
Citation: Grenko, T.; Baressi Šegota,

S.; And̄elić, N.; Lorencin, I.; Štifanić,

D.; Musulin, J.; Glučina, M.; Franović,

B.; Car, Z. On the Use of a Genetic

Algorithm for the Determining

Ho–Cook Coefficients in Continuous

Path Planning of Industrial Robotic

Manipulators. Machines 2023, 11, 167.

https://doi.org/10.3390/

machines11020167

Academic Editors: Peter Odry, Akos

Odry and Jan Awrejcewicz

Received: 23 December 2022

Revised: 13 January 2023

Accepted: 22 January 2023

Published: 25 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

On the Use of a Genetic Algorithm for Determining Ho–Cook
Coefficients in Continuous Path Planning of Industrial
Robotic Manipulators
Teodor Grenko 1,† , Sandi Baressi Šegota 2,*,† , Nikola And̄elić 2 , Ivan Lorencin 2 , Daniel Štifanić 2 ,
Jelena Štifanić 2 , Matko Glučina 2 , Borna Franović 2 and Zlatan Car 2

1 ADRIA-ELECTRONIC Ltd., Andrije Kačića Miošića 13, 51000 Rijeka, Croatia
2 Department of Automation and Electronics, Faculty of Engineering, University of Rijeka, Vukovarska 58,

51000 Rijeka, Croatia
* Correspondence: sbaressisegota@riteh.hr; Tel.: +385-51-505-715
† These authors contributed equally to this work.

Abstract: Path planning is one of the key steps in the application of industrial robotic manipulators.
The process of determining trajectories can be time-intensive and mathematically complex, which
raises the complexity and error proneness of this task. For these reasons, the authors tested the
application of a genetic algorithm (GA) on the problem of continuous path planning based on
the Ho–Cook method. The generation of trajectories was optimized with regard to the distance
between individual segments. A boundary condition was set regarding the minimal values that
the trajectory parameters can be set in order to avoid stationary solutions. Any distances between
segments introduced by this condition were addressed with Bezier spline interpolation applied
between evolved segments. The developed algorithm was shown to generate trajectories and can
easily be applied for the further path planning of various robotic manipulators, which indicates great
promise for the use of such algorithms.

Keywords: evolutionary computing; genetic algorithm; industrial robotic manipulators; path planning

1. Introduction

The most significant element in the application of industrial robotic manipulators
on realistic tasks is the path planning process [1]. This process determines the trajectory
of the joint movements—their positions, speeds, and accelerations—allowing the robotic
manipulator to perform operations within its environment [2]. The goal of path planning
is to calculate paths that satisfy the preset conditions that have to be fulfilled in order to
accomplish the task. There are two main paradigms of trajectory determination: point-
to-point and continuous path planning [3,4]. Point-to-point planning concerns itself with
generating paths between two points in space and is commonly used for operations such
as the pick-and-place transfer of objects [5]. Continuous path planning, on the other hand,
takes into account the movement not just between the initial and final points in space
but also the positions and speeds between them. Such an approach is commonly used for
tasks such as welding or painting objects in space [6]. Multiple deterministic methods can
be used to perform the path planning of industrial robotic manipulators continuously: Ho–
Cook [7], Taylor’s polynomial approach [8], or interpolation between trajectory points [9].
While these algorithms perform well, they can be computationally complex and, depending
on the mode of application, error-prone. Evolutionary computing is a branch of artificial
intelligence that deals with the study of algorithms that imitate natural processes [10].
The basic algorithm in this area is the so-called genetic algorithm, which, by its design,
imitates the natural process of evolution [11]. Evolutionary computing algorithms have
been shown to have many uses in robotics [12].

Machines 2023, 11, 167. https://doi.org/10.3390/machines11020167 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines11020167
https://doi.org/10.3390/machines11020167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0000-0001-8726-8314
https://orcid.org/0000-0002-3015-1024
https://orcid.org/0000-0002-0314-243X
https://orcid.org/0000-0002-5964-245X
https://orcid.org/0000-0001-9396-2441
https://orcid.org/0000-0002-5213-1550
https://orcid.org/0000-0003-3121-2228
https://orcid.org/0000-0003-2817-9252
https://doi.org/10.3390/machines11020167
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines11020167?type=check_update&version=3

Machines 2023, 11, 167 2 of 19

Shukla et al. (2021) [13] demonstrated the use of evolutionary computing for robotic
grasp manipulation. The authors applied EC algorithms to assist in training deep learning
models, in an approach known as hybrid models. They managed to achieve high-precision
models with this approach. Ferigo et al. (2021) [14] applied evolutionary computing algo-
rithms for evolving sensory apparatus in soft computing applications. Kim et al. (2021) [15]
demonstrated the application of evolutionary computing for the issue of quadruped robot
gait optimization. The authors utilized GA to create paths for mobile robots’ legs to achieve
a more controlled gait. Liu et al. (2022) [16] created a digital twin, which is a virtual-
ized copy of a real robot. The authors then demonstrated the ability to apply GA for
the path planning of such a robot, which they managed to successfully transfer to a real
robot. Li et al. (2021) [17] addressed another important issue in robotics: task allocation
through the application of a differential evolution algorithm. The authors managed to
achieve state-of-the-art results on a multitask optimization problem. Task allocation was
also addressed by Martin et al. (2021) [18]. In this paper, the authors specifically used
GA to distribute the tasks amongst robots based on the nonlinear branching criteria. Path
planning for robots was also addressed by Hao et al. (2021) [19]. The authors utilized
GA to optimize a path concerning the possible collision risks, achieving paths that are
capable of avoiding obstructions in the space. A similar approach was demonstrated by
Rahmaniar and Rakhmania (2022) [20] for mobile robots. The authors demonstrated that
GA-optimized paths are capable of achieving smoother paths when compared to classical
methods. Tuning the paths based on Bezier splines can also be achieved using evolutionary
computing algorithms, as demonstrated by Song et al. (2021) [21], who applied parti-
cle swarm optimization to determine the parameters of the splines. Li et al. (2022) [22]
demonstrated the subgoal hybrid planning for the path smoothing of paths obtained with
forward search optimization in contrast to Djikstra, A*, D*, and D*-lite algorithms. The au-
thors compared the performance of forward search optimization and the newly developed
subgoal-based hybrid path planning algorithm, demonstrating that smooth global paths
can be achieved with such an approach. A similar approach to the one presented in this
paper, where a deterministic algorithm A* is combined with an evolutionary approach,
namely the coevolutionary algorithm, was adapted by Garcia et al. (2023) [23]. The authors
demonstrated that such an approach has a high enough performance for applications on
edge nodes, and performs well in conditions where alternatives such as M* or WHCA
would fail to generate valid paths. Yu et al. (2023) [24] applied the artificial bee colony to
optimize a multi-objective path planning issue. The authors demonstrated that such an
algorithm can be successfully applied to multi-objective problems, namely path efficiency
and path security. Another nature-inspired algorithm was shown by Wu et al. [25], who
applied the ant colony algorithm to the path planning of the mobile robot. The modified
version of the ant colony algorithm that the authors developed shows a significant im-
provement in comparison to the state-of-the-art methods. Lou et al. (2023) [26] applied a
graphical computing method for the problem of continuous path planning for welding.
The simulations performed by the authors on the generated paths demonstrate the possi-
bility of applying the investigated method in real-word applications. Another industrial
production application, namely surface grinding, was discussed by Li et al. (2023) [27].
The authors applied a revised Levenberg–Marquardt and differential evolution hybrid
algorithm, with real-world validation on the problem of grinding titanium blades.

