
Citation: Park, M.-H.; Cho, J.-H.;

Kim, Y.-T. CNN Model with

Multilayer ASPP and Two-Step

Cross-Stage for Semantic

Segmentation. Machines 2023, 11, 126.

https://doi.org/10.3390/

machines11020126

Academic Editor: Antonios

Gasteratos

Received: 2 November 2022

Revised: 3 January 2023

Accepted: 6 January 2023

Published: 17 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

CNN Model with Multilayer ASPP and Two-Step Cross-Stage
for Semantic Segmentation
Min-Hong Park 1 , Jae-Hoon Cho 2 and Yong-Tae Kim 1,*

1 School of ICT Robotics and Mechanical Engineering, Hankyong National University,
Anseong 17579, Republic of Korea

2 Smart Logistics Technology Research Center, Hankyong National University,
Anseong 17579, Republic of Korea

* Correspondence: ytkim@hknu.ac.kr; Tel.: +80-31-670-9292

Abstract: Currently, interest in deep learning-based semantic segmentation is increasing in various
fields such as the medical field, automatic operation, and object division. For example, UNet, a
deep learning network with an encoder–decoder structure, is used for image segmentation in the
biomedical area, and an attempt to segment various objects is made using ASPP such as Deeplab. A
recent study improves the accuracy of object segmentation through structures that extend in various
receptive fields. Semantic segmentation has evolved to divide objects of various sizes more accurately
and in detail, and various methods have been presented for this. In this paper, we propose a model
structure that reduces the overall parameters of the deep learning model in this development and
improves accuracy. The proposed model is an encoder–decoder structure, and an encoder half scale
provides a feature map with few encoder parameters. A decoder integrates feature maps of various
scales with high area details and forward features of low areas. An integrated feature map learns
a feature map of each encoder hierarchy over an area of previous data in the form of a continuous
coupling structure. To verify the performance of the model, we learned and compared the KITTI-360
dataset with the Cityscapes dataset, and experimentally confirmed that the proposed method was
superior to the existing model.

Keywords: autonomous vehicle; deep learning; semantic segmentation; encoder–decoder; cross stage;
skip-connection

1. Introduction

The semantic segmentation task is to label all pixels in the image as belonging to one
of the N classes. It aims to perform dense-prediction to label each pixel of the image. In
the case of semantic segmentation with this goal, various models have been proposed.
However, excellent semantic segmentation, which requires class information in the pixel
region, cannot be achieved using the classical CNN structure [1] for the following reasons.

1. In general CNNs, spatial details are lost owing to the pooling of pixel semantic
information in deep layers and the stride of the filters.

2. The presence of several objects of different sizes in an image requires processing of
various sizes, which increases the computational complexity.

3. The spatial pooling of CNNs affects the location accuracy of pixels.

The categories of CNN can be divided into various application fields and methods [2].
We focused on the network structure of semantic segmentation techniques.

The fully convolutional network (FCN) [3] is a structure that significantly improves
the accuracy of semantic segmentation beyond that of classical CNN structures. It is the
basis of semantic segmentation technology. The FCN incorporates an up-sampling step and
skip-connection strategy into a general CNN structure to increase the semantic accuracy.

Machines 2023, 11, 126. https://doi.org/10.3390/machines11020126 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11020126
https://doi.org/10.3390/machines11020126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-5738-2597
https://orcid.org/0000-0001-9543-8635
https://orcid.org/0000-0003-0787-4299
https://doi.org/10.3390/machines11020126
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11020126?type=check_update&version=1

Machines 2023, 11, 126 2 of 21

The skip-connection strategy compensates for information loss in the pooling process of
the CNN using the feature maps in the intermediate stage.

SegNet [4] uses the backbone of a CNN called VGG16 and has a segmentation network
composed of an encoder and decoder. This structure is also frequently used in recent
models. The decoder stages of this structure have computational efficiency because they
use indices in the maximum pooling stage of the encoder.

U-Net [5] uses a skip-connection strategy based on an encoder–decoder structure to
solve the problem of model accuracy and information loss. It is widely used for the semantic
segmentation of medical images, and various approaches to improve the performance of
U-Net have been proposed [6,7].

The DeepLab model [8–10] simultaneously enhances the computational speed, accu-
racy, and simplicity of the structure; it is based on atrous convolution, which is widely used
in the communication field. Therefore, information on a wide range of feature maps can
be obtained without additional parameters or calculations. In addition, the conditional
random field [11] and atrous spatial pyramid pooling (ASPP) [9] have been applied for
improved accuracy and computational efficiency for processing multiple scales.

Recently, CNN structures for semantic segmentation have been applied in the au-
tonomous driving field. Levi [12] proposed a CNN structure that was an improvement on
the traditional CNN for obstacle and road segmentation.

In Oliveira [13], a method to increase computational efficiency by changing the classical
FCN structure for road and lane segmentation was proposed. The model achieved this
improvement by applying the pooling layer of the contractive side to the up-convolutional
network of the FCN. Romera [14] proposed a new CNN structure (ERFNet) that considers
both accuracy and computational accuracy in solving the image segmentation problem
in AVs. Pizzati [15] adopted the ERFNet structure and an additional decoder layer to
detect lanes and free space. Scheck [16] proposed a method to detect free spaces using a
single omnidirectional camera with a fisheye lens, and the accuracy was compared with
that of the FCN-based encoder-decoder method and DeepLabv3. Hou [17] presented
a lightweight CNN structure for lane detection. In this structure, E-Net [18], one of
the ResNet series and encoder–decoder structures, was adopted as the backbone. Self-
attention distillation, a novel knowledge distillation approach, was proposed to solve the
computational complexity. Chan [19] presented a new instance segmentation method that
combines an advanced FCN and inverse perspective mapping (IPM) [20] technology to
simultaneously mark lanes and detect drivable areas. Segmentation was performed using
the FCN. The IPM technology has also been adopted for lane and obstacle recognition. [21]
used ResNet18 [22] as a backbone and achieved a fast frame rate by learning only the
boundary of the drivable area. Qiao [23] proposed a method to analyze the scenes of
AVs and predict the drivable area using a deep learning structure (DeepLabv3) with an
encoder–decoder network. ResNet101 was used as the backbone. The atrous spatial
pyramid pooling (ASPP) module was added to the last encoder layer to collect context and
semantic information.

Based on the above-mentioned content, the research focus of semantic segmentation
technology is as follows.

(1) Improved CNN structure to effectively segment objects of varying sizes
(2) Structural design with fewer parameters than other models
(3) Parameter sharing and high performance through a structure that delivers a variety

of reactive fields

In this study, we propose a new encoder–decoder-based semantic segmentation tech-
nique that combines multilayer(ML)-ASPP and a two-step cross-stage, which has the advan-
tage of fast operation. The proposed model applies a new process called multilayer ASPP
(ML-ASPP) to obtain more contextual information after the last convolution operation of the
encoder. The classical ASPP is applied only to a single feature map, whereas the ML-ASPP
performs ASPP using all the layers of the encoder to obtain more diverse and contextual
information. In addition, another new technique, two-step cross-stage (TS-CS), was used for

Machines 2023, 11, 126 3 of 21

the encoder and decoder to increase the computational efficiency. The application of these
two operations rendered the proposed model superior to the classical methods in terms
of the learning parameters and operation speed. The proposed model was tested using
the KITTI-360 2D segmentation dataset [24] and cityscapes dataset (including high-noise
data) [25] for performance evaluation, and its performance was compared and analyzed
with those of other methods.

2. Related Research

Figures 1–3 show a brief overview of each structure for each version of UNet [5–7].
UNet3+ features a redesigned skip connection that is different from that of UNet and
UNet++, and uses full-scale deep supervision to combine layers of various sizes. The
output is used to distinguish between accurate location recognition and boundaries with
fewer parameters.

Machines 2023, 11, x FOR PEER REVIEW 3 of 21

and contextual information. In addition, another new technique, two-step cross-stage (TS-
CS), was used for the encoder and decoder to increase the computational efficiency. The
application of these two operations rendered the proposed model superior to the classical
methods in terms of the learning parameters and operation speed. The proposed model
was tested using the KITTI-360 2D segmentation dataset [24] and cityscapes dataset (in-
cluding high-noise data) [25] for performance evaluation, and its performance was com-
pared and analyzed with those of other methods.

2. Related Research
Figures 1–3 show a brief overview of each structure for each version of UNet [5–7].

UNet3+ features a redesigned skip connection that is different from that of UNet and
UNet++, and uses full-scale deep supervision to combine layers of various sizes. The out-
put is used to distinguish between accurate location recognition and boundaries with
fewer parameters.

Figure 1. Structure of UNet model [5].

Figure 2. Structure of UNet++ model [7].

Figure 1. Structure of UNet model [5].

Machines 2023, 11, x FOR PEER REVIEW 3 of 21

and contextual information. In addition, another new technique, two-step cross-stage (TS-
CS), was used for the encoder and decoder to increase the computational efficiency. The
application of these two operations rendered the proposed model superior to the classical
methods in terms of the learning parameters and operation speed. The proposed model
was tested using the KITTI-360 2D segmentation dataset [24] and cityscapes dataset (in-
cluding high-noise data) [25] for performance evaluation, and its performance was com-
pared and analyzed with those of other methods.

2. Related Research
Figures 1–3 show a brief overview of each structure for each version of UNet [5–7].

UNet3+ features a redesigned skip connection that is different from that of UNet and
UNet++, and uses full-scale deep supervision to combine layers of various sizes. The out-
put is used to distinguish between accurate location recognition and boundaries with
fewer parameters.

Figure 1. Structure of UNet model [5].

Figure 2. Structure of UNet++ model [7].

Figure 2. Structure of UNet++ model [7].

Machines 2023, 11, x FOR PEER REVIEW 3 of 21

and contextual information. In addition, another new technique, two-step cross-stage (TS-
CS), was used for the encoder and decoder to increase the computational efficiency. The
application of these two operations rendered the proposed model superior to the classical
methods in terms of the learning parameters and operation speed. The proposed model
was tested using the KITTI-360 2D segmentation dataset [24] and cityscapes dataset (in-
cluding high-noise data) [25] for performance evaluation, and its performance was com-
pared and analyzed with those of other methods.

2. Related Research
Figures 1–3 show a brief overview of each structure for each version of UNet [5–7].

UNet3+ features a redesigned skip connection that is different from that of UNet and
UNet++, and uses full-scale deep supervision to combine layers of various sizes. The out-
put is used to distinguish between accurate location recognition and boundaries with
fewer parameters.

