, denoising, scaling and class balancing with different types to analyze
and explore different data features and further improving its scatters representa-
tional quality.

4. The results of data preprocessing layers are made subject to final data quality as-
sessment layer. Such investigation is rendered available by involving Gap analysis
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under k-means clustering to identify the optimal number of clusters required to group
similar data points effectively. Gap analysis helps to assess clustering quality results
by comparing the within-cluster dispersion to that of data. The analysis provides in-
sights into determining the appropriate number of clusters, which aids to see whether
prepared data patterns could be distinguished or not by the supervised learning
algorithm since labels are already existing.

5. A further process of learning parameters initialization is given to the LSTM network in
a sort of collaborative learning from a series of best LSTM approximators recursively
in multiple rounds via RWI. This is expected to help in reaching better understanding
of data drift and allowing the LSTM network to capture better performances rather
than random parameter initialization.

1.3. Outlines

To guarantee that the introduced claims are clearly illustrated and proved, the roadmap
for this article comes in a well-organized structure with enough information to duplicate its
underlying findings, as follows. This paper consists of four different sections. In addition
to the introductory part of Section 1, Section 2 provides important information about the
dataset used in this work, test bench system, preprocessing methodologies and results.
Moreover, Section 3 is devoted to proposed methodology description, its application, its
results and its discussion. Finally, Section 4 concludes the work with the most pertinent
findings besides some future opportunities. It should be mentioned that concerning
different mathematical illustrations through the entire text, this paper focuses and limits
these illustrations only to introducing novel formulas proposed as main contributions. For
other well-known theoretical basics, we introduce a set of standard and original resources
to which interested reader can refer. This ensures providing a clear and effective content
centered on critical aspects of the work.

2. Materials

To better understand the data generation mechanism as well as preprocessing method-
ology proposed in this work, this section provides both description of the test-bench, data
collection and preprocessing in two distinct subsections. It is also worth mentioning that
the content of these subsections is limited to necessary details for understanding and
reproducing the experiment carried out in this work without delving into any additional
theoretical descriptions.

2.1. Data Description

A real test-bench system appearing in Figure 1 is used to generate data investigated
in this work. It contains a modified dual-spool aircraft engine with removed rotor blades,
combustion chamber, and certain accessory casings, installed in costume designed wagon
for displacement reasons. The modified aircraft engine is a dual-rotor system driven by
two drive motors for both lower pressure (LP) and higher pressure (HP) spools. The LP
motor rotates directly the LP spool while a gearbox is used to control speed of HP spool
rotation. The structure, including the LP, the HP compressors, in addition to LP and HP
turbines are retained. The main load-bearing casing, inter-shaft bearing and five support
bearings are also retained in the system. The test bed is supported by a lubricating system
ensuring smooth and effective running as in real conditions. The studied type of bearing in
this case is an inter-shaft bearing with 15 rolling elements, 30 mm in inner ring diameter,
65 mm in outer ring diameter, 55 mm in pitch circle diameter, 7.5 mm in rolling element
diameter, and a nominal pressure angle of 0◦ N.
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tion of two displacement sensors; (c–f) acceleration sensors (i.e., vibration); (g) lubricating system;
(h) laboratory protective shield holding surveillance cameras; (i) custom-designed wagon; and (j) ap-
proximate position of the inter-shaft bearings. Reproduced from: [8], ISTP: 2023, by making changes
related to denoising, improving quality, and labeling.