While the state-of-the-art research shows many applications of evolutionary comput-
ing and GA in the area of robotics and path planning, none address the combination of
algorithms such as Ho–Cook with GA or similar evolutionary algorithms.

The Ho–Cook algorithm was selected in particular as the topic of the research due
to several advantages that it possesses compared to similar algorithms: mainly the ability
to manually select as many points as desired (allowing for the granular control of the
trajectory precision) and the fact that it includes the orientation of the tool, by design—as
will be shown in Section 2. Due to the lack of previous research focusing on the Ho–Cook
algorithm parameter tuning with evolutionary algorithms, the authors selected GA as the

Machines 2023, 11, 167 3 of 19

second focus of the research. GA is the basic evolutionary algorithm, which means that
it should serve as a good indicator of performance for more advanced algorithms [28,29].
The gene setup that was developed and is presented in Section 2.2 of this manuscript is also
novel, and customized to the Ho–Cook problem. This chromosome encoding describes
the Ho–Cook parametrization and may be used as the basis for the further research of
additional, more advanced evolutionary algorithms, as most algorithms of this kind will
require this encoding to be performed in the same manner [12,30].

The goal of this paper was to test whether the process of path planning in a continuous
environment, based on the Ho–Cook algorithm, can be simplified through the application
of the GA. In addition, the parameters of GA that provide the best performance were
also determined. In this approach, the common issues in continuous path planning are
addressed through the Ho–Cook algorithm, whose shortcoming is the analytical complexity
of the coefficient determination, as will be shown in Section 2.

2. Materials and Methods

This section will serve to present the basic idea of the Ho–Cook path planning process
to point out which part of it will be tuned using the GA-based approach. Then, the process
of GA development will be described.

2.1. Ho–Cook Path Planning

The Ho–Cook path planning algorithm is a continuous path planning algorithm. It
is based on determining n points that will be the elements of the trajectory. In the case of
the obstacles being present in the tool space inside of which the path planning is being
performed, the aforementioned points should be placed in such a way that obstacles are
not present, as obstacle avoidance is not a built-in feature of the Ho–Cook method [31].
Due to the Ho–Cook method having to pass through the points defined initially, as they are
starting/ending points of the segments, the movement from the source to the destination is
guaranteed. The Ho–Cook method works by interpolating between the aforementioned
points of the desired trajectory to achieve the shortest possible path through the calculation
of in-between segments. Higher-order polynomials (4th and 3rd) are used to assure
the smoothness of the final trajectory. Then, the n− 1 segments between the points are
interpolated using the polynomials given as [32]:

qk(t) = B0k + B1kt + B2kt2 + B3kt3 + B4kt4 (1)

for the first and the last segments, whereas the other segments are interpolated using:

qk(t) = B0k + B1kt + B2kt2 ++B3kt3 (2)

The speeds and accelerations can be derived from the above. For the first and the last
segment, they are given as:

˙qk(t) = B1k + 2B2kt + 3B3kt2 + 4B4kt3, (3)

and
¨qkt = 2B2k + 6B1kt + 12B4kt2 (4)

respectively. The speed and acceleration for the other segments are given similarly with:

˙qk(t) = B1k + 2B2kt + 3B3kt2, (5)

and
¨qkt = 2B2k + 6B1kt + 12B4kt2. (6)

In the above equations, the symbols used are as follows:

• k—the trajectory point;

Machines 2023, 11, 167 4 of 19

• m—the total number of trajectory points, and
• B—coefficients of the interpolation polynomials.

For each of the segments, a number of coefficients need to be determined. They can
be defined within the matrix of the shape k× n, where n is the polynomial degree (third
or fourth) and k is the number of the joints of the robotic manipulator. In the presented
research, the number of joints was assumed to be six, since this is a common number of
degrees of freedom for industry-standard articulated robots [33].

To determine the above, the Dennavit–Hartenberg (D-H) algorithm was performed.
First, the simplified kinematic schematic with the noted rotation axes was designed for the
robot that is being modeled. An example of the ABB IRB 120 robot can be seen in Figure 1.
On the schematic, the joints of the robot have orthonormal coordinate systems adjoined,
with the orientation dependent on the rotation axes of the robot in question [34].

Figure 1. Simplified kinematic schematic of the ABB IRB 120 robot, with the associated D-H orthonor-
mal coordinate systems.

This will allow us to determine the kinematic properties of the robot, which can be
read from the schematic: joint distance d, joint angle θ, link length a, and link rotation angle
α [35]. The obtained kinematics properties for the robot in question are given in Table 1.

Table 1. The kinematic parameters of the analyzed robotic manipulator.

Θ [rad] d [mm] a [mm] α [rad]

Θ1 = q1 d1 = 290 a1 = 0 α1 = −π/2

Θ2 = q2 d2 = 0 a2 = 270 α2 = 0

Θ3 = q3 d3 = 0 a3 = 70 α3 = −π/2

Θ4 = q4 d4 = 302 a4 = 0 α4 = π/2

Θ5 = q5 d5 = 0 a5 = 0 α5 = −π/2

Θ6 = q6 d6 = 72 a6 = 0 α6 = 0

Machines 2023, 11, 167 5 of 19

The next step is to obtain the kinematic transformation matrix, T6
0 , which is the product

of each individual joint transformation matrix [35]:

T6
0 = Π6

k=1

cosθk −cosαksinθk sinαksinθk akcosθk
sinθk cosαkcosθk −sinαk cos θk aksinθk

0 sinαk cosαk dk
0 0 0 1

 (7)

Inserting the values from Table 1 into the above equation yields the following equation
that describes the transformation matrix:

T6
0 = [[1.0 ∗ ((sin(q1) ∗ sin(q4) + cos(q1) ∗ cos(q4) ∗ cos(q2 + q3)) ∗ cos(q5)− sin(q5)

∗sin(q2 + q3) ∗ cos(q1)) ∗ cos(q6) + 1.0 ∗ (sin(q1) ∗ cos(q4)− 1.0 ∗ sin(q4) ∗ cos(q1)

cos(q2 + q3)) ∗ sin(q6), 1.0 ∗ (−(sin(q1) ∗ sin(q4) + cos(q1) ∗ cos(q4) ∗ cos(q2 + q3))

cos(q5) + sin(q5) ∗ sin(q2 + q3) ∗ cos(q1)) ∗ sin(q6) + 1.0 ∗ (sin(q1) ∗ cos(q4)

−1.0 ∗ sin(q4) ∗ cos(q1) ∗ cos(q2 + q3)) ∗ cos(q6),−1.0 ∗ (sin(q1) ∗ sin(q4)

+cos(q1) ∗ cos(q4) ∗ cos(q2 + q3)) ∗ sin(q5)− 1.0 ∗ sin(q2 + q3) ∗ cos(q1) ∗ cos(q5),

−0.072 ∗ sin(q1) ∗ sin(q4) ∗ sin(q5)− 0.072 ∗ sin(q5) ∗ cos(q1) ∗ cos(q4) ∗ cos(q2 + q3)

−0.072 ∗ sin(q2 + q3) ∗ cos(q1) ∗ cos(q5)− 0.302 ∗ sin(q2 + q3) ∗ cos(q1)