Figure 1. Structure of UNet model [5].

Figure 2. Structure of UNet++ model [7].

Figure 3. Structure of UNet3+ model [6].

Machines 2023, 11, 126 4 of 21

UNet is used for medical image segmentation and has an encoder–decoder transfor-
mation structure. It uses skip connections to combine various information in the decoder
with the same feature map and the corresponding sublevel feature map in the encoder. The
skip connection used by the UNet is shown in Figure 1.

The UNet++ model features a nested and dense skip connection, which overlaps
features for each layer and has a high number of channels to enhance the connection to
each layer. This aims to reduce the difference in the feature-related information between
the encoder and decoder. Although UNet++ also exhibits good performance, the number
of parameters increases to contain all the corresponding information. UNet3+ features a
structure to contain all the feature information of the entire input, as shown in Figure 3.

To address the segmentation problem, the location information corresponding to the
input image must be preserved. UNet3+ outperforms the previous UNet models owing
to its full-scale skip connection, which carries information corresponding to each encoder
layer, thus preventing location information loss.

Studies on the DeepLab network suggest that semantic segmentation should infer
situations of various sizes [8–10]. DeepLabv1 v2 has raised doubts about regarding the
process of extracting image features and restoring the downsampled image to its original
size. Based on this suspicion, location information could be lost in the case of a structure
without a skip connection, such as UNet, and the encoder–decoder structure was eliminated.
In DeepLabv2, in place of the encoder–decoder structure, the results were derived through
atrous convolution, as shown in Figure 4.

Machines 2023, 11, x FOR PEER REVIEW 4 of 21

Figure 3. Structure of UNet3+ model [6].

UNet is used for medical image segmentation and has an encoder–decoder transfor-
mation structure. It uses skip connections to combine various information in the decoder
with the same feature map and the corresponding sublevel feature map in the encoder.
The skip connection used by the UNet is shown in Figure 1.

The UNet++ model features a nested and dense skip connection, which overlaps fea-
tures for each layer and has a high number of channels to enhance the connection to each
layer. This aims to reduce the difference in the feature-related information between the
encoder and decoder. Although UNet++ also exhibits good performance, the number of
parameters increases to contain all the corresponding information. UNet3+ features a
structure to contain all the feature information of the entire input, as shown in Figure 3.

To address the segmentation problem, the location information corresponding to the
input image must be preserved. UNet3+ outperforms the previous UNet models owing to
its full-scale skip connection, which carries information corresponding to each encoder
layer, thus preventing location information loss.

Studies on the DeepLab network suggest that semantic segmentation should infer
situations of various sizes [8–10]. DeepLabv1 v2 has raised doubts about regarding the
process of extracting image features and restoring the downsampled image to its original
size. Based on this suspicion, location information could be lost in the case of a structure
without a skip connection, such as UNet, and the encoder–decoder structure was elimi-
nated. In DeepLabv2, in place of the encoder–decoder structure, the results were derived
through atrous convolution, as shown in Figure 4.

Figure 4. Atrous convolution [9].

Atrous convolution was used for two reasons. First, it increases the receptive field.
Second, various sizes can be responded to by adjusting the dilation parameters. This can
be exploited to reduce the number or size of the pooling layers to cover a wide receptive
field with the same number of filters, thereby reducing the overall number of parameters.
The DeepLab model uses atrous convolution. The structure of each model is shown in
Figures 5 and 6, respectively.

Figure 5. Structure of DeepLabv1 model.

Figure 4. Atrous convolution [9].

Atrous convolution was used for two reasons. First, it increases the receptive field.
Second, various sizes can be responded to by adjusting the dilation parameters. This can
be exploited to reduce the number or size of the pooling layers to cover a wide receptive
field with the same number of filters, thereby reducing the overall number of parameters.
The DeepLab model uses atrous convolution. The structure of each model is shown in
Figures 5 and 6, respectively.

The pyramid pooling layer proposed by PSPNet [26] underscores the difference be-
tween v1 and v2. In PSPNet, the dilation rates are 1, 2, 3, and 6, thus forming a sub-region.
In v2, the configuration is repaired by adjusting the dilation rate to a multiple of six, as
shown in Figure 6; furthermore, a pyramid pooling layer with receptive fields of various
sizes is configured, owing to which it outperforms the previous DeepLab v1.

The global average pooling used in PSPNet is incorporated into DeepLab v3 [10]
as Figure 7, and the structure is changed through concatenation based on the method of
summing in v2. The changed structure allows it to retain its receptive field, and 1 × 1 and
3 × 3 convolutions are applied in parallel with different dilation rates, 6, 12, 18, 12, 24,
and 36. In addition, global average pooling is applied to understand the global context.
For DeepLabv3, an experiment was conducted by varying the dilation rate ratio from
block 4 to 7.

Machines 2023, 11, 126 5 of 21

Machines 2023, 11, x FOR PEER REVIEW 4 of 21

Figure 3. Structure of UNet3+ model [6].

UNet is used for medical image segmentation and has an encoder–decoder transfor-
mation structure. It uses skip connections to combine various information in the decoder
with the same feature map and the corresponding sublevel feature map in the encoder.
The skip connection used by the UNet is shown in Figure 1.

The UNet++ model features a nested and dense skip connection, which overlaps fea-
tures for each layer and has a high number of channels to enhance the connection to each
layer. This aims to reduce the difference in the feature-related information between the
encoder and decoder. Although UNet++ also exhibits good performance, the number of
parameters increases to contain all the corresponding information. UNet3+ features a
structure to contain all the feature information of the entire input, as shown in Figure 3.

To address the segmentation problem, the location information corresponding to the
input image must be preserved. UNet3+ outperforms the previous UNet models owing to
its full-scale skip connection, which carries information corresponding to each encoder
layer, thus preventing location information loss.

Studies on the DeepLab network suggest that semantic segmentation should infer
situations of various sizes [8–10]. DeepLabv1 v2 has raised doubts about regarding the
process of extracting image features and restoring the downsampled image to its original
size. Based on this suspicion, location information could be lost in the case of a structure
without a skip connection, such as UNet, and the encoder–decoder structure was elimi-
nated. In DeepLabv2, in place of the encoder–decoder structure, the results were derived
through atrous convolution, as shown in Figure 4.

Figure 4. Atrous convolution [9].

Atrous convolution was used for two reasons. First, it increases the receptive field.
Second, various sizes can be responded to by adjusting the dilation parameters. This can
be exploited to reduce the number or size of the pooling layers to cover a wide receptive
field with the same number of filters, thereby reducing the overall number of parameters.
The DeepLab model uses atrous convolution. The structure of each model is shown in
Figures 5 and 6, respectively.

Figure 5. Structure of DeepLabv1 model. Figure 5. Structure of DeepLabv1 model.

Machines 2023, 11, x FOR PEER REVIEW 5 of 21

Figure 6. Structure of DeepLabv2 model.

The pyramid pooling layer proposed by PSPNet [26] underscores the difference be-
tween v1 and v2. In PSPNet, the dilation rates are 1, 2, 3, and 6, thus forming a sub-region.
In v2, the configuration is repaired by adjusting the dilation rate to a multiple of six, as
shown in Figure 6; furthermore, a pyramid pooling layer with receptive fields of various
sizes is configured, owing to which it outperforms the previous DeepLab v1.

The global average pooling used in PSPNet is incorporated into DeepLab v3 [10] as
Figure 7, and the structure is changed through concatenation based on the method of sum-
ming in v2. The changed structure allows it to retain its receptive field, and 1 × 1 and 3 ×
3 convolutions are applied in parallel with different dilation rates, 6, 12, 18, 12, 24, and 36.
In addition, global average pooling is applied to understand the global context. For
DeepLabv3, an experiment was conducted by varying the dilation rate ratio from block4
to 7.

Figure 7. Structure of DeepLabv3 model.

Numerous of the aforementioned models apply various techniques to obtain more
meaningful information in feature maps of multiple sizes. These studies attempted to find
coarse or detailed information about classes in high-resolution and low-resolution feature
maps. Segmentation research is aimed at enhancing and segmenting the boundaries of
individual classes in an image by extracting the location of information, such as class

Figure 6. Structure of DeepLabv2 model.

Machines 2023, 11, x FOR PEER REVIEW 5 of 21

Figure 6. Structure of DeepLabv2 model.

The pyramid pooling layer proposed by PSPNet [26] underscores the difference be-
tween v1 and v2. In PSPNet, the dilation rates are 1, 2, 3, and 6, thus forming a sub-region.
In v2, the configuration is repaired by adjusting the dilation rate to a multiple of six, as
shown in Figure 6; furthermore, a pyramid pooling layer with receptive fields of various
sizes is configured, owing to which it outperforms the previous DeepLab v1.

The global average pooling used in PSPNet is incorporated into DeepLab v3 [10] as
Figure 7, and the structure is changed through concatenation based on the method of sum-
ming in v2. The changed structure allows it to retain its receptive field, and 1 × 1 and 3 ×
3 convolutions are applied in parallel with different dilation rates, 6, 12, 18, 12, 24, and 36.
In addition, global average pooling is applied to understand the global context. For
DeepLabv3, an experiment was conducted by varying the dilation rate ratio from block4
to 7.

Figure 7. Structure of DeepLabv3 model.

Numerous of the aforementioned models apply various techniques to obtain more
meaningful information in feature maps of multiple sizes. These studies attempted to find
coarse or detailed information about classes in high-resolution and low-resolution feature
maps. Segmentation research is aimed at enhancing and segmenting the boundaries of
individual classes in an image by extracting the location of information, such as class

Figure 7. Structure of DeepLabv3 model.

Numerous of the aforementioned models apply various techniques to obtain more
meaningful information in feature maps of multiple sizes. These studies attempted to find
coarse or detailed information about classes in high-resolution and low-resolution feature
maps. Segmentation research is aimed at enhancing and segmenting the boundaries of
individual classes in an image by extracting the location of information, such as class bound-
aries, from high-resolution feature maps. However, as the feature maps are transferred
layer wise, information on the image is diluted and lost owing to down sampling.

These problems can be solved by combining spatial and semantic information with
resolutions of various sizes.

Machines 2023, 11, 126 6 of 21

3. Proposed Method

In this section, we describe the overall structure of the proposed system. Figure 8
shows the CNN structure with the proposed ML-ASPP and TS-CS. The proposed structure
adopts an encoder and decoder-based CNN structure. It has an ML-ASPP, which transmits
various resolution information to the decoder layer using the feature maps of all layers
in the encoder. In addition, in the ML-ASSP, the input and output feature maps differ
according to the corresponding decoder layer, and the outputs are concatenated.