When collecting the dataset used in this work, a clearly defined procedure is followed
with five different tests, each of which is linked to specific experimental conditions for
both healthy and faulty bearings. These tests, which include parameters such as rotation
speed and speed ratio of LP and HP rotors, are referred to as “operating conditions” in this
work. Likewise, it is thought about “operating modes” as the normal and fault operating
behaviors of the bearings. Bearings fault modes are associated with artificial manipulations
of the bearing structure by involving cut length, depth and position as the main parameters.
Using installed displacement and acceleration sensors, these five operating condition tests
are used to determine 3 different operating mode categories—1 healthy and 2 faulty—(see
Figure 1). For unhealthy operating modes, artificial faults are created by a wire cutting
causing both inter ring and outer ring faults with different diameters and depths. The
process involves sophisticated, well-thought-out and planned assembly and disassembly
tasks, as clearly shown in Figures 8–12 from [8]. Accordingly, five sets (i.e., data1–data5)
are collected; in particular, 2 sets of healthy operating modes (i.e., data1 and data2), three
sets of faults modes (data3–data5) of inter-ring (depth = 0.5 mm, length = 0.5 mm), inner
ring (depth = 0.5 mm, length = 0.1 mm), and outer-ring (depth = 0.5 mm, length = 0.5 mm),
respectively. All subsets are collected with a sampling rate of 25,000 Hz and stored in a
form of 3D time series variable with dimensions of 450× 6 × 20,480 for data2 and data5,
and of 504× 6 × 20,480 for data1, data3 and data4.

Concerning LP and HP rotor speeds, each dataset (data1–data5) collected passing by
28 different speed groups, as reflected by curves of Figure 2, while the time separately taken
by each group was unrevealed. According to the information collected in the introductory
paper of the dataset, there are no specific details to explain these information, which
originally prescribed the rotor speed test plan (see Table 3 from [8]). To gain better insight,
the curves in Figure 2 were created using values from Table 3 from [8]. Figure 2 appears
to offer three different test scenarios. The first scenario belongs to group (0–6), where the
speed acceleration of the rotors was increased rapidly to reach about 3500 rpm for HP
rotor and 4200 rpm for LP rotor. In this case, the second scenario started from group (7–21)
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slightly reduces the speed acceleration compared to the previous one, while the maximum
obtained speed was 3000 rpm for the LP rotor and 5000 rpm for the HP rotor. In both
scenarios, the speed ratio, which refers to the ratio between LP rotor speed and the HP
rotor speed, remained constant. Afterwards, another similar scenario of group (22–28)
was carried out with different speed starting points for LP and HP rotors (300 rpm and
3600 rpm, respectively), but with a monotonically increasing speed ratio and constant LP
rotor speed. It is worth noting that no specific details about this particular change in speed
test plan were provided in the introductory paper. However, as far as we know, the purpose
of this plan was to ensure that the test was carried out under controlled conditions and that
the data collected were consistent and reliable for later analysis.
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Figure 2. Speed test groups for both LP and HP rotors for each of the five subsets.

The vibration signals illustrated in Figure 3 are the outcome of this complicated
data generation procedure. Figure 3 illustrates a sample waveform per relative time
corresponding to the first channel of vibrations measurements (refer to Figure 1c). It
also highlights essential statistical properties such as maximum and minimum values
(i.e., Min, Max), standard deviation (δ), and mean (µ). In this scenario, three distinct
operating modes were provided. The information of Figure 3 allows us to basically visualize
the degree of difficulties associated with recognizing distinct operating modes. The near-
random waveform presentation of the signals is plainly evident. The introductory study
gives additional support for this aspect, saying that properties of various operating modes
of the inter-shaft bearing cannot be easily detected from the frequency spectrum (see
Figure 17 from [8]). This is owing to the fact that that these signals include noise induced by
signal distortion during transmission and other frequency components. Due to the apparent
difficulties of the phenomena of the harmonic leakage of diagnostic states, frequency
analysis is not much useful in this case.
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ring fault, and outer ring fault operating modes, respectively.