+0.29 ∗ cos(q1) ∗ cos(q2) + 0.07 ∗ cos(q1) ∗ cos(q2 + q3)], [1.0 ∗ ((sin(q1) ∗ cos(q4)

cos(q2 + q3)− sin(q4) ∗ cos(q1)) ∗ cos(q5)− sin(q1) ∗ sin(q5) ∗ sin(q2 + q3))

cos(q6)− 1.0 ∗ (sin(q1) ∗ sin(q4) ∗ cos(q2 + q3) + cos(q1) ∗ cos(q4)) ∗ sin(q6),

1.0 ∗ ((−sin(q1) ∗ cos(q4) ∗ cos(q2 + q3) + sin(q4) ∗ cos(q1)) ∗ cos(q5) + sin(q1)

sin(q5) ∗ sin(q2 + q3)) ∗ sin(q6)− 1.0 ∗ (sin(q1) ∗ sin(q4) ∗ cos(q2 + q3) + cos(q1) ∗ cos(q4))

cos(q6), 1.0 ∗ (−sin(q1) ∗ cos(q4) ∗ cos(q2 + q3) + sin(q4) ∗ cos(q1)) ∗ sin(q5)

−1.0 ∗ sin(q1) ∗ sin(q2 + q3) ∗ cos(q5),−0.072 ∗ sin(q1) ∗ sin(q5) ∗ cos(q4) ∗ cos(q2 + q3)

−0.072 ∗ sin(q1) ∗ sin(q2 + q3) ∗ cos(q5)− 0.302 ∗ sin(q1) ∗ sin(q2 + q3)

+0.29 ∗ sin(q1) ∗ cos(q2) + 0.07 ∗ sin(q1) ∗ cos(q2 + q3)

+0.072 ∗ sin(q4) ∗ sin(q5) ∗ cos(q1)], [−1.0 ∗ (sin(q5) ∗ cos(q2 + q3) + sin(q2 + q3) ∗ cos(q4)

cos(q5)) ∗ cos(q6) + 1.0 ∗ sin(q4) ∗ sin(q6) ∗ sin(q2 + q3), 1.0 ∗ (sin(q5) ∗ cos(q2 + q3)

+sin(q2 + q3) ∗ cos(q4) ∗ cos(q5)) ∗ sin(q6) + 1.0 ∗ sin(q4) ∗ sin(q2 + q3) ∗ cos(q6),

1.0 ∗ sin(q5) ∗ sin(q2 + q3) ∗ cos(q4)− 1.0 ∗ cos(q5) ∗ cos(q2 + q3),−0.29 ∗ sin(q2)

+0.072 ∗ sin(q5) ∗ sin(q2 + q3) ∗ cos(q4)− 0.07 ∗ sin(q2 + q3)

−0.072 ∗ cos(q5) ∗ cos(q2 + q3)− 0.302 ∗ cos(q2 + q3) + 0.29], [0, 0, 0, 1]]

(8)

The above matrix defines the equations that may be used to calculate the position
[x y z] and orientation [φ θ ψ]. These equations are given as:

x = −0.072 · sin(q1) · sin(q4) · sin(q5)− 0.072 · sin(q5) · cos(q1) · cos(q4) · cos(q2 + q3)

−0.072 · sin(q2 + q3) · cos(q1) · cos(q5)− 0.302 · sin(q2 + q3) · cos(q1)

+0.29 · cos(q1) · cos(q2) + 0.07 · cos(q1) · cos(q2 + q3),

(9)

y = −0.072 · sin(q1) · sin(q5) · cos(q4) · cos(q2 + q3)− 0.072 · sin(q1) · sin(q2 + q3) · cos(q5)

−0.302 · sin(q1) · sin(q2 + q3) + 0.29 · sin(q1) · cos(q2) + 0.07 · sin(q1) · cos(q2 + q3)

+0.072 · sin(q4) · sin(q5) · cos(q1),

(10)

z = −0.29 · sin(q2) + 0.072 · sin(q5) · sin(q2 + q3) · cos(q4)− 0.07 · sin(q2 + q3)

−0.072 · cos(q5) · cos(q2 + q3)− 0.302 · cos(q2 + q3) + 0.29,
(11)

Machines 2023, 11, 167 6 of 19

for the linear coordinates in the tool space, whereas the orientation is defined by:

φ = −1.0 · (sin(q1) · sin(q4) + cos(q1) · cos(q4) · cos(q2 + q3)) · sin(q5)

−1.0 · sin(q2 + q3) · cos(q1) · cos(q5),
(12)

θ = 1.0 · (−sin(q1) · cos(q4) · cos(q2 + q3) + sin(q4) · cos(q1)) · sin(q5)

−1.0 · sin(q1) · sin(q2 + q3) · cos(q5),
(13)

and
ψ = −0.072 · sin(q1) · sin(q5) · cos(q4) · cos(q2 + q3)

−0.072 · sin(q1) · sin(q2 + q3) · cos(q5)

−0.302 · sin(q1) · sin(q2 + q3) + 0.29 · sin(q1) · cos(q2)

+0.07 · sin(q1) · cos(q2 + q3) + 0.072 · sin(q4) · sin(q5) · cos(q1)

(14)

The above equations can be transformed in order to obtain the joint values for the given
position and orientation. This is how the Ho–Cook trajectory planning process is capable
of taking into account the orientation and the position, as the points that are defined as the
points of the trajectory involve orientation as well as the position [x y z φ θ ψ] [31].
The process of defining the Ho–Cook trajectory can then be followed by defining the
following relation:

q̇2
q̇3
...
˙qm−2
˙qm−1

3
t2
+ 2

t3
t4 0 · · · 0 0

1
t3

2 · (t3 + t4) t5 · · · 0 0
0 t3 2 · (t4 + t5) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · tm−1 0
0 0 0 · · · 2 · (tm−2 + tm−1)

t
tm−1

0 0 0 · · · tm−2
2

tm−1
+ 3

tm

=

6
t2 (q2 − q1) +

3
t2
3
(q3 − q2)

3
t3t4

[t2
3(q4 − q3) + t2

4(q3 − q2)]
3

t4t5
[t2

4(q5 − q4) + t2
5(q4 − q3)]

6
tm−2tm−1

[t2
m−2(qm−1 − qm−2) + t2

m−1(qm−2 − qm−3)]
6

t2
m
(qm − qm−1) +

3
t2
m−1

(qm−1 − qm−2)

(15)

Finally, the segment coefficients of the Ho–Cook trajectories are then calculated using
three different equation sets. The first segment coefficients are calculated as:

[B0
1 B1

1 B2
1 B3

1 B4
1] = [q1 q2 q̇1 q̇2] ·

1 0 0 − 4

t3
2

3
t4
2

0 0 0 4
t3
2
− 3

t4
2

0 0 0 0 0
0 0 0 − 1

t2
2

1
t3
2

. (16)

The segments between the first and the last one can be calculated using:

[B0
k B1

k B2
k B3

k] = [qk qk+1 q̇k ˙qk+1] ·

1 0 − 3

t2
k+1

2
t3
k+1

0 0 3
t2
k+1

− 2
t3
k+1

0 1 − 2
tk+1

1
t2
k+1

0 0 − 1
tk+1

1
t2
k+1

. (17)

Machines 2023, 11, 167 7 of 19

The final segment of the interpolated trajectory can then be defined as:

[B0
m−1 B1

m−1 B2
m−1 B3

m−1 B4
m−1] = [qm−1 qm ˙qm−1 ˙qm] ·

1 0 − 6

t2
m

8
t3
m
− 3

t4
m

0 0 6
t2
m
− 8

t3
m

3
t4
m

0 0 − 3
t2

3
t2
2

1
t3
2

0 0 0 0 0

 (18)

These equations also allow for the calculation of the joint positions and speeds if the
coefficients are known, which will be the focus of the paper going forward. The motion
of the robot is only limited by the natural limitations of the robotic manipulator at hand
(for ABB IRB 120, first joint in range <−2.88, 2.88> [rad], second joint <−1.92, 1.92> [rad]
third joint <−1.22, 1.92> [rad], fourth joint <−2.79, 2.79> [rad], fifth joint <−2.09, 2.09>
[rad], and <0, 6.28> [rad] for the final joint) [36], or other robot positional issues, such as
singularities [37]. These issues can be addressed within the GA by artificially lowering the
fitness of the solutions that are outside of the bonds.