Machines 2023, 11, x FOR PEER REVIEW 6 of 21

boundaries, from high-resolution feature maps. However, as the feature maps are trans-
ferred layer wise, information on the image is diluted and lost owing to down sampling.

These problems can be solved by combining spatial and semantic information with
resolutions of various sizes.

3. Proposed Method
In this section, we describe the overall structure of the proposed system. Figure 8

shows the CNN structure with the proposed ML-ASPP and TS-CS. The proposed struc-
ture adopts an encoder and decoder-based CNN structure. It has an ML-ASPP, which
transmits various resolution information to the decoder layer using the feature maps of
all layers in the encoder. In addition, in the ML-ASSP, the input and output feature maps
differ according to the corresponding decoder layer, and the outputs are concatenated.

Figure 8. The Structure of the proposed CNN with multi-layer ASPP and TS-CS.

The TS-CS is divided into encoder cross-stage (CS-EN) and decoder cross-stage (CS-
DE), and the inputs of the CS-EN and CS-DE are composed of different feature maps. The
TS-CS achieves high computational efficiency by applying a method similar to skip con-
nections in the generation of feature maps of each layer in the encoder and decoder. Based
on these two new methods, the proposed system has fewer network parameters and
greater object semantic segmentation accuracy. The details of each process are described
in the following subsections.

3.1. CS-EN
In the case of a CNN designed as a deep network for greater accuracy, various dis-

advantages exist in the transmission and learning of the gradient information. To solve
this problem, ResNet [22] applies the shortcut connection structure to prevent the gradient
problem and to increase accuracy by creating a deep learning structure with a deeper
structure. However, with this structure, the computational complexity increases signifi-
cantly owing to the presence of many parameters. To solve these shortcomings,
DenseNet [27] and CSPNet [28], which can simultaneously increase the operation speed
and accuracy, have been proposed.

The DenseNet has a structure in which the input of the dense layer is concatenated
with the output, as shown in Figure 9a. This increases the efficiency of the information

Figure 8. The Structure of the proposed CNN with multi-layer ASPP and TS-CS.

The TS-CS is divided into encoder cross-stage (CS-EN) and decoder cross-stage (CS-
DE), and the inputs of the CS-EN and CS-DE are composed of different feature maps.
The TS-CS achieves high computational efficiency by applying a method similar to skip
connections in the generation of feature maps of each layer in the encoder and decoder.
Based on these two new methods, the proposed system has fewer network parameters and
greater object semantic segmentation accuracy. The details of each process are described in
the following subsections.

3.1. CS-EN

In the case of a CNN designed as a deep network for greater accuracy, various dis-
advantages exist in the transmission and learning of the gradient information. To solve
this problem, ResNet [22] applies the shortcut connection structure to prevent the gradient
problem and to increase accuracy by creating a deep learning structure with a deeper struc-
ture. However, with this structure, the computational complexity increases significantly
owing to the presence of many parameters. To solve these shortcomings, DenseNet [27]
and CSPNet [28], which can simultaneously increase the operation speed and accuracy,
have been proposed.

The DenseNet has a structure in which the input of the dense layer is concatenated
with the output, as shown in Figure 9a. This increases the efficiency of the information
and gradient flow. However, the gradient information in the back-propagation process for
learning tends to overlap.

Machines 2023, 11, 126 7 of 21

Machines 2023, 11, x FOR PEER REVIEW 7 of 21

and gradient flow. However, the gradient information in the back-propagation process
for learning tends to overlap.

(a) DenseNet

(b) CSPNet

Figure 9. Structures of DenseNet and CSPNet (CSP-DenseNet).

The CSPNet, which was proposed to solve this problem, adopted the convolution
method by dividing the output of the previous layer, as shown in Figure 9b. Its advantage
is that it can be applied without changing the backbone structure of most classical CNNs.
Equations (1) and (2) are used to update the gradient during the layer feedforward calcu-
lation and backpropagation of the DenseNet and CSPNet, respectively.

1 1 0

2 2 0 1

0 1 1

[,]

[, , ,]k k k

x W x
x W x x

x W x x x

,

'
1 1 0
'
2 2 0 1
'
3 3 0 1 2
'

0 1 2 1

(,)

(, ,)
(, , ,)

(, , , , ,)k k k

W f W g

W f W g g
W f W g g g

W f W g g g g

 (1)

0_ 2 1 1

0_ 2 1

0_1

[, , ,]
[, , ,]
[,]

k k k

T T k

U U T

x W x x x
x W x x x
x W x x

 ,

'
0 _ 2 1 2 1

'
0 _ 2 1 2

0 _1

(, , , , ,)

(, , , , ,)
(, ,)

k k k

T T k

U U T

W f W g g g g

W f W g g g g
W f W g g

(2)

where x is the output of each layer and W is the weight of forward pass.
Equations (1) and (2) reveal a significant overlapping gradient information in the

backpropagation process of the DenseNet. The overlap increases as the number of dense
layers increases.

However, the CSPNet prevents excessive copying of gradient information by divid-
ing the feature map 0x of the base layer into two parts: 0 0 _1 0 _ 2[,]x x x . The two divided
parts have two passes of gradient flow, and the gradient of 0 _ 1x that does not pass through

Figure 9. Structures of DenseNet and CSPNet (CSP-DenseNet).

The CSPNet, which was proposed to solve this problem, adopted the convolution
method by dividing the output of the previous layer, as shown in Figure 9b. Its advan-
tage is that it can be applied without changing the backbone structure of most classical
CNNs. Equations (1) and (2) are used to update the gradient during the layer feedforward
calculation and backpropagation of the DenseNet and CSPNet, respectively.

x1 = W1 ∗ x0
x2 = W2 ∗ [x0, x1]

...
xk = Wk ∗ [x0, x1, · · · , xk−1]

,

W ′1 = f (W1, g0)

W ′2 = f (W2, g0, g1)

W ′3 = f (W3, g0, g1, g2)

W ′k = f (Wk, g0, g1, g2, · · · , gk−1)

(1)

xk = Wk ∗ [x0_2, x1, · · · , xk−1]

xT = WT ∗ [x0_2, x1, · · · , xk]

xU = WU ∗ [x0_1, xT]

,

W ′k = f (Wk, g, 0_2, g1, g2, · · · , gk−1)

W ′T = f (WT , g0_2, g1, g2, · · · , gk)

WU = f (WU , g0_1, gT)

(2)

where x is the output of each layer and W is the weight of forward pass.
Equations (1) and (2) reveal a significant overlapping gradient information in the

backpropagation process of the DenseNet. The overlap increases as the number of dense
layers increases.

However, the CSPNet prevents excessive copying of gradient information by dividing
the feature map x0 of the base layer into two parts:x0 = [x0_1, x0_2]. The two divided parts
have two passes of gradient flow, and the gradient of x0_1 that does not pass through the
dense layer is not copied. Therefore, the CSPNet has greater computational efficiency
compared with the DenseNet owing to the reduction in the number of learned parameters.

In this study, we proposed a novel encoder–decoder CNN structure for semantic
segmentation inspired by the CSPNet. In the classical semantic segmentation model, only
the encoder and corresponding decoder are connected, and adjacent layers are connected.
However, in this structure, transmitting detailed information, such as the location and
boundary of the class region of the input, to the decoder is challenging. To solve this
problem, we proposed a structure that effectively transmits the information of the feature

Machines 2023, 11, 126 8 of 21

map in each encoder layer and simultaneously lowers the computational complexity. The
proposed encoder structure is shown in Figure 10.

Machines 2023, 11, x FOR PEER REVIEW 8 of 21

the dense layer is not copied. Therefore, the CSPNet has greater computational efficiency
compared with the DenseNet owing to the reduction in the number of learned parameters.

In this study, we proposed a novel encoder–decoder CNN structure for semantic seg-
mentation inspired by the CSPNet. In the classical semantic segmentation model, only the
encoder and corresponding decoder are connected, and adjacent layers are connected.
However, in this structure, transmitting detailed information, such as the location and
boundary of the class region of the input, to the decoder is challenging. To solve this prob-
lem, we proposed a structure that effectively transmits the information of the feature map
in each encoder layer and simultaneously lowers the computational complexity. The pro-
posed encoder structure is shown in Figure 10.

Figure 10. Proposed CS_EN.

In Figure 8, CS_EN1 represents the cross-stage block of the first encoder layer and
1,ENX represents the output of this block. The input image feature map was divided into

two 32-channel feature maps and calculated in the cross stage. The number of convolu-
tions in the cross-stage block can be determined by the designer or the user as a hyperpa-
rameter.

The purpose of the cross-stage block at the encoder stage in the proposed method is
to preserve as much of the spatial information of the main pixels as possible and reduce
the total amount of computation. Therefore, in this study, convolution in the cross-stage
block of the encoder was set as 2k . The output of the proposed system and update of
the gradient in each layer are as follows:

1 0_2

2 0_ 2 1

0_1 1 2 0_2

[]
[,]
[, , ,]

k

T

U U

x W x
x W x x
x W x x x x

,

'
1 0 _ 2

'
2 0_ 2 1

0 _1 1 2 0_ 2

(,)

(, ,)
(, , , ,)

k

k

U u

W f W g

W f W g g
W f W g g g g

 (3)

As can be seen in Equation 3, the overlap of gradient information and parameters in
the proposed method are small compared with the DenseNet and CSP-DenseNet.

3.2. ML-ASPP
In classical deep convolution, the resolution of the output result is lower than that of

the input data. The feature map with reduced resolution owing to max-pooling and
downsampling operations reduces the computational complexity of the CNN and obtains
the semantic information of more areas of the feature map.

However, low-resolution feature maps lose the details of valid information, such as
boundaries in the field of semantic segmentation. In addition, the same object can exist at
different sizes in the image. To compensate for these problems, an ASPP structure that
can be applied when classes exist in different sizes in an image was proposed. Figure 11a

Figure 10. Proposed CS_EN.

In Figure 8, CS_EN1 represents the cross-stage block of the first encoder layer and
X1,EN represents the output of this block. The input image feature map was divided into
two 32-channel feature maps and calculated in the cross stage. The number of convolutions
in the cross-stage block can be determined by the designer or the user as a hyperparameter.