Machines 2023, 11, 1089 7 of 16

2.2. Preprocessing Methodology

As previously indicated in the contributions’ subsection, the goal from a well-structured
preprocessing methodology is to reduce data complexity while trying to provide mean-
ingful representation to the feature space. This also includes the process making different
patterns distinguishable by the learning model via providing better and smoother conver-
gence of the loss function during supervised learning. The mission mainly is to uncover
the different operating modes (i.e., healthy and faulty with different types) from the very
complex feature space of sensors measurements under massive distortions. Accordingly,
our contribution in data preprocessing step is demonstrated by the flowchart diagram of
Figure 4. To easily understand different steps of the data preprocessing, Figure 4 introduces
them in the form of layers, where some of them could be repeated through the process.
The order of these layers is very important as it is defined based on authors expertise in
the field repeating different experiment several times with similar classification problems.
This subsection is therefore introducing these layers with required details and explanations
including a set of very important illustrative examples at the end.
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2.2.1. Data Uploading Layer

In this paper, data is uploaded chunk-by-chunk in a loop for each preprocessing step
using a sliding window according to specific set of parameters of window length, over-
lapping size, and uniform subsampling rate. These are adjustable parameters controlled
by results of the final layer related to gaps analysis. The parameters are considered useful
only when optimal number of scatters in prepared data is equal to 3. In this work, these
parameters are fixed to 2500, 20, and 0.8, respectively. These parameters are helpful in
studying correlation between different time-windows using an overlap while sampling rate
reduces data complexity in terms of dimensions and computational time for next layers.

2.2.2. Scaling Layer

The scaling layer consists of a set of algorithms dedicated to normalization, smoothing
and filtering. These techniques aim to improve the signals quality of all recorded channels
as a primary step of data preprocessing paving the way for next layers to further produce
better clarity, and usefulness of the signal. This is achieved by eliminating unwanted noise,
normalizing its scale, and reducing fluctuations or variations that may hinder analysis or
interpretation. The layer is built upon three main algorithms. First, a single-dimensional
third-order median moving filtering (MMF) with a fixed time moving window size is used
to replaces each sample of collected data in the vibration signals with the median value
of its neighboring samples, thus reducing effect of unwanted noise [9]. After filtering, a
second slice of smoothing-based moving average filtering (MAF) with fixed window length
is also used for purposes of enhancing signal quality and further reduction of noise [10].
Finally, a min-max normalization in the range [0, 1] was used to ensure that all features
contribute equally to the learning process and prevent any dominance of certain features
based on their original scale [11].

2.2.3. Feature Extraction Layer

The performance of the learning model in such classification problem may be influ-
enced by a number of statistical parameters of the input vibration signals. The mean,
variance, skewness, kurtosis, autocorrelation, amplitude distribution, and time-domain
statistical features are a few of these parameters. Therefore, it is significant to remember
that the precise effect of these statistical parameters on the performance of the learning
model may differ based on the features of the dataset and the particular classification
issue. To ascertain the most important parameters for a given task, a complete list of
15 time-frequency domain features is extracted per each time window (see Section 2.2.1).
This layer in fact, provides a way to transform raw signals or data into a more informative
and suitable representation for machine learning algorithms. It enables the models to
analyze temporal and spectral patterns, handle non-stationarity, and reduce dimensionality,
resulting in improved performance and better predictions. Introducing the math behind
these features specifically and their significance in terms of diagnostics studies is not the
main goal of this paper as they are well-familiar in state-of-the-art literature. However,
further mathematical details and an in-depth analysis of these features can be found in [12],
while these features are listed from 1 to 15 in Appendix A of the provided reference.

2.2.4. Denoising Layer

This work adopts the use of Wavelets with Cauchy priori and the Bayesian method in
denoising the extracted features from the non-stationary vibration signals of the second
preprocessing layer [13]. These techniques offer an effective way to remove noise from
signals while preserving the important features of the original signal. The combination
of wavelets, Cauchy priori, and the Bayesian method provides an effective approach for
denoising non-stationary vibration signals. These techniques allow for a better represen-
tation of the signal in both time and frequency domains, resulting in enhanced denoising
performance compared to traditional linear filtering methods and those presented early
in the scaling layer. It should be mentioned that there is possibility of the denoising layer
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to change data features scale by reducing amplitudes of harsh noise. Therefore, it will be
beneficial for the scaling layer to be reused in this stage to rescale data again.