2.2. Genetic Algorithm

A genetic algorithm (GA) is an optimization algorithm based on the natural evolution
process [38]. The algorithm works by generating a population of randomly selected poten-
tial solutions [28]. Then, each of these solutions is evaluated individually according to a
pre-defined function: the so-called fitness function [39]. The iterating process of the GA
then starts by randomly selecting the potential solutions and performing the evolutionary
operations on them, which generates a new solution set [40]. This process will repeat until
a satisfactory solution is achieved [16]. The process is based on the evolutionary opera-
tions, of which, there are three in GA: crossover, mutation, and reproduction. Crossover
was performed on two of the randomly selected potential solutions, and they were com-
bined into a new solution [41]. This process allows for the newly generated solutions,
and when the initial random selection process is performed by weighting it towards the
better-performing solutions, previous research shows that newly generated solutions tend
toward the optimal solution [42]. Still, there are two issues that the crossover operation
can introduce: the convergence into local optima, and the loss of quality solutions [28].
The first one was addressed by introducing the mutation operation, which will randomly
modify a single randomly selected solution. This allows us to check a wider area within
the possible solutions [43]. The loss of quality solutions refers to the phenomena in which a
good solution is, through the application of crossover and mutation, replaced with a worse
one. To address this, the reproduction operation simply transferred a quality solution into
the next solution set [44]. From the above, it can be concluded that multiple values need to
be defined or tested to define how the GA will be applied:

• Shape of the potential solutions;
• The way in which the crossover and mutation will be applied;
• The probabilities with which the evolutionary operations will occur;
• The fitness function that will evaluate the solutions;
• The number of iterations (generations) of the algorithm;
• The number of candidate solutions in the algorithm;
• The manner of the solution selection for the operations.

Each of these elements, in the context of the paper’s goal, will be further discussed.

2.2.1. Solution Construction

The shape of the individual solutions first needs to be determined, as it is the basis for
defining the remaining elements of GA. In the discussed problem, it was decided that a
six-point trajectory would be used; in other words, five segments need to be generated in
the shape of the vectors B1, B2, B3, B4, B5. According to the previous subsection, B1 and B5
consist of five elements and the remaining ones consist of four elements. For simplicity,

Machines 2023, 11, 167 8 of 19

all of these elements were joined in a single vector that can be used for the evolutionary
computation operations as:

B = [B0
1 B1

1 B2
1 B3

1 B4
1 B0

2 B1
2 B2

2 B3
2 B0

3 B1
3 B2

3 B3
3 B0

4 B1
4 B2

4 B3
4 B0

5 B1
5 B2

5 B3
5 B4

5]. (19)

Each of the initial population candidate solutions were uniformly randomly filled
with values in the range of [−5, 5]. Trajectory points were set randomly.

2.2.2. Application of Evolutionary Computing Operations

The three aforementioned operations—crossover, mutation, and reproduction—need
to be defined, as their manner of implementation is an important element. Each of the
operations also has a probability of occurring, with the previous research in the area
indicating that the probability of the crossover occurring should be very high (>80%),
whereas the mutation should be low (<5%), with the remaining iterations being fulfilled
with the reproduction [45]. Reproduction is the simplest, as it only copies the potential
solution between the generations. Its occurrence was set to 7%. The manner in which the
crossover was implemented was the so-called random crossover. As shown in Equation (19),
each of the segments has an individual set. The algorithm of crossover was then performed
on two candidate solutions. For each of the five segments, one of the two candidate
solutions was selected, and its segment was inserted into the new solution. This process
is shown in Figure 2. This yields a solution that is the combination of segments from
previous solutions.

Figure 2. An illustration of the recombination methodology used, where (A,B) represent two candi-
date solutions selected from the existing population and (C) presents the resulting candidate solution
after the crossover between (A) and (B) is performed.

The crossover operation was performed with the 90% probability. Finally, the mutation
needs to be performed. The mutation will randomly replace an entire segment of the
randomly selected solution, as shown in Figure 3. Without this mechanic, due to how the
crossover operation is performed, only the initially generated segments are present in all of
the generations of the algorithm. The occurrence rate of this operation was set to 3%.

Machines 2023, 11, 167 9 of 19

2.2.3. The Fitness Function

To determine the quality of the solution, a fitness function needs to be determined.
Such a function should be simple to calculate to allow for a fast calculation and execution
of the algorithm while providing a realistic metric of the agent performance [46]. As can be
seen in the previous Figures 2 and 3, the segments generated by the GA are not continuous
with each other. This is one of the main points that need to be addressed when trajectory
planning is performed, and, as such, this was selected to represent the measure of quality
for the candidate solution. An illustration of these distances is given in Figure 4.

Figure 3. An illustration of the mutation methodology used, where (A) is the randomly selected
candidate solution from the population and (B) is the randomly modified solution.

Figure 4. The illustration of the fitness function, which is the sum of the distances between the first
and the last elements of the segments, as indicated with red arrows.

To calculate this, the sum of all of the vertical distances between the segments was
considered and calculated. In other words, if the last value of segment Bk is given as Bk[i]
and the first value of the following segment Bk+1 is given as Bk+1[0], the fitness function F
can be defined as:

F =
4

∑
k=0
|Bk[i]− Bk+1[0]|. (20)

Due to this being a minimization problem, the lower value of the fitness function
indicates a higher-quality solution. It is important to note that boundary conditions
need to be set. The initial testing showed that, when allowing the GA to minimize the
distance completely, solutions will tend to a stationary trajectory, without any movement
amongst the segments. In other words, the elements of the matrix given in Equation (19)
will converge to zero. As this is not the desired outcome, the boundary condition was
introduced. The boundary condition stated defines that all candidate solutions must have a
total sum of the trajectory parameters equal to or higher than a certain value, which will be
determined through testing. All of the candidate solutions that do not satisfy this condition
will be removed from the population, and replaced with another randomly generated
solution that does satisfy the aforementioned condition.

Machines 2023, 11, 167 10 of 19

2.2.4. Candidate Solution Selection

To achieve an improvement across the generations of the GA, the candidate solutions
selected for the application of evolutionary operations need to be selected wisely. Only if
the solutions selected are of high quality can the improvement in the overall population
fitness be expected. To achieve this, a fitness proportionate selection was used. This refers
to the type of randomized selection in which fitness is of a higher quality. The type of
fitness proportional selection used in the presented work was the so-called roulette wheel
selection. In this type of selection, the probability of selecting a certain candidate solution is
equal to its ratio to the overall fitness. If the total fitness is Ftotal and the individual fitness
of candidate solution A is FA, then the probability of selecting it would be equal to:

pA =
FA
Ftotal

. (21)

Since, in the presented case, the smaller fitness indicates the better solution, the above
method can be applied to calculating a vector that determines the probability of each
candidate solution, sorted in descending order. The candidate solution’s probabilities are
then sorted in reverse order and the individual probability is assigned to each. This process
is illustrated in Figure 5.