The purpose of the cross-stage block at the encoder stage in the proposed method is
to preserve as much of the spatial information of the main pixels as possible and reduce
the total amount of computation. Therefore, in this study, convolution in the cross-stage
block of the encoder was set as k = 2. The output of the proposed system and update of
the gradient in each layer are as follows:

x1 = Wk ∗ [x0_2]

x2 = WT ∗ [x0_2, x1]

xU = WU ∗ [x0_1, x1, x2, x0_2]

,

W ′1 = f (Wk, g 0_2)

W ′2 = f (Wk, g0_2, g1)

WU = f (Wu, g0_1, g1, g2, g0_2)

(3)

As can be seen in Equation (3), the overlap of gradient information and parameters in
the proposed method are small compared with the DenseNet and CSP-DenseNet.

3.2. ML-ASPP

In classical deep convolution, the resolution of the output result is lower than that
of the input data. The feature map with reduced resolution owing to max-pooling and
downsampling operations reduces the computational complexity of the CNN and obtains
the semantic information of more areas of the feature map.

However, low-resolution feature maps lose the details of valid information, such as
boundaries in the field of semantic segmentation. In addition, the same object can exist
at different sizes in the image. To compensate for these problems, an ASPP structure that
can be applied when classes exist in different sizes in an image was proposed. Figure 11a
shows the ASPP applied to the classical CNN and Figure 11b shows the ASPP applied to
the encoder-decoder structure.

As shown in Figure 11b, the classical ASPP model was operated only once at the end of
the encoder of the decoder–encoder model. We devised a method for transmitting semantic
information more effectively using the proposed structure. Figure 12 shows the proposed
ASPP technique.

Machines 2023, 11, 126 9 of 21

Machines 2023, 11, x FOR PEER REVIEW 9 of 21

shows the ASPP applied to the classical CNN and Figure 11b shows the ASPP applied to
the encoder-decoder structure.

(a) (b)

Figure 11. CNN with ASPP. (a) Classical CNN structure, (b) encoder–decoder CNN structure.

As shown in Figure 11b, the classical ASPP model was operated only once at the end
of the encoder of the decoder–encoder model. We devised a method for transmitting se-
mantic information more effectively using the proposed structure. Figure 12 shows the
proposed ASPP technique.

Figure 12. ML-ASPP in the encoder.

To explain the structure of the proposed algorithm, ASPP3, shown in Figure 8, was
used. The method used the multilayer feature map of the encoder to deliver semantic in-
formation to the decoder layer. Consequently, the semantic information for various clas-
ses was fed into the decoder.

In general, the ASPP output y, the output of the i pixel, is given by Equation (4).

[] [] []
k

y i x i r k w k (4)

where the atrous rate r determines the spacing between kernel points. x , k, and ()w k
represent the input, position index of the filter, and kth value in the convolution filter,
respectively. In this study, the ASPP rates were set at 24, 12, 6, and 1. If the size of the filter
was 3 × 3 and was expressed as a one-dimensional index, k was displayed from 1 to 9.
Using Equation (4) to express the output for each rate, Equation (5) was obtained:

Figure 11. CNN with ASPP. (a) Classical CNN structure, (b) encoder–decoder CNN structure.

Machines 2023, 11, x FOR PEER REVIEW 9 of 21

shows the ASPP applied to the classical CNN and Figure 11b shows the ASPP applied to
the encoder-decoder structure.

(a) (b)

Figure 11. CNN with ASPP. (a) Classical CNN structure, (b) encoder–decoder CNN structure.

As shown in Figure 11b, the classical ASPP model was operated only once at the end
of the encoder of the decoder–encoder model. We devised a method for transmitting se-
mantic information more effectively using the proposed structure. Figure 12 shows the
proposed ASPP technique.

Figure 12. ML-ASPP in the encoder.

To explain the structure of the proposed algorithm, ASPP3, shown in Figure 8, was
used. The method used the multilayer feature map of the encoder to deliver semantic in-
formation to the decoder layer. Consequently, the semantic information for various clas-
ses was fed into the decoder.

In general, the ASPP output y, the output of the i pixel, is given by Equation (4).

[] [] []
k

y i x i r k w k (4)

where the atrous rate r determines the spacing between kernel points. x , k, and ()w k
represent the input, position index of the filter, and kth value in the convolution filter,
respectively. In this study, the ASPP rates were set at 24, 12, 6, and 1. If the size of the filter
was 3 × 3 and was expressed as a one-dimensional index, k was displayed from 1 to 9.
Using Equation (4) to express the output for each rate, Equation (5) was obtained:

Figure 12. ML-ASPP in the encoder.

To explain the structure of the proposed algorithm, ASPP3, shown in Figure 8, was
used. The method used the multilayer feature map of the encoder to deliver semantic
information to the decoder layer. Consequently, the semantic information for various
classes was fed into the decoder.

In general, the ASPP output y, the output of the i pixel, is given by Equation (4).

y[i] = ∑
k

x[i + r · k]w[k] (4)

where the atrous rate r determines the spacing between kernel points. x, k, and w(k)
represent the input, position index of the filter, and kth value in the convolution filter,
respectively. In this study, the ASPP rates were set at 24, 12, 6, and 1. If the size of the filter
was 3 × 3 and was expressed as a one-dimensional index, k was displayed from 1 to 9.
Using Equation (4) to express the output for each rate, Equation (5) was obtained:

yRate=24[i] =
9
∑

k=1
x[i + 24 · k]w[k]

yRate=12[i] =
9
∑

k=1
x[i + 12 · k]w[k]

yRate=6[i] =
9
∑

k=1
x[i + 6 · k]w[k]

yRate=1[i] =
9
∑

k=1
x[i + 1 · k]w[k]

(5)

Machines 2023, 11, 126 10 of 21

Therefore, the output of atrous convolution for each input can be expressed by the
following Equation (6).

yXj ,EN = conv1×1×64([yRate=24, yRate=12, yRate=6, yRate=1]) (6)

where xj denotes the j th encoder layer; [] denotes a concatenation combination; and conv is
a convolution operation. Using Equations (5) and (6), the output for the ASPPs proposed in
this study is expressed as Equation (7):

yASPP1 = [yX1,EN , yX2,EN , yX3,EN , yX4,EN , yX5,EN]

yASPP2 = [yX1,EN , yX2,EN , yX3,EN , yX4,EN]

yASPP3 = [yX1,EN , yX2,EN , yX3,EN]

yASPP4 = [yX1,EN , yX2,EN]

(7)

The proposed method performed ASPP four times over the entire structure, and the
computational complexity was greater than that of the existing methods. However, the
proposed ML-ASPP delivered semantic information to the decoder more effectively, and
the increased computational complexity was reduced in the cross-stage block of the encoder
and decoder. Therefore, the proposed method increased the computational complexity of
the ASPP but improved the semantic segmentation performance and reduced the required
computation for the entire system compared with other classical CNNs.

3.3. Decoder Cross-Stage (CS-EN)

In the decoder layer of the proposed structure, each encoder layer received the ex-
tracted feature map through the ASPP. In the case of the feature map obtained through the
ASPP, the outputs obtained through the convolution operation (1× 1× 64) in each encoder
layer were concatenated and delivered to the decoder.

Figure 13 shows the structure of the proposed decoder. The first layer of the decoder
used only the feature maps of the ASPP block of the encoder layer. The next decoder layer
performed the cross-stage using the feature maps that concatenated the feature maps of the
previous decoder layer calculated through bilinear interpolation and the output feature
maps from the ASPP of the encoder layers.

The combined feature maps of the encoder and decoder had the same resolution,
to match the number of channels and reduce unnecessary information. The structure
preserved the overall characteristics of the previous layers and successfully retained details,
even in operations that changed the scale. Using Equations (6) and (7), each decoder input
feature map is expressed as follows:

Finput,XDE4 = [yASPP1]

Finput,XDE3 = [yASPP2,conv1×1×64(X4,DE)]

Finput,XDE2 = [yASPP3,conv1×1×64(X4,DE), conv1×1×64(X3,DE)]

Finput,XDE1 = [yASPP4,conv1×1×64(X4,DE), conv1×1×64(X3,DE), conv1×1×64(X2,DE)]

(8)

where F represents the input feature map of each decoder layer, and [] denotes the input in
the cross-stage block of each decoder.

The decoder cross-stage block performed convolution by dividing the input feature
map F into two blocks. Therefore, as in the encoder part of the proposed model, increases
in the amount of computational complexity and transmission of excessive gradient infor-
mation were prevented in the decoder part, and the semantic segmentation performance
was improved by merging detailed and coarse information. In addition, in the decoder
layer of this method, the parameters of the overall structure were minimized by fixing the
number of channels of the final output. In CS-EN, 320 filters, batch normalization, and
ReLU functions were used.

Machines 2023, 11, 126 11 of 21

Machines 2023, 11, x FOR PEER REVIEW 11 of 21

4

3

2

1

, 1

, 2, 1 1 64 4,

, 3, 1 1 64 4, 1 1 64 3,

, 4, 1 1 64 4, 1 1 64 3, 1 1 64 2,

[]

[()]

[(), ()]

[(), (), ()]

DE

DE

DE

DE

input X ASPP

input X ASPP DE

input X ASPP DE DE

input X ASPP DE DE DE

F y

F y conv X

F y conv X conv X

F y conv X conv X conv X

 (8)

Figure 13. Structure of the decoder cross-stage (CS-EN).

where F represents the input feature map of each decoder layer, and [] denotes the input
in the cross-stage block of each decoder.

The decoder cross-stage block performed convolution by dividing the input feature
map F into two blocks. Therefore, as in the encoder part of the proposed model, increases
in the amount of computational complexity and transmission of excessive gradient infor-
mation were prevented in the decoder part, and the semantic segmentation performance
was improved by merging detailed and coarse information. In addition, in the decoder
layer of this method, the parameters of the overall structure were minimized by fixing the
number of channels of the final output. In CS-EN, 320 filters, batch normalization, and
ReLU functions were used.

3.4. Loss Function and Hyper Parameter
Focal loss [29], Intersection over Union (IoU) loss [30], and MS-SSIM [31] were

adopted to learn feature maps of various sizes. Focal loss was adopted to address the class
imbalance problem caused by cross-entropy loss. It increases the learning performance by
assigning greater weights to cases that are difficult to classify. IoU loss was adopted to
improve the performance of the actual label and the predicted result in semantic segmen-
tation. The last layer of the decoder step was calculated as a bilinear, upsampling, and
atrous convolution. To accurately distinguish the regions of each object, we used the struc-
tural similarity index measure (SSIM) [32] loss function, a multi-scale structure similarity
index that assigns higher weights to unclear boundaries. For the proposed model, the re-
gional distribution difference was directly proportional to the MS-SSIM value, which can

Figure 13. Structure of the decoder cross-stage (CS-EN).