2.2.5. Outlier Removal Layer

Outliers arising due to various reasons, such as sensor malfunctions, measurement
errors, or rare events can distort the statistical properties of vibration signals. Machine
learning algorithms heavily rely on these statistical properties for reliable learning and
predictions. By removing outliers, data can better represent the underlying distribution,
leading to more accurate fault diagnostics. Outliers can have a disproportionate impact on
the model training process. Machine learning algorithms, especially those based on distance
metrics or clustering, can be heavily influenced by the presence of outliers. Removing
these outliers helps in minimizing their influence and improves the overall robustness and
performance of the model. In this work, a list of outlier detection methods is involved in a
single layer. These methods can be classified into statistical, distance-based, density-based,
and cluster-based methods [14] including 8 different methods namely; median analysis,
mean analysis; quartiles analysis, Grubbs test, generalized extreme studentized deviate,
Mahalanobis distance, Euclidean distance, Minkowski distance. The variety of methods is
involved to make sure that outliers are reduced as much as possible from provided signals.
After that, another scaling layer is necessary to be added with the aim of adjusting features
scale again before next steps.

2.2.6. Class-Balancing Layer

Synthetic minority oversampling technique (SMOTE) is used in this work to address
the problem of imbalanced datasets. In fault diagnosis, there may be instances where the
number of samples in the minority class (faulty instances) is significantly lower than the
number of samples in the majority class (normal instances). This imbalance may result in
biased models that have poor performance in detecting faults. Further details background
of this method can be found in [15]. In the current preprocessing scheme and uploading
layer settings, a 130,011 × 15 matrix representing observations from the dataset where
the class proportions are equally distributed is obtained as a final dataset for training
and validation.

2.2.7. Clustering Evaluation Layer

This layer uses a Gap clustering metric to evaluate data quality resulted from all
preprocessing steps. Gap clustering evaluation can be used for data quality assessment by
measuring the quality of a dataset based on its cluster ability. This technique evaluates the
effectiveness of clustering algorithms in separating the data points into distinct clusters.
Gap clustering evaluation can be used for data quality assessment by selecting a clustering
algorithm, generating multiple clustering solutions, computing and comparing Gap statis-
tics, determining optimal number of clusters, and assessing data quality for supervised
learning. This process allows identifying patterns, validating assumptions, and gaining
insights about the dataset structure [16]. In this work, k-means method is involved as
primary step of evaluation in unsupervised learning process. Optimal number of clusters is
computed and compared to raw dataset scatters analysis results accordingly. Consequently,
if optimal number of clusters is the same as data classes (i.e., 3 clusters in the studied
dataset), the data preprocessing considered acceptable, otherwise the process should be
repeated with other data uploading parameters until reaching satisfactory results. I such
case, one might think that clustering algorithms such as k-means, with their ability to
uncover inherent structures in data, could suffice for fault diagnosis. However, the decision
to opt for LSTM in our study is driven by specific requirements of fault diagnosis tasks.
While clustering indeed provides valuable insights into the data structure and aids in initial
data quality assessment, it may not inherently improve data representations in a manner
conducive to the intricacies of fault diagnosis. LSTMs, on the other hand, are specifically
designed to capture complex temporal dependencies and sequential patterns within data.
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Their end-to-end learning capability, nonlinear pattern recognition, and effectiveness in
handling sequential information make them a more suitable choice for fault diagnosis tasks.
Therefore, the aim is to leverage both clustering, for initial data quality assessment, and
deep learning, particularly LSTM, for a more comprehensive approach to fault diagnosis.
This ensures not only the identification of clusters but also the learning and generalization
from intricate patterns present in fault scenarios.

2.3. Some Illustrative Examples

Table 2 presents a comprehensive summary of the calibrated parameters used in the
process for data quality enhancement.

Table 2. Parameters of data quality enhancement layers.

Layers Options

Upload raw-data • Time window length = 2500 samples;
• Overlap = 20 samples.

Scaling layer
• MMF span = 5 samples;
• MAF span = 3 samples;
• Min-max normalization interval = [0,1].