Figure 5. An illustration of the roulette wheel selection process. In step (1) the fitness is calculated
according to Equation (20) (lower is better). Then, in (2), the probability is calculated as the percentage
of the total population fitness (in the illustration, the total sum of individual fitness is 3.0). Finally,
due to the minimization problem being observed, the probability vector is inverted in (3).

With all of these elements defined, it can be stated that the GA used in this research is
the GA based on crossover and mutation with the roulette-wheel type selection and fixed
fitness function [47].

2.3. Interpolation

Previously, when discussing the fitness value used during the presented research, it
was mentioned that the lower bound needed to be set on the fitness that the solutions
can achieve in order to prevent the stationary solutions. This approach yields solutions
that will, even when optimized fully to the extent of the GA possibility, have vertical
gaps between segments, meaning that a trajectory generated in such a manner cannot be

Machines 2023, 11, 167 11 of 19

considered as continuous. To address this, an interpolation technique was introduced.
As the length of each segment is defined as 1 [s], the starting and ending 0.1 [s] of each
segment were deleted. The first and final segments only had their final or initial 0.1 [s]
element removed, respectively. This yields four missing segments, with a length of 0.2 s
that need to be interpolated.

Interpolation was performed using second-degree Bezier splines [48], defined as [49]:

Bi,k(x) =
x− ti

ti+k − ti
Bi,k−1(x) +

ti+k+1 − x
ti+k+1 − ti+1

Bi+1,k−1(x), (22)

and

Bi,0(x) =

{
1, x ∈ [ti, ti+1 >

0, otherwise.
(23)

In the equations, t is the number of Bezier spline nodes, c is the coefficient of the spline
determined based on the values of segments being connected, and k is the spline degree,
equal to 2. An example of the result concerning the spline is given in the following section.

3. Results and Discussion

In this section, the results of the applied methodology will be discussed. The results
in the process determination of boundary conditions for the obtained matrices will be
demonstrated and commented on, followed by the results of GA parameter testing.

3.1. Determining the Optimal Boundary Condition

As mentioned previously, the boundary conditions were set as the minimal value of
the sum of all elements of the candidate solution vector as given in Equation (19). Five
different values of the bound were tested: no boundary conditions, 0.2, 0.1, 0.05, and 0.005.
For the testing of the bound, the population size of the candidate solutions and the number
of generations were both set to 10. While these parameter values are too small to achieve
any significant results, as shown by further testing, they perform well enough to indicate
the performance of the boundary condition tested without requiring too much execution
time. For each of the tests performed, the results will be given as a visualization of the
best-performing candidate solution at the end of the optimization process (joint positions,
speeds, and accelerations given), along with a graph showing the change in the fitness of
the best solution through the optimization process.

The first test was performed without any boundary condition set, and the results are
shown in Figure 6. As can be seen, there are minimal movements of the robotic manipulator
present, with the joint movement ranging from 0.1 to −0.25.

Figure 6. The behavior of the algorithm without setting the boundary condition. The best-achieved
solution is visualized on the (left), and the fitness change through generations is on the (right).

The first introduced boundary condition has a value of 0.2 and the results are shown
in Figure 7. Here, it can be seen that the range of movement is higher, but, observing the

Machines 2023, 11, 167 12 of 19

graph of fitness through generations, we can see that the value to which the algorithm
converges is very high.

Figure 7. The behavior of the algorithm for the boundary condition set to 0.2. The best-achieved
solution is visualized on the (left), and the fitness change through generations is on the (right).

Similar but slightly improved results are achieved with the bound set to 0.1, seen in
Figure 8. The range of the movement is kept, but the algorithm converges to a better overall
solution. The improved results achieved by setting this value indicate the need to continue
testing lower values.

Figure 8. The behavior of the algorithm for the boundary condition set to 0.1. The best-achieved
solution is visualized on the (left), and the fitness change through generations is on the (right).

When the boundary condition is set to the value of 0.05, the graphs given in Figure 9
indicate that the movement range is kept with a further improvement in the convergence
value of optimization, with the distances between segments below 0.05 [rad] and the range
of motion above 1.0 [rad].

Figure 9. The behavior of the algorithm for the boundary condition set to 0.05. The best-achieved
solution is visualized on the (left), and the fitness change through generations is on the (right).

Machines 2023, 11, 167 13 of 19

The final value for the boundary condition tested was 0.005, as demonstrated in
Figure 10. This value shows a similar behavior to the configuration in which no boundary
condition is set. This indicates that values this low should not be considered.

Figure 10. The behavior of the algorithm for the boundary condition set to 0.005. The best-achieved
solution is visualized on the (left), and the fitness change through generations is on the (right).

The tests performed indicate that lowering the boundary condition improves the
results of the GA, as long as the condition is not set too low. When the condition is set too
low, the GA performs in the same manner as it does when no condition is set. For this
reason, the boundary condition of 0.05 was selected for further testing.

3.2. Determining the GA Parameters

After the boundary condition was determined and set to 0.05, the main parameters of
the GA—the population size and the number of generations that the algorithm will run
for—needed to be determined. Three separate configurations were tested:

• Population size of 100 executed for 100 generations;
• Population size of 1000 executed for 50 generations;
• Population size of 10,000 executed for 20 generations.

The first configuration, with 100 candidate solutions and 100 generations, is the least
memory-intensive and computationally complex due to the fact that it has the lowest
population value. It is shown to achieve a fitness function of 1.001, which is not satisfactory
in the context of the problem. The achieved solution shows the large distances between
multiple sections of the trajectory. The results are presented in Figure 11.

Figure 11. The achieved results for the GA with 100 candidate solutions trained for 100 generations.
The best-achieved solution is visualized on the (left), and the fitness change through generations is
on the (right).

An increase in the population size to 1000 yields a significant increase in performance,
even with the lower generation bound of 50. As shown in Figure 12, the lower number
of generations does not negatively affect the performance, as the algorithm is shown to

Machines 2023, 11, 167 14 of 19

converge significantly before the fiftieth generation. The lowest achieved fitness function
value is 0.33, which may be considered satisfactory.

Figure 12. The achieved results for the GA with 1000 candidate solutions trained for 50 generations.
The best-achieved solution is visualized on the (left), and the fitness change through generations is
on the (right).

The final tested configuration has 10,000 candidate solutions and was optimized for
20 generations, the results of which are shown in Figure 13. The trend from the previous
configuration continues, as the larger configuration achieves a significantly improved result
of 0.098. The GA converges between generations 12 and 15, indicating that 20 generations
selected for this algorithm are enough for it to converge, despite the larger population size.

Figure 13. The achieved results for the GA with 10,000 candidate solutions trained for 20 generations.
The best-achieved solution is visualized on the (left), and the fitness change through generations is
on the (right).

To discuss the overall results, it is shown that an increase in population size yields
significant performance increases. The number of generations seems to have less of an
influence, and can be more limited in further research, as the algorithm tends to converge
to a solution around the 15th generation in all of the tested cases.

Execution Time

An important consideration for the application of algorithms is the execution times
of the algorithms in tested configurations. The tests were performed on all the previously
tested configurations and averaged across 10 runs. The configuration used for testing was
a laptop computer with CPU Intel(R) Core(TM) i7-1065G7 CPU, with the CPU clock locked
at 1.30 GHz for the test. The machine was equipped with 16 GB of RAM. The code was
executed in a single-threaded mode. The results of the test are given in Table 2.