3.4. Loss Function and Hyper Parameter

Focal loss [29], Intersection over Union (IoU) loss [30], and MS-SSIM [31] were adopted
to learn feature maps of various sizes. Focal loss was adopted to address the class imbalance
problem caused by cross-entropy loss. It increases the learning performance by assigning
greater weights to cases that are difficult to classify. IoU loss was adopted to improve
the performance of the actual label and the predicted result in semantic segmentation.
The last layer of the decoder step was calculated as a bilinear, upsampling, and atrous
convolution. To accurately distinguish the regions of each object, we used the structural
similarity index measure (SSIM) [32] loss function, a multi-scale structure similarity index
that assigns higher weights to unclear boundaries. For the proposed model, the regional
distribution difference was directly proportional to the MS-SSIM value, which can help
eliminate unclear boundaries. Two patches of corresponding N ∗ N size were split in the
correct label mask G (ground truth) and P (Prediction), the result of segmentation. The
SSIM function is expressed as follows (9):

SSIM(x, y) =

(
2µxµy + C1

)(
2σxσy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) . (9)

The multi-scale SSIM function is expressed as Equation (10) below.

MS-SSIM(x, y) =
M

∏
m=1

(
2µxµy + C1

µ2
x + µ2

y + C1

)βm(
2σxy + C2

σ2
x + σ2

y + C2

)γm

, (10)

where x is the prediction and y is the label. Finally, the MS-SSIM loss function is given by
Equation (11):

MS-SSIM LOSS = 1−MS-SSIM(x, y) (11)

where M represents the total number of sizes; µx and µy represent the averages of x and

Machines 2023, 11, 126 12 of 21

y, respectively; σx and σy represent the standard deviations of x and y, respectively; σxy
represents the covariance of x and y; and βm and γm represent the importance of each set
scale. In addition, C1, C2 were set to small values to exclude situations that were divided
by zero. M was set to 5, based on a previous study [31]. For the loss function, a three-step
segmentation loss function was applied by combining the focal loss function, MS-SSIM
loss function, and IoU loss function.

Table 1 shows hyperparameters for models. The size of the model’s input image is
fixed at 512 × 256, and the output image also maintains the same size. The dilated ratios of
the pyramid pooling layer were fixed at 0, 6, 12, and 18. The experiment was conducted
by designating the batch size as 32 and the epoch as 50. The initial learning rate was
fixed at 0.01.

Table 1. Hyperparameters for models.

Model Learning Rate Input Size Dilated Rate Batch_Size Epoch

PSPNet 0.01 512 × 256 X 32 50
DeepLabv1 0.01 512 × 256 12 32 50
DeepLabv2 0.01 512 × 256 [6, 12, 18, 24] 32 50
DeepLabv3 0.01 512 × 256 [0, 6, 12, 18] 32 50

UNet 0.01 512 × 256 X 32 50
UNet++ 0.01 512 × 256 X 32 50
UNet3+ 0.01 512 × 256 X 32 50

Our 0.01 512 × 256 [0, 6, 12, 18] 32 50

4. Result and Discussion
4.1. Datasets and Experimental Environments
4.1.1. KITTI-360 Dataset

The proposed method was validated based on the dataset proposed by KITTI-360. The
KITTI-360 dataset contains more than 320,000 images and 100,000 laser scans at a mileage
of 73.7 km. A dataset with annotation of 3D scenes and instance annotation of point cloud
data and 2D images was recorded in the suburbs of Karlsruhe, Germany. In this study, an
image was used as illustrated in Figure 12, and the resolution of the original image was
adjusted according to the input network size. The original image size of the dataset used
was 1408 × 376, and the image resolution was set to 512 × 256 pixels according to the
network size. The number of images in the dataset used was 61,058, and the number of
segmentation labels corresponding thereto was the same. To learn the proposed network
structure, a training dataset and a validation dataset were generated at a ratio of 9:1. The
test data were calculated for each model based on the learning results of each model and
compared. The equipment used for learning were the Intel i9 CPU, RTX3090ti GPU, and
128 GB RAM.

Figure 14 shows the histogram of the frequency of each class in the KITTI-360 dataset.
The KITTI-360 dataset has a total of 33 classes. We analyzed the classes and selected only
12 valid classes. In this study, the performance of each model was compared and analyzed
using 12 classes, including roads, sidewalls, buildings, fences, traffic signs, vegetation,
terrain, sky, people, cars, and trucks. Figure 15 shows an example of the images in the
KITTI-360 dataset.

4.1.2. Cityscapes Dataset

The Cityscapes dataset [25] is a widely used segmentation dataset containing high
quality pixel-level annotations of 5000 images (2975, 500, and 1525 for the training, valida-
tion, and test sets, respectively) and 20,000 coarsely annotated images collected in street
scenes from 50 different cities. Figure 16 shows the number of finely annotated pixels per

Machines 2023, 11, 126 13 of 21

class of Cityscapes. The original images are 1024× 2048 in resolution and contain 19 classes
in total. We also used the foggy cityscape dataset and rain cityscape to validate our method
on high-noise data.

Machines 2023, 11, x FOR PEER REVIEW 13 of 21

network structure, a training dataset and a validation dataset were generated at a ratio of
9:1. The test data were calculated for each model based on the learning results of each
model and compared. The equipment used for learning were the Intel i9 CPU, RTX3090ti
GPU, and 128 GB RAM.

Figure 14 shows the histogram of the frequency of each class in the KITTI-360 dataset.
The KITTI-360 dataset has a total of 33 classes. We analyzed the classes and selected only
12 valid classes. In this study, the performance of each model was compared and analyzed
using 12 classes, including roads, sidewalls, buildings, fences, traffic signs, vegetation,
terrain, sky, people, cars, and trucks. Figure 15 shows an example of the images in the
KITTI-360 dataset.

Figure 14. Class distribution diagram of KITTI-360 dataset.

(a) (b)

Figure 15. KITTI-360 Dataset Example: (a) KITTI-360 original image. (b) Segmentation label image.

4.1.2. Cityscapes Dataset
The Cityscapes dataset [25] is a widely used segmentation dataset containing high

quality pixel-level annotations of 5000 images (2975, 500, and 1525 for the training, vali-
dation, and test sets, respectively) and 20,000 coarsely annotated images collected in street
scenes from 50 different cities. Figure 16 shows the number of finely annotated pixels per
class of Cityscapes. The original images are 1024 × 2048 in resolution and contain 19 classes
in total. We also used the foggy cityscape dataset and rain cityscape to validate our
method on high-noise data.

Figure 14. Class distribution diagram of KITTI-360 dataset.

Machines 2023, 11, x FOR PEER REVIEW 13 of 21

network structure, a training dataset and a validation dataset were generated at a ratio of
9:1. The test data were calculated for each model based on the learning results of each
model and compared. The equipment used for learning were the Intel i9 CPU, RTX3090ti
GPU, and 128 GB RAM.

Figure 14 shows the histogram of the frequency of each class in the KITTI-360 dataset.
The KITTI-360 dataset has a total of 33 classes. We analyzed the classes and selected only
12 valid classes. In this study, the performance of each model was compared and analyzed
using 12 classes, including roads, sidewalls, buildings, fences, traffic signs, vegetation,
terrain, sky, people, cars, and trucks. Figure 15 shows an example of the images in the
KITTI-360 dataset.

Figure 14. Class distribution diagram of KITTI-360 dataset.

(a) (b)

Figure 15. KITTI-360 Dataset Example: (a) KITTI-360 original image. (b) Segmentation label image.

4.1.2. Cityscapes Dataset
The Cityscapes dataset [25] is a widely used segmentation dataset containing high

quality pixel-level annotations of 5000 images (2975, 500, and 1525 for the training, vali-
dation, and test sets, respectively) and 20,000 coarsely annotated images collected in street
scenes from 50 different cities. Figure 16 shows the number of finely annotated pixels per
class of Cityscapes. The original images are 1024 × 2048 in resolution and contain 19 classes
in total. We also used the foggy cityscape dataset and rain cityscape to validate our
method on high-noise data.

Figure 15. KITTI-360 Dataset Example: (a) KITTI-360 original image. (b) Segmentation label image.

Machines 2023, 11, x FOR PEER REVIEW 14 of 21

Figure 16. Number of finely annotated pixels (y-axis) per class (Cityscapes) [25].

Foggy Cityscapes [33] were created by compositing fog onto images of Cityscapes,
so they basically have the same structure as Cityscapes. Cityscapes data is organized into
30 classes and eight categories. Classes with small frequencies were excluded, and 19
classes were actually used for compatibility with other benchmark data.

4.2. Specifications of Classic Models
We compared the performance of the proposed model with the well-known UNet,

UNet++, UNet3+, Deeplabv1, Deeplabv2, and Deeplabv3 models in semantic segmenta-
tion. The models used in this experiment were obtained from reliable online sources. Table
2 lists the information of the models, links to source codes, and backbones of each model
used.

Table 2. Specifications of classical models.

Method Author
Year

Published
Source Code Backbone Contribution

PSPNet Zhao et al. 2017 https://github.com/hszhao/semseg
(Accessed on 1 May 2022) resnet50 Pyramid Pooling Module

DeepLab
v1

Chen et al. 2014 https://bitbucket.org/deeplab/deeplab-public/src/master/
(Accessed on 28 May 2022) Vgg16

DeepLab
v2

Chen et al. 2017 https://bitbucket.org/deeplab/deeplab-public/src/master/
(Accessed on 1 Jun 2022) resnet50

Atrous Spatial Pyramid
Pooling

DeepLab
v3

Chen et al. 2017 https://pytorch.org/hub/pytorch_vision_deeplabv3_resn
et101/ (Accessed on 3 July 2022) resnet50

Extend ASPP by introducing
global pooling

UNet
Ronneberget

et al.
2015 https://github.com/ZJUGiveLab/UNet-Version

(Accessed on 1 may 2022)
Encoder–
Decoder

Skip-connection

UNet++ Zhou et al. 2018 https://github.com/ZJUGiveLab/UNet-Version
(Accessed on 1 July 2022)

Encoder–
Decoder

Nest Skip-connection

UNet3+ Huang et al. 2020 https://github.com/ZJUGiveLab/UNet-Version
(Accessed on 15 July 2022)

Encoder–
Decoder

Full scale Skip-connection

4.3. Comparison of Parameters by Each Model
In this sub-section, the number of learning parameters for each model was compared

and analyzed. The number of training parameters for each model was obtained using
PyTorch library [34]. Table 3 lists the number of parameters per model.