Feature extraction layer

• Number of features = 15 (i.e., 11 time-domain features and
4 frequency domain features;

• Time window length = 2500 samples;
• Overlap = 20 samples;

Denoising layer

• Wavelets type = orthogonal symlets;
• Denoising method = Empirical Bayes;
• Threshold rule = median threshold;
• Method of estimating variance of noise = highest-resolution

wavelet coefficient;
• Level of decompositions = log2 N; N is number of samples.

Outlier detection layer
• Detectors: median, mean, Grubbs, and quartiles;

Mahalanobis, Euclidean, Minkowski distances;
• Node samples = 50 samples;

Class-balancing layer • Method = SMOTE;
• Neighbors = 3.

Clustering evaluation layer • Clusters = k-means
• Optimal number of clusters = 3;

Using preprocessing parameters indicated in Table 2, Figure 5 is obtained. Figure 5a,b
represent data scatters of raw-data and prepared data, respectively. These scatters are obtained
from a 3-dimensional transformation of the 15 extracted features using t-distribution stochastic
neighbor embedding (t-SNE) that is commonly used for visualizing high-dimensional data
in a lower-dimensional space [17]. In the meantime, Figure 5c represents Gaps statis-
tics obtained using k-means technique for number of scatters equal to 3. By comparing
Figure 5a,b, data scatters can be distinguished in the prepared version better than scatters
in raw-data. This is supported by agglomeration seen in samples of different classes. Ac-
cordingly, these samples are therefore aggregated and located next to each other, which
improves patterns separability thanks to the proposed data preprocessing methodology.
When it comes to classification process, such enhanced separability is extremely beneficial
as it boosts learning models performances. Contrariwise, raw-data scatters are showcased
in a sort of single spot difficult to be distinguished from each other. So, contributions of the
preprocessing can be clearly seen in such case. This is the reason for using a simple deep
learning architect of 10 neurons single LSTM layer model in next sections. Furthermore,
for maximum number clusters equal to 3, Figure 5c shows the scattering ability of the
dataset to three distinguished groups (i.e., highest Gap value is given to optimal number of
clusters). This means the presence of 3 distinguishable types of patterns in the dataset. In
the meanwhile, the raw-data elucidates that optimal number of data scatters is 1 due to
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complexity and nature of samples merged with outliers and noise. This further clarifies
importance and accuracy of data preprocessing scheme.
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3. Methods and Findings

Preprocessed data according to proposed methodology in Section 2 is fed to the pro-
posed RWI-LSTM approach for further deep learning modeling and evaluation process.
In order to make the proposed approach as well as obtained conclusion clearer, this sec-
tion is subdivided into two subsections where proposed method, application results and
discussion are emphasized clearly and separately.

3.1. Methods

The proposed RWI method for LSTM improvement is dictated by the diagram of
Figure 6. The math behind LSTM and its contribution in adaptive learning is well-known
in the literature, as for instance, reference [18] provides such very important details. Our
methodology facilitates the recursive initialization of learning weights in various rounds,
denoted as k. In each round, the LSTM network undergoes initialization with new weights.
The selection of these weights is conducted meticulously in accordance with the RWI
philosophy. In another way, the LSTM layer is initialized at first round k = 1 with input
weights wi

k, recurrent weights wr
k and biases bk from a specific probability distribution P

with mean µ and standard deviation δ as in (1). The training process involves cross valida-
tion process resulting in a variety of models with different completely tuned parameters{

wi
( f , k), wr

( f , k), b( f , k)
}

with f is the fold index and m maximum number of folds. These
parameters will be subject to next selection process based best validation performances and
training as in (2). This is done in this case to find the best models for delivering improved
generalization on new unseen samples. The term generalization in this work refers to the
capacity of the learning model to perform well on previously untrained, novel, or unseen
data. The RWI process will be repeated for any rounds k, while the best results could
appear at any of the rounds. As a result, the more rounds we have, there is possibility to
stack in better learners. The next subsection will explain this methodology and provide
further insights about the training process while also discussing limits of the methodology.{
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k, wr

k, bk
}
= P(µ, δ) (1)