Machines 2023, 11, 167 15 of 19

Table 2. The execution times of various configurations, averaged over ten runs, with an average time
per generation and the total execution time given.

Population Generations Total Time [s] Average Time per Generation [s]

100 100 23.4 0.234

1000 50 119.5 2.39

10,000 20 403.4 20.17

It can be seen that the average time per each agent in the population remains relatively
uniform (around 2·10−3 s). This means that the increase in population size has a significant
influence on execution times. The smallest configuration, which yields the poorest results,
finishes the execution in around twenty seconds. The two following configurations take
almost two minutes, or slightly below seven minutes, respectively.

3.3. Result Illustration

The path as given in the Figure 14 represents the motion of the joint over the course of
five seconds between the position of −0.47 [rad] to 1.0 [rad]. The generated path is smooth,
without any sudden changes in the joint motion direction, owing to the interpolation ac-
complished with Bezier splines. Some minor changes to the torque and negative vibrations
may be present due to the changes in the direction present between the points, but as these
transitions are smooth, these effects should not be overly negative on the motion of the
path. The motion not being monotonous may have a negative effect in the sense of using
more energy than would be necessary if manually tuned coefficients were used, but this
negative effect should be minor and outweighed by the complexity of manually tuning the
parameters, except in situations where lowering the energy use is crucial. The motion is
continuous through the path, without discrete points of the Ho–Cook method being clearly
visible. Any delays in the movement should not be present with the generated path, as the
entire generated trajectory is continuous.

Figure 14. The illustration of the interpolation process.

The generated trajectories were applied within the RobotStudio software in order to
illustrate a possible path obtained from the method. Twenty-five trajectory points were
inserted into the simulation within the software and the simulation was run. Figure 15
shows the initial, sixth, twelfth, eighteenth, and final (twenty-fourth) trajectory points.

Machines 2023, 11, 167 16 of 19

(a) (b)

(c) (d)

(e)
Figure 15. An illustration of the generated path. (a) The initial step of the simulated trajectory.
(b) The sixth step of the simulated trajectory. (c) The twelfth step of the simulated trajectory. (d) The
eighteenth step of the simulated trajectory. (e) The twenty-fourth step of the simulated trajectory.

4. Conclusions

In this paper, the GA approach to determining Ho–Cook algorithm parameters was
investigated. The results of this investigation point towards the fact that this approach is
a valid alternative to analytically determining the Ho–Cook coefficients. This approach
can be used in further research, with additional optimization parameters, such as energy
efficiency or torque optimization for continuous path planning. Still, it is shown that GA is
not capable of generating the final trajectories by itself due to the boundary conditions that
need to be set in order to avoid stationary results, and Bezier spline interpolation needs
to be utilized to address this. The investigation of the parameters of the algorithm shows
that the algorithm has the best performance when the boundary condition is set to 0.05 and
the population size is set to 10,000. The number of generations does not seem to influence
the convergence point, which is shown to be between 15 and 20 generations, no matter
the population size. While the results are satisfactory within the context of the research,
they do not particularly improve the current state-of-the-art results in the research [13–27].
Still, as there is a clear lack of the Ho–Cook algorithm being used for planning, the value
of the achieved results lies in the fact that it can achieve results similar to the existing
ones, indicating that there is room for improvement when more advanced evolutionary or
swarm-based optimization algorithms are used. The execution times of the algorithm point
out that it cannot be used in online real-time planning as currently presented, with the
algorithm only being usable in offline planning, where the trajectories are tuned before
their application in manufacturing. Still, in the current form, the algorithm as tested is
executed in a single-threaded mode, and executing the algorithm on multiple threads
simultaneously could significantly improve the results. Other limitations concerning the
shown approach include the need to be familiar with the Ho–Cook path planning algorithm

Machines 2023, 11, 167 17 of 19

in order to apply the GA developed in this paper, as well as the generated path not being
necessarily optimal, as only a near-optimal path is guaranteed by the GA. Path planning in
the demonstrated manner has certain natural limitations when compared to other methods
such as the dynamic position adjustment of robotic manipulator during the operation.
The paths planned in this manner are inflexible to later adjustment, as the algorithm needs
to be re-run to obtain the adjusted path. This can cause issues in which only the key changes
are made to the paths (e.g., new paths are calculated), as opposed to the continuous tuning
of the paths for a higher efficiency (production and energy-wise) [50]. Sometimes, detailed
path planning is unnecessary and simply time-consuming compared to the use of simple
trajectories generated by online path planning [51]. This manner of online movement
training is less skill-intensive compared to detailed offline path-planning, causing an
increase in the cost [52]. Finally, fine-tuned offline planned paths such as these are only
applicable in predictable environments, with a lack of capability in dynamic planning [53],
which would take into account the stochastic nature of the realistic environments. The rigid
planning such as that presented can cause a false sense of security, as a static environment
is intrinsically assumed, which is rarely the case in real production environments, where
issues that may cause faults are rife [54].

Future work in the area should focus on the testing of other evolutionary algorithms
on the framework developed for GA, such as differential evolution or particle swarm
optimization, to determine whether those algorithms can achieve better results.

Author Contributions: Data curation, S.B.Š., N.A.; formal analysis, N.A., I.L., Z.C.; funding acqui-
sition, Z.C.; investigation, T.G., S.B.Š., M.G.; methodology, S.B.Š., D.Š., J.Š.; project administration,
Z.C.; resources, D.Š., J.Š.; software, T.G., S.B.Š.; supervision, I.L., Z.C.; validation, D.Š., J.Š., B.F.;
visualization, T.G., M.G.; writing—original draft, T.G., S.B.Š., I.L., M.G.; writing—review and editing,
N.A., D.Š., J.Š., B.F., Z.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research has been (partly) supported by the CEEPUS network CIII-HR-
0108, European Regional Development Fund under the grant KK.01.1.1.01.0009 (DATACROSS),
project CEKOM under the grant KK.01.2.2.03.0004, Erasmus+ project WICT under the grant 2021-1-
HR01-KA220-HED-000031177, and University of Rijeka scientific grants uniri-mladi-technic-22-61,
uniri-mladi-technic-22-57, uniri-tehnic-18-275-1447.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, H.; Fuhlbrigge, T.; Li, X. Automated industrial robot path planning for spray painting process: A review. In Proceedings of

the 2008 IEEE International Conference on Automation Science and Engineering, Washington, DC, USA, 23–26 August 2008;
pp. 522–527.

2. Raja, P.; Pugazhenthi, S. Optimal path planning of mobile robots: A review. Int. J. Phys. Sci. 2012, 7, 1314–1320. [CrossRef]
3. Angeles, J.; Rojas, A.; Lopez-Cajun, C.S. Trajectory planning in robotic continuous-path applications. IEEE J. Robot. Autom. 1988,

4, 380–385. [CrossRef]
4. Chettibi, T. Smooth point-to-point trajectory planning for robot manipulators by using radial basis functions. Robotica 2019,

37, 539–559. [CrossRef]
5. Cowley, A.; Cohen, B.; Marshall, W.; Taylor, C.J.; Likhachev, M. Perception and motion planning for pick-and-place of dynamic

objects. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7
November 2013; pp. 816–823.