Table 3. Number of parameters per model.

Model Parameter<Resnet-50>
PSPNet 49.07 M

DeepLabv1 20.50 M
DeepLabv2 61.44 M
DeepLabv3 58.63 M

Figure 16. Number of finely annotated pixels (y-axis) per class (Cityscapes) [25].

Foggy Cityscapes [33] were created by compositing fog onto images of Cityscapes, so
they basically have the same structure as Cityscapes. Cityscapes data is organized into 30
classes and eight categories. Classes with small frequencies were excluded, and 19 classes
were actually used for compatibility with other benchmark data.

4.2. Specifications of Classic Models

We compared the performance of the proposed model with the well-known UNet,
UNet++, UNet3+, Deeplabv1, Deeplabv2, and Deeplabv3 models in semantic segmentation.
The models used in this experiment were obtained from reliable online sources. Table 2 lists
the information of the models, links to source codes, and backbones of each model used.

Machines 2023, 11, 126 14 of 21

Table 2. Specifications of classical models.

Method Author Year
Published Source Code Backbone Contribution

PSPNet Zhao et al. [26] 2017
https://github.com/

hszhao/semseg
(Accessed on 1 May 2022)

resnet50 Pyramid
Pooling Module

DeepLabv1 Chen et al. [8] 2014

https://bitbucket.org/
deeplab/deeplab-public/

src/master/
(Accessed on 28 May 2022)

Vgg16

DeepLabv2 Chen et al. [9] 2017

https://bitbucket.org/
deeplab/deeplab-public/

src/master/
(Accessed on 1 Jun 2022)

resnet50 Atrous Spatial
Pyramid Pooling

DeepLabv3 Chen et al. [10] 2017

https://pytorch.org/hub/
pytorch_vision_deeplabv3

_resnet101/
(Accessed on 3 July 2022)

resnet50
Extend ASPP

by introducing
global pooling

UNet Ronneberger et al. [5] 2015
https://github.com/

ZJUGiveLab/UNet-Version
(Accessed on 1 may 2022)

Encoder–Decoder Skip-connection

UNet++ Zhou et al. [7] 2018
https://github.com/

ZJUGiveLab/UNet-Version
(Accessed on 1 July 2022)

Encoder–Decoder Nest
Skip-connection

UNet3+ Huang et al. [6] 2020
https://github.com/

ZJUGiveLab/UNet-Version
(Accessed on 15 July 2022)

Encoder–Decoder Full scale
Skip-connection

4.3. Comparison of Parameters by Each Model

In this sub-section, the number of learning parameters for each model was compared
and analyzed. The number of training parameters for each model was obtained using
PyTorch library [34]. Table 3 lists the number of parameters per model.

Table 3. Number of parameters per model.

Model Parameter<Resnet-50>

PSPNet 49.07 M
DeepLabv1 20.50 M
DeepLabv2 61.44 M
DeepLabv3 58.63 M

UNet 39.39 M
UNet++ 47.18 M
UNet3+ 26.97 M

Our 12.96 M

Evidently, DeepLabv1 with a single atrous convolution module, used the rate 12 of
3 × 3 kernel, and had the smallest parameter in the DeepLab series, with 20.5 M parameters.
DeepLabV2, which includes an ASPP module composed of four atrous convolutions for
multi-scale classes, had the most learning parameters of 61 M. DeepLabv3, which inherited
the ASPP module, has 58.63 M parameters, almost the same number as DeepLabV2.

UNet++ had more learning parameters compared with the classical U-Net owing to
the addition of a dense convolution block to the skip connection. Because UNet3+ reduces
the output feature map of the encoder layer to 64 channels and concatenates them, the
number of parameters was significantly smaller than those of UNet and UNet++.

https://github.com/hszhao/semseg
https://github.com/hszhao/semseg
https://bitbucket.org/deeplab/deeplab-public/src/master/
https://bitbucket.org/deeplab/deeplab-public/src/master/
https://bitbucket.org/deeplab/deeplab-public/src/master/
https://bitbucket.org/deeplab/deeplab-public/src/master/
https://bitbucket.org/deeplab/deeplab-public/src/master/
https://bitbucket.org/deeplab/deeplab-public/src/master/
https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
https://pytorch.org/hub/pytorch_vision_deeplabv3_resnet101/
https://github.com/ZJUGiveLab/UNet-Version
https://github.com/ZJUGiveLab/UNet-Version
https://github.com/ZJUGiveLab/UNet-Version
https://github.com/ZJUGiveLab/UNet-Version
https://github.com/ZJUGiveLab/UNet-Version
https://github.com/ZJUGiveLab/UNet-Version

Machines 2023, 11, 126 15 of 21

In the proposed model, the number of parameters was significantly fewer than those
of other models because the decoder layer was generated in a similar way to UNet3+,
and the cross-stage method was applied to each layer. These techniques transfer infor-
mation that is effective for segmentation to other layers, such as the organ boundaries
included in low-level feature maps. Therefore, the proposed model had few training
parameters but guaranteed higher accuracy. In addition, it had approximately 78% and
36% fewer parameters compared with DeepLapv2, which has the most parameters, and
DeepLabv1, respectively.

4.4. Comparison Results by Performance Index

To evaluate the performance of the proposed system, the performance index of
Equation (12) and mean intersection over union (mIOU) were used.

Precision = TP
FP+TP ,

Recall = TP
FN+TP ,

F1− score = 2 ∗ Precision ∗ Recall
Precision+Recall ,

(12)

where TP is the true positive; FP is the false positive; FN is the false negative; and TN is the
true negative.

No post-processing tool was applied for the models and the results of each were
optimized using the cross-entropy loss function. Table 4 lists the performance metrics
for each model. In terms of precision, DeepLabv3 had the best performance of all the
models, with a value of 0.850, which was approximately 1% better than the proposed
model. The recall performance of the proposed model was the best, at 0.824, and compared
with DeepLabv1 and UNet3+, it was superior by 12% and 0.7%, respectively. The F1-score of
DeepLabv1 was the lowest, at 0.726. The F1-score of the proposed model was approximately
0.7% and 13.5% higher than that of UNet3+ and DeepLabv1, respectively, and was the
best, at 0.824. In terms of the mIoU, which is the most important indicator in the field of
semantic segmentation, the proposed model was approximately 0.7% to 17% better than
the other models.

Table 4. Performance metrics for each model.

Model Precision Recall F1-Score mIoU

PSPNet 0.753 0.849 0.798 0.686
DeepLabv1 0.675 0.785 0.726 0.605
DeepLabv2 0.764 0.849 0.804 0.694
DeepLabv3 0.770 0.850 0.808 0.700

UNet 0.760 0.831 0.794 0.690
UNet++ 0.773 0.828 0.799 0.704
UNet3+ 0.794 0.843 0.818 0.724

Our 0.803 0.847 0.824 0.729

As can be seen from Table 4, the proposed model was the best based on the three
indicators and exhibited superior performance compared with other models. In particular,
as discussed in Section 3.2, our model exhibited the best performance with the fewest
parameters of all the models.

4.5. Comparison of Performance of Loss Functions

In this study, the performance of the proposed model was evaluated based on the
various loss functions described in the previous section. Table 5 presents the performance
results of the proposed model for each loss function and combination. Cross-entropy was
outperformed by the focal loss function and other combinations, and the combination

Machines 2023, 11, 126 16 of 21

proposed herein (focal + IoU + MS−SSIM) exhibited the best performance. Therefore, an
appropriate combination of loss functions was required for excellent semantic segmentation.

Table 5. Performance indicators based on loss function.

Loss function Precision Recall F1-Score mIoU

Cross Entropy 0.803 0.847 0.824 0.729
Focal 0.810 0.851 0.830 0.732

Focal + IoU 0.814 0.849 0.831 0.738
Focal + IoU + MS-SSIM 0.821 0.858 0.839 0.749

4.6. Comparison of Performance of Semantic Segmentation

The performance of each model at semantic segmentation is discussed in this subsec-
tion. The performance of each model was evaluated using the mIoU of the 12 classes, and
the results are listed in Table 6. Table 6 is arranged from left to right, based on the mIoU
values among the classes. The first column shows the individual models, and the second
to 12th columns show the mIoU of the individual classes. The last column presents the
average mIoU for each model. Deeplabv2, Deeplabv3, and the proposed model exhibited
the best results for each of the five classes.

Table 6. Performance metrics for each model.

Method Road Sky Car Vegt Bldg Sdwlk Terr Fence Wall Truck Persn TrafSi mIoU

PSPNet 0.969 0.928 0.913 0.894 0.876 0.839 0.829 0.567 0.435 0.289 0.364 0.323 0.686
Deeplabv1 0.966 0.908 0.792 0.876 0.860 0.805 0.730 0.508 0.435 0.198 0.020 0.165 0.605
Deeplabv2 0.973 0.939 0.914 0.903 0.886 0.851 0.843 0.622 0.460 0.219 0.376 0.341 0.694
Deeplabv3 0.973 0.938 0.917 0.903 0.885 0.852 0.844 0.62 0.461 0.283 0.378 0.342 0.700

Unet 0.972 0.924 0.903 0.900 0.873 0.837 0.821 0.623 0.467 0.430 0.227 0.306 0.690
Unet++ 0.970 0.932 0.915 0.896 0.881 0.847 0.818 0.626 0.444 0.670 0.245 0.199 0.704
Unet3+ 0.971 0.935 0.932 0.899 0.885 0.848 0.830 0.647 0.464 0.662 0.355 0.256 0.724

Our model 0.970 0.933 0.935 0.901 0.884 0.848 0.848 0.625 0.456 0.676 0.383 0.292 0.729

Average 0.971 0.930 0.903 0.897 0.879 0.841 0.820 0.605 0.453 0.428 0.294 0.278 0.692

Evidently, the proposed model exhibited good performance in the low-frequency
model, and Deeplabv2 exhibited excellent performance in the high-frequency class in the
dataset. In addition, the proposed model exhibited the best performance in terms of the
average mIoU for all classes.