{
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k+1, bk+1

}
=

{
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|
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)m
f=1

(2)
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It is reasonable to think of RWI as an optimization process similar to starting with a
random weights initialization and employing gradient descent to converge to a potential
local solution. This analogy holds true when we disregard the selection process of the best
learners from the k-folds cross-validation models. However, introducing this selection
process across multiple rounds is crucial, as it ensures the reproduction of only the most
useful solutions.

3.2. Application, Results and Discussion

The RWI in this work is fixed to 3 folds for cross validation parameters, and 40 rounds
of training. This means that about 40× 3 learning models and confusion matrices are
investigated. The LSTM network in this case uses only a single LSTM layer with 10 neurons
while the other parameter tuning process is inspired from original work in [8]. The training
and evaluation process took 1.1177 h while main classification metrics include Accuracy,
F1− score, Precision and Recall widely used in the literature (for further details about these
metrics and their significance please refer to [19]).

First, Figure 7 shows the achieved results centered on the testing phase, while the
provided metrics results are the average value of the results obtained in each of the three
cross validation folds at each round. In this curve, and by observing the peaks in perfor-
mances, it can be seen that RWI helps in improving classification performances gradually
by each round showing a reasonable increase. This uncovers one of main advantages of
this methodology in parameter initialization. Contrariwise, when RWI passes round 13,
model performances start deteriorating and such a process becomes no longer effective.
This suggests that the RWI process should be controlled as it could bias the model when
overpassing the maximum required number of rounds.

Second, illustration of the loss function and classification accuracy behavior during
the training process of the best learners’ performances in round 1 (i.e., ordinary LSTM),
and of RWI-LSTM at round 13 could give further details about the performances of the
proposed methodology. One might think that LSTM with its current structure could have
a negative impact since it is used after reduced dimension feature extraction. However,
even after such a process, LSTM is still necessary because it can capture long-term
dependencies and patterns in data. All that is required is the extracted features’ necessity
to have a sequential perspective and maintain their order. This work uses LSTM to learn
and predict sequential patterns in serialized data by enabling time window extraction,
taking into account overlaps while preserving sequential behavior. According to the
authors expertise in similar topics [20], the LSTM structure does not necessarily have
a negative impact on the classification results because it is often used in sequence
classification tasks. Other factors that contribute to lower classification performance
may include inadequate hyperparameter tuning and data complexity. Nevertheless, an
additional comparison with a traditional single-layer feedforward network (SLFN) with
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the same parameters will be of great advantage in confirming this claim. Hence, Figure 8
is inserted for this purpose. The behavior of the loss function in Figure 8a during the
training phase contributes to demonstrate another LSTM advantage brought forth by
the RWI technique, namely a faster convergence process. Even with the presence of
few fluctuations at the beginning, faster and more accurate stability is achieved quickly
compared to ordinary LSTM. It seems that further stability can be gained by increasing
the number of iterations in this case. However, similar learning parameters of the
work introduced in [8] are kept in an attempt to achieve faire comparisons. In contrast
to RWI-LSTM and LSTM, the loss function behavior of SLFN exhibits a poor starting
and convergence regime. This demonstrates unequivocally why we decided to use an
adaptive learner that is updated constantly in response to changes in the data. Likewise,
similar findings also apply to the analysis of Figure 8b.

Machines 2023, 11, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 7. A summary of results obtained during entire learning process. 