6. Khan, A.T.; Cao, X.; Li, Z.; Li, S. Evolutionary Computation Based Real-time Robot Arm Path-planning Using Beetle Antennae
Search. EAI Endorsed Trans. AI Robot. 2022, 1, 1–10. [CrossRef]

7. Draganjac, I.; Sesar, V.; Bogdan, S.; Kovacic, Z. An internet-based system for remote planning and execution of SCARA robot
trajectories. In Proceedings of the 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November
2008; pp. 3485–3490.

http://doi.org/10.5897/IJPS11.1745
http://dx.doi.org/10.1109/56.801
http://dx.doi.org/10.1017/S0263574718001169
http://dx.doi.org/10.4108/airo.v1i.6

Machines 2023, 11, 167 18 of 19

8. Lengagne, S.; Mathieu, P.; Kheddar, A.; Yoshida, E. Generation of dynamic motions under continuous constraints: Efficient
computation using b-splines and taylor polynomials. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 698–703.

9. Lian, J.; Yu, W.; Xiao, K.; Liu, W. Cubic spline interpolation-based robot path planning using a chaotic adaptive particle swarm
optimization algorithm. Math. Probl. Eng. 2020, 2020, 1849240. [CrossRef]

10. Carrasco, J.; García, S.; Rueda, M.; Das, S.; Herrera, F. Recent trends in the use of statistical tests for comparing swarm and
evolutionary computing algorithms: Practical guidelines and a critical review. Swarm Evol. Comput. 2020, 54, 100665. [CrossRef]

11. Bansal, J.C.; Singh, P.K.; Pal, N.R. Evolutionary and Swarm Intelligence Algorithms; Springer: Berlin/Heidelberg, Germany, 2019;
Volume 779.

12. Baressi Šegota, S.; And̄elić, N.; Lorencin, I.; Saga, M.; Car, Z. Path planning optimization of six-degree-of-freedom robotic
manipulators using evolutionary algorithms. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420908076. [CrossRef]

13. Shukla, P.; Kumar, H.; Nandi, G.C. Robotic grasp manipulation using evolutionary computing and deep reinforcement learning.
Intell. Serv. Robot. 2021, 14, 61–77. [CrossRef]

14. Ferigo, A.; Iacca, G.; Medvet, E. Beyond body shape and brain: Evolving the sensory apparatus of voxel-based soft robots. In
Proceedings of the International Conference on the Applications of Evolutionary Computation (Part of EvoStar), Virtual Event,
20–22 April 2021; Springer: Berlin/Heidelberg, Germany; pp. 210–226.

15. Kim, J.; Ba, D.X.; Yeom, H.; Bae, J. Gait optimization of a quadruped robot using evolutionary computation. J. Bionic Eng. 2021,
18, 306–318. [CrossRef]

16. Liu, X.; Jiang, D.; Tao, B.; Jiang, G.; Sun, Y.; Kong, J.; Tong, X.; Zhao, G.; Chen, B. Genetic algorithm-based trajectory optimization
for digital twin robots. Front. Bioeng. Biotechnol. 2022, 9, 1433. [CrossRef]

17. Li, J.Y.; Zhan, Z.H.; Tan, K.C.; Zhang, J. A meta-knowledge transfer-based differential evolution for multitask optimization. IEEE
Trans. Evol. Comput. 2021, 26, 719–734. [CrossRef]

18. Martin, J.G.; Frejo, J.R.D.; García, R.A.; Camacho, E.F. Multi-robot task allocation problem with multiple nonlinear criteria using
branch and bound and genetic algorithms. Intell. Serv. Robot. 2021, 14, 707–727. [CrossRef]

19. Hao, K.; Zhao, J.; Wang, B.; Liu, Y.; Wang, C. The application of an adaptive genetic algorithm based on collision detection in path
planning of mobile robots. Comput. Intell. Neurosci. 2021, 2021, 5536574. [CrossRef]

20. Rahmaniar, W.; Rakhmania, A.E. Mobile Robot Path Planning in a Trajectory with Multiple Obstacles Using Genetic Algorithms.
J. Robot. Control (JRC) 2022, 3, 1–7. [CrossRef]

21. Song, B.; Wang, Z.; Zou, L. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree
Bezier curve. Appl. Soft Comput. 2021, 100, 106960. [CrossRef]

22. Li, H.; Zhao, T.; Dian, S. Forward search optimization and subgoal-based hybrid path planning to shorten and smooth global
path for mobile robots. Knowl.-Based Syst. 2022, 258, 110034. [CrossRef]

23. García, E.; Villar, J.R.; Tan, Q.; Sedano, J.; Chira, C. An efficient multi-robot path planning solution using A* and coevolutionary
algorithms. Integr. Comput.-Aided Eng. 2023, 30, 41–52. [CrossRef]

24. Yu, Z.; Duan, P.; Meng, L.; Han, Y.; Ye, F. Multi-objective path planning for mobile robot with an improved artificial bee colony
algorithm. Math. Biosci. Eng. 2023, 20, 2501–2529. [CrossRef]

25. Wu, L.; Huang, X.; Cui, J.; Liu, C.; Xiao, W. Modified adaptive ant colony optimization algorithm and its application for solving
path planning of mobile robot. Expert Syst. Appl. 2023, 215, 119410. [CrossRef]

26. Lou, J.; Yu, X.; Chen, Y.; Sun, Z.; Zheng, P. Robot Welding Path Planning and Application Based on Graphical Computing.
In Proceedings of the Seventh International Congress on Information and Communication Technology; Springer: Berlin/Heidelberg,
Germany, 2023; pp. 597–605.

27. Li, J.; Zou, L.; Luo, G.; Wang, W.; Lv, C. Enhancement and evaluation in path accuracy of industrial robot for complex surface
grinding. Robot. Comput.-Integr. Manuf. 2023, 81, 102521. [CrossRef]

28. Deng, W.; Zhang, X.; Zhou, Y.; Liu, Y.; Zhou, X.; Chen, H.; Zhao, H. An enhanced fast non-dominated solution sorting genetic
algorithm for multi-objective problems. Inf. Sci. 2022, 585, 441–453. [CrossRef]

29. Zhou, J.; Huang, S.; Zhou, T.; Armaghani, D.J.; Qiu, Y. Employing a genetic algorithm and grey wolf optimizer for optimizing RF
models to evaluate soil liquefaction potential. Artif. Intell. Rev. 2022, 55, 5673–5705. [CrossRef]

30. Budi, H.S.; Elveny, M.; Zhuravlev, P.; Jalil, A.T.; Al-Janabi, S.; Alkaim, A.F.; Saleh, M.M.; Shichiyakh, R.A. Development of an
adaptive genetic algorithm to optimize the problem of unequal facility location. Found. Comput. Decis. Sci. 2022, 47, 111–125.
[CrossRef]

31. Orsag, M.; Poropat, M.; Bogdan, S. Hybrid fly-by-wire quadrotor controller. Automatika 2010, 51, 19–32. [CrossRef]
32. Konjević, B.; Kovačić, Z. CONTINUOUS JERK TRAJECTORY PLANNING ALGORITHMS. In Proceedings of the International

Conference on Informatics in Control, Automation and Robotics, SCITEPRESS, Noordwijkerhout, The Netherlands, 28–31 July
2011; Volume 2, pp. 481–489.

33. Konjević, B.; Punčec, M.; Kovačić, Z. Two approaches to bounded jerk trajectory planning. In Proceedings of the 2012 12th IEEE
International Workshop on Advanced Motion Control (AMC), Sarajevo, Bosnia and Herzegovina, 25–27 March 2012; pp. 1–7.