Figure 17 shows the visualization results of each model using the KITT-360. In
Figure 18, the original images contain simple classes, and all models exhibited stable
performance in the visualization results. Figure 18 shows the visualization results with
more complex classes than those in Figure 17. As shown in Figure 18, the proposed model
was superior to the other models. Numerous false positives were confirmed in the case of
DeepLabv3 owing to shadows in images containing several classes.

4.7. Performance Comparison for Cityscapes Data and High-Noise Data
4.7.1. Cityscapes Data

We evaluated our model with only fine annotated cityscapes data and used 2975
training, 500 validation, and 1525 test images. The results can be found in Table 7. The
results in Table 7 indicate that our model has superior performance compared to other
models in seven classes. Additionally, the average mIOU of our model across all classes is
about 11% better than Deeplabv3. Significantly, the classes with excellent results are those
with low frequency, as shown in Figure 16. Therefore, the proposed model has an excellent

Machines 2023, 11, 126 17 of 21

performance in the field using small training data. Figure 19 shows the results through the
dataset of cityscapes. Unlike other models, we show the results of finding detailed features.
As an example, extracting features for thin columns shows higher performance than
other models.

Machines 2023, 11, x FOR PEER REVIEW 17 of 21

performance in the visualization results. Figure 18 shows the visualization results with
more complex classes than those in Figure 17. As shown in Figure 18, the proposed model
was superior to the other models. Numerous false positives were confirmed in the case of
DeepLabv3 owing to shadows in images containing several classes.

Figure 17. Visualization results on KITT-360 (including simple class).

Figure 18. Visualization results on KITT-360 (including complex class).

4.7. Performance Comparison for Cityscapes Data and High-Noise Data
4.7.1. Cityscapes Data

We evaluated our model with only fine annotated cityscapes data and used 2975
training, 500 validation, and 1525 test images. The results can be found in Table 7. The
results in Table 7 indicate that our model has superior performance compared to other
models in seven classes. Additionally, the average mIOU of our model across all classes
is about 11% better than Deeplabv3. Significantly, the classes with excellent results are
those with low frequency, as shown in Figure 16. Therefore, the proposed model has an
excellent performance in the field using small training data. Figure 19 shows the results
through the dataset of cityscapes. Unlike other models, we show the results of finding
detailed features. As an example, extracting features for thin columns shows higher per-
formance than other models.

Figure 17. Visualization results on KITT-360 (including simple class).

Machines 2023, 11, x FOR PEER REVIEW 17 of 21

performance in the visualization results. Figure 18 shows the visualization results with
more complex classes than those in Figure 17. As shown in Figure 18, the proposed model
was superior to the other models. Numerous false positives were confirmed in the case of
DeepLabv3 owing to shadows in images containing several classes.

Figure 17. Visualization results on KITT-360 (including simple class).

Figure 18. Visualization results on KITT-360 (including complex class).

4.7. Performance Comparison for Cityscapes Data and High-Noise Data
4.7.1. Cityscapes Data

We evaluated our model with only fine annotated cityscapes data and used 2975
training, 500 validation, and 1525 test images. The results can be found in Table 7. The
results in Table 7 indicate that our model has superior performance compared to other
models in seven classes. Additionally, the average mIOU of our model across all classes
is about 11% better than Deeplabv3. Significantly, the classes with excellent results are
those with low frequency, as shown in Figure 16. Therefore, the proposed model has an
excellent performance in the field using small training data. Figure 19 shows the results
through the dataset of cityscapes. Unlike other models, we show the results of finding
detailed features. As an example, extracting features for thin columns shows higher per-
formance than other models.

Figure 18. Visualization results on KITT-360 (including complex class).

Table 7. Performance comparison of each model on the Cityscape dataset.

Method Road Sky Car Vegt Bldg Sdwlk Terr Fence Wall Truck Persn TrafSi mIoU

PSPNet 0.585 0.003 0.121 0.271 0.503 0.198 0.013 0 0.009 0 0 0 0.142
Deeplabv3 0.855 0.864 0.769 0.838 0.72 0.529 0.348 0.184 0.125 0.148 0.526 0.358 0.522

Unet3+ 0.891 0.861 0.77 0.84 0.769 0.538 0.383 0.165 0.196 0.041 0.433 0.27 0.513
Our model 0.888 0.834 0.841 0.827 0.761 0.593 0.452 0.244 0.261 0.408 0.541 0.393 0.587

Average 0.805 0.641 0.625 0.694 0.688 0.465 0.299 0.148 0.148 0.149 0.375 0.255 0.441

Machines 2023, 11, 126 18 of 21

4.7.2. Cityscapes Data with High-Noise

In this experiment, we evaluated the model’s performance on noisy data. Foggy and
Rain Cityscapes is a dataset that composites fog and rain over natural scenes. The images
are rendered using the images and depth maps from Cityscapes [33]. Tables 8 and 9 show
the performance comparison of each model on the Foggy and Rain Cityscape dataset,
respectively. In Table 8, we can see that the proposed model performs better than other
models in the nine classes.

Machines 2023, 11, x FOR PEER REVIEW 18 of 21

Table 7. Performance comparison of each model on the Cityscape dataset.

Method Road Sky Car Vegt Bldg Sdwlk Terr Fence Wall Truck Persn TrafSi mIoU
PSPNet 0.585 0.003 0.121 0.271 0.503 0.198 0.013 0 0.009 0 0 0 0.142
Deeplabv3 0.855 0.864 0.769 0.838 0.72 0.529 0.348 0.184 0.125 0.148 0.526 0.358 0.522
Unet3+ 0.891 0.861 0.77 0.84 0.769 0.538 0.383 0.165 0.196 0.041 0.433 0.27 0.513
Our model 0.888 0.834 0.841 0.827 0.761 0.593 0.452 0.244 0.261 0.408 0.541 0.393 0.587
Average 0.805 0.641 0.625 0.694 0.688 0.465 0.299 0.148 0.148 0.149 0.375 0.255 0.441

Figure 19. Visualization results on Cityscapes (including complex class).

4.7.2. Cityscapes Data with High-Noise
In this experiment, we evaluated the model’s performance on noisy data. Foggy and

Rain Cityscapes is a dataset that composites fog and rain over natural scenes. The images
are rendered using the images and depth maps from Cityscapes [33]. Tables 8 and 9 show
the performance comparison of each model on the Foggy and Rain Cityscape dataset, re-
spectively. In Table 8, we can see that the proposed model performs better than other
models in the nine classes.

This result is an improvement over the previous results from the original Cityscape
dataset. Moreover, Table 9 shows the dramatic performance of our model on the more
noisy Rain Cityscape dataset. In addition, as shown in Figure 20, the proposed model
shows excellent performance for image segmentation in fog and rain situations.

Table 8. Performance comparison of each model on the Foggy Cityscape dataset.

Method Road Sky Car Vegt Bldg Sdwlk Terr Fence Wall Truck Persn TrafSi mIoU
PSPNet 0.643 0.001 0.029 0.096 0.404 0.211 0.003 0 0.002 0 0 0 0.116
Deeplabv3 0.857 0.356 0.659 0.344 0.574 0.459 0.269 0.134 0.071 0.056 0.317 0.143 0.361
Unet3+ 0.845 0.413 0.655 0.439 0.561 0.429 0.248 0.093 0.077 0.035 0.301 0.112 0.351
Our model 0.832 0.367 0.687 0.349 0.501 0.496 0.317 0.138 0.087 0.103 0.445 0.206 0.370
Average 0.794 0.284 0.508 0.307 0.510 0.399 0.209 0.091 0.059 0.049 0.266 0.115 0.299

Table 9. Performance comparison of each model on the Rain Cityscape dataset.

Method Road Sky Car Vegt Bldg Sdwlk Terr Fence Wall Truck Persn TrafSi mIoU
PSPNet 0.554 0 0.007 0.075 0.3 0.192 0.002 0 0.001 0 0 0 0.094

Figure 19. Visualization results on Cityscapes (including complex class).

Table 8. Performance comparison of each model on the Foggy Cityscape dataset.

Method Road Sky Car Vegt Bldg Sdwlk Terr Fence Wall Truck Persn TrafSi mIoU

PSPNet 0.643 0.001 0.029 0.096 0.404 0.211 0.003 0 0.002 0 0 0 0.116
Deeplabv3 0.857 0.356 0.659 0.344 0.574 0.459 0.269 0.134 0.071 0.056 0.317 0.143 0.361
Unet3+ 0.845 0.413 0.655 0.439 0.561 0.429 0.248 0.093 0.077 0.035 0.301 0.112 0.351
Our model 0.832 0.367 0.687 0.349 0.501 0.496 0.317 0.138 0.087 0.103 0.445 0.206 0.370

Average 0.794 0.284 0.508 0.307 0.510 0.399 0.209 0.091 0.059 0.049 0.266 0.115 0.299

Table 9. Performance comparison of each model on the Rain Cityscape dataset.

Method Road Sky Car Vegt Bldg Sdwlk Terr Fence Wall Truck Persn TrafSi mIoU

PSPNet 0.554 0 0.007 0.075 0.3 0.192 0.002 0 0.001 0 0 0 0.094
Deeplabv3 0.598 0.408 0.38 0.222 0.419 0.128 0.253 0.003 0.005 0.023 0.131 0.094 0.222
Unet3+ 0.473 0.52 0.285 0.471 0.399 0.173 0.208 0.021 0.015 0.002 0.061 0.124 0.236
Our model 0.896 0.596 0.677 0.406 0.517 0.534 0.593 0.034 0.292 0.03 0.332 0.212 0.420

Average 0.630 0.381 0.337 0.294 0.409 0.257 0.264 0.015 0.078 0.014 0.131 0.108 0.243

This result is an improvement over the previous results from the original Cityscape
dataset. Moreover, Table 9 shows the dramatic performance of our model on the more noisy
Rain Cityscape dataset. In addition, as shown in Figure 20, the proposed model shows
excellent performance for image segmentation in fog and rain situations.

Machines 2023, 11, 126 19 of 21

Machines 2023, 11, x FOR PEER REVIEW 19 of 21

Deeplabv3 0.598 0.408 0.38 0.222 0.419 0.128 0.253 0.003 0.005 0.023 0.131 0.094 0.222
Unet3+ 0.473 0.52 0.285 0.471 0.399 0.173 0.208 0.021 0.015 0.002 0.061 0.124 0.236
Our model 0.896 0.596 0.677 0.406 0.517 0.534 0.593 0.034 0.292 0.03 0.332 0.212 0.420
Average 0.630 0.381 0.337 0.294 0.409 0.257 0.264 0.015 0.078 0.014 0.131 0.108 0.243

Figure 20. Visualization results on Cityscapes with rain and fog (including complex class).