Second, illustration of the loss function and classification accuracy behavior during 
the training process of the best learners’ performances in round 1 (i.e., ordinary LSTM), 
and of RWI-LSTM at round 13 could give further details about the performances of the 
proposed methodology. One might think that LSTM with its current structure could have 
a negative impact since it is used after reduced dimension feature extraction. However, 
even after such a process, LSTM is still necessary because it can capture long-term de-
pendencies and patterns in data. All that is required is the extracted features’ necessity to 
have a sequential perspective and maintain their order. This work uses LSTM to learn and 
predict sequential patterns in serialized data by enabling time window extraction, taking 
into account overlaps while preserving sequential behavior. According to the authors ex-
pertise in similar topics [20], the LSTM structure does not necessarily have a negative im-
pact on the classification results because it is often used in sequence classification tasks. 
Other factors that contribute to lower classification performance may include inadequate 
hyperparameter tuning and data complexity. Nevertheless, an additional comparison 
with a traditional single-layer feedforward network (SLFN) with the same parameters will 
be of great advantage in confirming this claim. Hence, Figure 8 is inserted for this purpose. 
The behavior of the loss function in Figure 8a during the training phase contributes to 
demonstrate another LSTM advantage brought forth by the RWI technique, namely a 
faster convergence process. Even with the presence of few fluctuations at the beginning, 
faster and more accurate stability is achieved quickly compared to ordinary LSTM. It 
seems that further stability can be gained by increasing the number of iterations in this 
case. However, similar learning parameters of the work introduced in [8] are kept in an 
attempt to achieve faire comparisons. In contrast to RWI-LSTM and LSTM, the loss func-
tion behavior of SLFN exhibits a poor starting and convergence regime. This demonstrates 
unequivocally why we decided to use an adaptive learner that is updated constantly in 
response to changes in the data. Likewise, similar findings also apply to the analysis of 
Figure 8b. 

 
Figure 8. Loss and accuracy comparison: (a) loss function behavior; (b) classification accuracy be-
havior. 

Figure 7. A summary of results obtained during entire learning process.

Machines 2023, 11, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 7. A summary of results obtained during entire learning process. 

Second, illustration of the loss function and classification accuracy behavior during 
the training process of the best learners’ performances in round 1 (i.e., ordinary LSTM), 
and of RWI-LSTM at round 13 could give further details about the performances of the 
proposed methodology. One might think that LSTM with its current structure could have 
a negative impact since it is used after reduced dimension feature extraction. However, 
even after such a process, LSTM is still necessary because it can capture long-term de-
pendencies and patterns in data. All that is required is the extracted features’ necessity to 
have a sequential perspective and maintain their order. This work uses LSTM to learn and 
predict sequential patterns in serialized data by enabling time window extraction, taking 
into account overlaps while preserving sequential behavior. According to the authors ex-
pertise in similar topics [20], the LSTM structure does not necessarily have a negative im-
pact on the classification results because it is often used in sequence classification tasks. 
Other factors that contribute to lower classification performance may include inadequate 
hyperparameter tuning and data complexity. Nevertheless, an additional comparison 
with a traditional single-layer feedforward network (SLFN) with the same parameters will 
be of great advantage in confirming this claim. Hence, Figure 8 is inserted for this purpose. 
The behavior of the loss function in Figure 8a during the training phase contributes to 
demonstrate another LSTM advantage brought forth by the RWI technique, namely a 
faster convergence process. Even with the presence of few fluctuations at the beginning, 
faster and more accurate stability is achieved quickly compared to ordinary LSTM. It 
seems that further stability can be gained by increasing the number of iterations in this 
case. However, similar learning parameters of the work introduced in [8] are kept in an 
attempt to achieve faire comparisons. In contrast to RWI-LSTM and LSTM, the loss func-
tion behavior of SLFN exhibits a poor starting and convergence regime. This demonstrates 
unequivocally why we decided to use an adaptive learner that is updated constantly in 
response to changes in the data. Likewise, similar findings also apply to the analysis of 
Figure 8b. 

 
Figure 8. Loss and accuracy comparison: (a) loss function behavior; (b) classification accuracy be-
havior. 
Figure 8. Loss and accuracy comparison: (a) loss function behavior; (b) classification accuracy behavior.