34. Močnik, G.; Kačič, Z.; Šafarič, R.; Mlakar, I. Capturing Conversational Gestures for Embodied Conversational Agents Using an
Optimized Kaneda–Lucas–Tomasi Tracker and Denavit–Hartenberg-Based Kinematic Model. Sensors 2022, 22, 8318. [CrossRef]

http://dx.doi.org/10.1155/2020/1849240
http://dx.doi.org/10.1016/j.swevo.2020.100665
http://dx.doi.org/10.1177/1729881420908076
http://dx.doi.org/10.1007/s11370-020-00342-7
http://dx.doi.org/10.1007/s42235-021-0026-y
http://dx.doi.org/10.3389/fbioe.2021.793782
http://dx.doi.org/10.1109/TEVC.2021.3131236
http://dx.doi.org/10.1007/s11370-021-00393-4
http://dx.doi.org/10.1155/2021/5536574
http://dx.doi.org/10.18196/jrc.v3i1.11024
http://dx.doi.org/10.1016/j.asoc.2020.106960
http://dx.doi.org/10.1016/j.knosys.2022.110034
http://dx.doi.org/10.3233/ICA-220695
http://dx.doi.org/10.3934/mbe.2023117
http://dx.doi.org/10.1016/j.eswa.2022.119410
http://dx.doi.org/10.1016/j.rcim.2022.102521
http://dx.doi.org/10.1016/j.ins.2021.11.052
http://dx.doi.org/10.1007/s10462-022-10140-5
http://dx.doi.org/10.2478/fcds-2022-0006
http://dx.doi.org/10.1080/00051144.2010.11828352
http://dx.doi.org/10.3390/s22218318

Machines 2023, 11, 167 19 of 19

35. Shim, S.; Lee, S.; Joo, S.; Seo, J. Denavit-Hartenberg Notation-Based Kinematic Constraint Equations for Forward Kinematics of
the 3–6 Stewart Platform. J. Mech. Robot. 2022, 14, 054505. [CrossRef]

36. Baressi Šegota, S.; And̄elić, N.; Šercer, M.; Meštrić, H. Dynamics Modeling of Industrial Robotic Manipulators: A Machine
Learning Approach Based on Synthetic Data. Mathematics 2022, 10, 1174. [CrossRef]

37. Milenkovic, P.; Wang, Z.; Rodriguez, J.I. Encountering singularities of a serial robot along continuous paths at high precision.
Mech. Mach. Theory 2023, 181, 105224. [CrossRef]

38. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021,
80, 8091–8126. [CrossRef]

39. Han, S.; Xiao, L. An improved adaptive genetic algorithm. SHS Web Conf. 2022, 140, 01044. [CrossRef]
40. Wang, B.; Yao, X.; Jiang, Y.; Sun, C.; Shabaz, M. Design of a real-time monitoring system for smoke and dust in thermal power

plants based on improved genetic algorithm. J. Healthc. Eng. 2021, 2021, 7212567. [CrossRef]
41. Ibrahim, M.; Nurhakiki, F.; Utama, D.; Rizaki, A. Optimised genetic algorithm crossover and mutation stage for vehicle

routing problem pick-up and delivery with time windows. In Proceedings of the IOP Conference Series: Materials Science and
Engineering, Sanya, China, 12–14 November 2021; Volume 1071, p. 012025.

42. Damia, A.; Esnaashari, M.; Parvizimosaed, M. Adaptive Genetic Algorithm Based on Mutation and Crossover and Selection
Probabilities. In Proceedings of the 2021 7th International Conference on Web Research (ICWR), Tehran, Iran, 19–20 May 2021;
pp. 86–90.

43. Saadaoui, D.; Elyaqouti, M.; Assalaou, K.; Lidaighbi, S. Parameters optimization of solar PV cell/module using genetic algorithm
based on non-uniform mutation. Energy Convers. Manag. X 2021, 12, 100129. [CrossRef]

44. Sohail, A. Genetic algorithms in the fields of artificial intelligence and data sciences. Ann. Data Sci. 2021, 1–12. [CrossRef]
45. Bhattacharjee, P.; Jana, R.K.; Bhattacharya, S. A Comparative Study of Dynamic Approaches for Allocating Crossover and

Mutation Ratios for Genetic Algorithm-based Optimization of Wind Power Generation Cost in Jafrabad Region in India. In
Proceedings of the International Conference on “Recent Advancements in Science, Engineering & Technology, and Management,
Nagpur, India, 25–26 March 2021.

46. Avdeenko, T.; Serdyukov, K. Genetic Algorithm Fitness Function Formulation for Test Data Generation with Maximum Statement
Coverage. In Proceedings of the International Conference on Swarm Intelligence, Qingdao, China, 17–21 July 2021; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 379–389.

47. Fogel, D.B. Evolutionary algorithms in theory and practice. Complexity 1997, 2, 26–27 [CrossRef]
48. Liu, J.; Jin, B.; Yang, J.; Xu, L. Sea surface temperature prediction using a cubic B-spline interpolation and spatiotemporal attention

mechanism. Remote Sens. Lett. 2021, 12, 478–487. [CrossRef]
49. Tayebi, S.; Momani, S.; Arqub, O.A. The cubic B-spline interpolation method for numerical point solutions of conformable

boundary value problems. Alex. Eng. J. 2022, 61, 1519–1528. [CrossRef]
50. Gigras, Y.; Gupta, K. Artificial intelligence in robot path planning. Int. J. Soft Comput. Eng. (IJSCE) 2012, 2, 2231–2307.
51. Liu, M. Robotic online path planning on point cloud. IEEE Trans. Cybern. 2015, 46, 1217–1228. [CrossRef]
52. Xie, Z.; Zhang, Q.; Jiang, Z.; Liu, H. Robot learning from demonstration for path planning: A review. Sci. China Technol. Sci. 2020,

63, 1325–1334. [CrossRef]
53. Bonny, T.; Kashkash, M. Highly optimized Q-learning-based bees approach for mobile robot path planning in static and dynamic

environments. J. Field Robot. 2022, 39, 317–334. [CrossRef]
54. And̄elić, N.; Car, Z.; Šercer, M. Neural Network-Based Model for Classification of Faults During Operation of a Robotic

Manipulator. Teh. Vjesn. 2021, 28, 1380–1387.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1115/1.4053822
http://dx.doi.org/10.3390/math10071174
http://dx.doi.org/10.1016/j.mechmachtheory.2022.105224
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.1051/shsconf/202214001044
http://dx.doi.org/10.1155/2021/7212567
http://dx.doi.org/10.1016/j.ecmx.2021.100129
http://dx.doi.org/10.1007/s40745-021-00354-9
http://dx.doi.org/10.1002/(SICI)1099-0526(199703/04)2:4<26::AID-CPLX6>3.0.CO;2-7
http://dx.doi.org/10.1080/2150704X.2021.1897182
http://dx.doi.org/10.1016/j.aej.2021.06.057
http://dx.doi.org/10.1109/TCYB.2015.2430526
http://dx.doi.org/10.1007/s11431-020-1648-4
http://dx.doi.org/10.1002/rob.22052

	Introduction
	Materials and Methods
	Ho–Cook Path Planning
	Genetic Algorithm
	Solution Construction
	Application of Evolutionary Computing Operations
	The Fitness Function
	Candidate Solution Selection

	Interpolation

	Results and Discussion
	Determining the Optimal Boundary Condition
	Determining the GA Parameters
	Result Illustration

	Conclusions
	References