5. Discussion
The proposed model had few training parameters by the two-step cross-stage. Re-

ducing the learning parameters of the model can reduce the training time of the model
and alleviate the overfitting problem. As shown in Table 3, our model has significantly
fewer parameters compared to DeepLabv3 and UNet3+. In Table 6, the mIOU perfor-
mance of the proposed model and the performance on low-frequency data are not clearly
different from other models. However, in Tables 7–9, the advantages of the proposed
model are evident. Our model has an advantage in the overfitting problem due to small
parameters. Therefore, it performs well in low-precision classes. This result is a great ad-
vantage in realistic semantic segmentation problems with complex classes.

Our model reduces many learning parameters by applying cross-stage to both the
decoder and encoder. However, extreme reduction of the parameters may result in a dis-
advantage in the accuracy of the model. Therefore, we improved the performance of the
proposed model by applying a 4-part ASPP (multi(ML)-ASPP) between the encoder and
decoder. The application of ML-ASPP results in an increase in learning parameters, but
better transfers details of various features of the input image to the decoder stage. These
advantages of our model can be clearly seen in the high-noise dataset experiments and
Tables 8 and 9. In Tables 8 and 9, we can see that the proposed model performs better than
other models in the 9 classes and 12 classes, respectively. These results prove that our
model reflects the feature information of the input image better than other models and is
robust against noise.

6. Conclusions
A new encoder–decoder-based semantic segmentation model that combines an ML-

ASPP and a two-step cross-stage was proposed in this study. The ML-ASPP of the pro-
posed model transferred coarse or contextual information, such as class boundaries in
high-resolution features, to the decoder. A two-step cross-stage was applied to the en-
coder and decoder stages; it reduced the learning parameters of the entire model to enable
fast computation. The performance of the proposed model was evaluated and compared
with the classical models using the KITTI-360 2D segmentation dataset and Cityscapes. In
addition, the number of training parameters of the proposed model was compared with

Figure 20. Visualization results on Cityscapes with rain and fog (including complex class).

5. Discussion

The proposed model had few training parameters by the two-step cross-stage. Reduc-
ing the learning parameters of the model can reduce the training time of the model and
alleviate the overfitting problem. As shown in Table 3, our model has significantly fewer
parameters compared to DeepLabv3 and UNet3+. In Table 6, the mIOU performance of
the proposed model and the performance on low-frequency data are not clearly different
from other models. However, in Tables 7–9, the advantages of the proposed model are
evident. Our model has an advantage in the overfitting problem due to small parameters.
Therefore, it performs well in low-precision classes. This result is a great advantage in
realistic semantic segmentation problems with complex classes.

Our model reduces many learning parameters by applying cross-stage to both the
decoder and encoder. However, extreme reduction of the parameters may result in a
disadvantage in the accuracy of the model. Therefore, we improved the performance of the
proposed model by applying a 4-part ASPP (multi(ML)-ASPP) between the encoder and
decoder. The application of ML-ASPP results in an increase in learning parameters, but
better transfers details of various features of the input image to the decoder stage. These
advantages of our model can be clearly seen in the high-noise dataset experiments and
Tables 8 and 9. In Tables 8 and 9, we can see that the proposed model performs better
than other models in the 9 classes and 12 classes, respectively. These results prove that our
model reflects the feature information of the input image better than other models and is
robust against noise.

6. Conclusions

A new encoder–decoder-based semantic segmentation model that combines an ML-
ASPP and a two-step cross-stage was proposed in this study. The ML-ASPP of the proposed
model transferred coarse or contextual information, such as class boundaries in high-
resolution features, to the decoder. A two-step cross-stage was applied to the encoder
and decoder stages; it reduced the learning parameters of the entire model to enable fast
computation. The performance of the proposed model was evaluated and compared with
the classical models using the KITTI-360 2D segmentation dataset and Cityscapes. In
addition, the number of training parameters of the proposed model was compared with
the other models. Further, performance evaluation was performed using various loss
functions, and the mIoU results for each class were compared and analyzed. The proposed
model had an average mIoU of 0.729 for all the classes, and a performance improvement of
approximately 17% compared with DeepLabv1, which exhibited the lowest performance.
In Cityscapes data with high noise, we can see that the proposed model performs better
than other models in the 9 classes and 12 classes, respectively.

Machines 2023, 11, 126 20 of 21

Author Contributions: Conceptualization, methodology and software, M.-H.P.; investigation, J.-H.C.;
writing and original draft preparation, Y.-T.K.; All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by Korea Institute of Planning and Evaluation for Technology
in Food, Agriculture and Forestry (IPET) through Open Field Smart Agriculture Technology Short-
term Advancement Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA)
(122032-03-1SB010).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that there are no conflict of interest regarding the publica-
tion of this article.

References
1. Atif, N.; Bhuyan, M.; Ahamed, S. A Review on Semantic Segmentation from a Modern Perspective. In Proceedings of the

International Conference on Electrical, Electronics and Computer Engineering (UPCON), Aligarh, India, 8–10 November 2019;
pp. 1–6.

2. Mo, Y.; Wu, Y.; Yang, X.; Liu, F.; Liao, Y. Review the state-of-the-art technologies of semantic segmentation based on deep learning.
Neurocomputing 2022, 493, 626–646. [CrossRef]

3. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 12 June 2015; pp. 3431–3440.

4. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

5. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

6. Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Wu, J. Unet 3+: A full-scale connected unet for
medical image segmentation. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1055–1059.

7. Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation.
In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin/Heidelberg,
Germany, 2018; pp. 3–11.

8. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets
and fully connected crfs. arXiv 2014, arXiv:1412.7062.

9. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]
[PubMed]

10. Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

11. Lafferty, J.; McCallum, A.; Pereira, F.C. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. 2001. Available online: https://repository.upenn.edu/cis_papers/159/ (accessed on 2 November 2022).

12. Levi, D.; Garnett, N.; Fetaya, E.; Herzlyia, I. StixelNet: A Deep Convolutional Network for Obstacle Detection and Road
Segmentation. In Proceedings of the British Machine Vision Conference, Swansea, UK, 7–10 September 2015; p. 4.

13. Oliveira, G.L.; Burgard, W.; Brox, T. Efficient deep models for monocular road segmentation. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4885–4891.

14. Romera, E.; Alvarez, J.M.; Bergasa, L.M.; Arroyo, R. Erfnet: Efficient residual factorized convnet for real-time semantic segmenta-
tion. IEEE Trans. Intell. Transp. Syst. 2017, 19, 263–272. [CrossRef]

15. Pizzati, F.; García, F. Enhanced free space detection in multiple lanes based on single CNN with scene identification. In Proceedings
of the IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 2536–2541.

16. Scheck, T.; Mallandur, A.; Wiede, C.; Hirtz, G. Where to drive: Free space detection with one fisheye camera. In Proceedings of
the Twelfth International Conference on Machine Vision (ICMV 2019), Amsterdam, The Netherlands, 16–18 November 2020;
pp. 777–786.

17. Hou, Y.; Ma, Z.; Liu, C.; Loy, C.C. Learning Lightweight Lane Detection Cnns by Self Attention Distillation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 1013–1021.

18. Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. Enet: A deep neural network architecture for real-time semantic segmentation.
arXiv 2016, arXiv:1606.02147.

19. Chan, Y.-C.; Lin, Y.-C.; Chen, P.-C. Lane Mark and Drivable Area Detection Using a Novel Instance Segmentation Scheme.
In Proceedings of the IEEE/SICE International Symposium on System Integration (SII), Paris, France, 14–16 January 2019;
pp. 502–506.

http://doi.org/10.1016/j.neucom.2022.01.005
http://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
https://repository.upenn.edu/cis_papers/159/
http://doi.org/10.1109/TITS.2017.2750080

Machines 2023, 11, 126 21 of 21

20. Jung, H.G.; Kim, D.S.; Yoon, P.J.; Kim, J. Parking Slot Markings Recognition for Automatic Parking Assist System. In Proceedings
of the IEEE Intelligent Vehicles Symposium, Shanghai, China, 13–15 June 2006; pp. 106–113.

21. Riid, A.; Pihlak, R.; Liinev, R. Identification of Drivable Road Area from Orthophotos Using a Convolutional Neural Network. In
Proceedings of the 17th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 6–8 October 2020; pp. 1–5.

22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

23. Qiao, D.; Zulkernine, F. Drivable Area Detection Using Deep Learning Models for Autonomous Driving. In Proceedings of the
2021 IEEE International Conference on Big Data, Orlando, FL, USA, 15–18 December 2021; pp. 5233–5238.

24. Liao, Y.; Xie, J.; Geiger, A. KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D. IEEE Trans.
Pattern Anal. Mach. Intell. 2022. [CrossRef] [PubMed]

25. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset
for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and pattern Recognition,
Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223.

26. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.

27. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

28. Wang, C.-Y.; Liao, H.-Y.M.; Wu, Y.-H.; Chen, P.-Y.; Hsieh, J.-W.; Yeh, I.-H. CSPNet: A New Backbone That Can Enhance Learning
Capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle,
WA, USA, 14–19 June 2020; pp. 390–391.

29. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

30. Máttyus, G.; Luo, W.; Urtasun, R. Deeproadmapper: Extracting Road Topology from Aerial Images. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3438–3446.

31. Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale Structural Similarity for Image Quality Assessment. In Proceedings of the
The Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 9–12 November 2003;
pp. 1398–1402.

32. Zhou, W. Image quality assessment: From error measurement to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–613.
33. Sakaridis, C.; Dai, D.; Van Gool, L. Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 2018, 126, 973–992.

[CrossRef]
34. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An

imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TPAMI.2022.3179507
http://www.ncbi.nlm.nih.gov/pubmed/35648872
http://doi.org/10.1007/s11263-018-1072-8

	Introduction
	Related Research
	Proposed Method
	CS-EN
	ML-ASPP
	Decoder Cross-Stage (CS-EN)
	Loss Function and Hyper Parameter

	Result and Discussion
	Datasets and Experimental Environments
	KITTI-360 Dataset
	Cityscapes Dataset

	Specifications of Classic Models
	Comparison of Parameters by Each Model
	Comparison Results by Performance Index
	Comparison of Performance of Loss Functions
	Comparison of Performance of Semantic Segmentation
	Performance Comparison for Cityscapes Data and High-Noise Data
	Cityscapes Data
	Cityscapes Data with High-Noise

	Discussion
	Conclusions
	References