As previously illustrated, the best obtained results in this case are those of round
13. Accordingly, if we compare results obtained from this work to LSTM networks, and
work’s results originally published in [8], Table 3 results are the finally obtained numerical
outcomes dedicated to comparisons and assessment of learning model performances. The
results clearly highlight robustness of the proposed methodology compared to existing
approaches in the literature with a very small standard deviation. Clearly, tackling data
preprocessing with proposed methodology and involving a better RWI, allows the LSTM
network to reach satisfactory results even with a small number of neurons (i.e., 10 neurons)
less than the number of neurons in the input layer (i.e., 15 neurons).
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Table 3. A recapitulation of the obtained results in terms of various performance criteria.

Method Accuracy F1 − Score Precision Recall Standard
Deviation Evaluation Method

SLFN * 0.3438 0.3438 0.3438 0.3438 10−8 Cross validation
LSTM * 0.596 0.590 0.596 0.596 1.77 × 10−5 Cross validation

LSTM [8] 0.854 - - - - Random 70–30%
splitting

RWI-LSTM * 0.920 0.920 0.929 0.938 8.4901 × 10−4 Cross validation

* Experiments performed in this paper.

3.3. Comparison Statement

It is crucial to note that results obtained in this study are derived through the imple-
mentation of cross validation techniques, ensuring a more robust and reliable evaluation of
the RWI-LSTM performance. This approach provides an unbiased estimate of generaliz-
ability to unknown data. In contrast to previous studies employing the random 70–30%
technique, our model demonstrates superior generalization, a facet that was uncertain in
earlier works. Furthermore, our study addresses the complexities of data and drift prob-
lems through a well-structured approach. The inclusion of data preprocessing as a primary
step allows for the discernment of different data scatters, offering a distinct advantage over
existing works that overlook this aspect. In a more specific context, the work referenced
in [8] employs a realistic dataset and utilizes the LSTM method. However, our study
surpasses this by incorporating an improved LSTM with RWI, going beyond the limitations
of a standard LSTM. Notably, our research addresses the challenges associated with data
quality enhancement, a dimension not explored in the original reference [8]. These asser-
tions are explicitly detailed in Table 1 of related works analysis and in Section 1.1 before
elucidating the research gaps. Additionally, it is noteworthy that the evaluation strategy in
reference [8] relies on a random splitting approach, whereas our work adopts a more robust
cross validation methodology. Consequently, it should be emphasized that comparisons
presented in Table 3 are not only unfair but also lack robustness. The enhanced robustness
and trustworthiness of our proposed method are further underscored when considering
these critical criteria.

4. Conclusions

This work introduces a comprehensive methodology aimed at gaining a deeper un-
derstanding of both data complexity and drift in highly dynamic safety-critical aircraft
engines. The methodology addresses the challenge of fault diagnosis under the utilization
of highly non-stationary vibration signals, with a specific focus on inter-shaft bearings as
a case study. Two primary phases, involving proper data engineering and adaptive deep
learning with improved RWI, are employed to address the complexities and drift inherent
in the data. In the first phase, data quality is assessed using gap statistics, while the second
phase, involving the learning process, is evaluated using well-established metrics. Cross
validation plays a crucial role in this assessment, serving as a primary tool for learning
process evaluation. The application results, when compared to previous works, reveal
significant insights into the necessity of combining data quality and an accurate learning
process. Looking towards future opportunities, advancements in this field will persist by
addressing two key aspects. First, in the realm of data engineering, further exploration of
denoising, outlier removal algorithms, and general data complexity reduction techniques is
warranted, accompanied by the introduction of additional methods for assessing data qual-
ity. Second, the deep learning architecture should be enhanced by incorporating additional
automatic extraction and abstraction layers to reveal more meaningful representations.
Furthermore, from a decision-making perspective, a third aspect deserves consideration.
Future opportunities can delve into the preemptive capabilities of such techniques and
their potential impact on supporting pilot decision making to mitigate potential risks. We
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believe that by concentrating on the early detection of faults, our technique can significantly
contribute to strengthening the safety criteria of flight operations.
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