
Citation: Bian, X.; Shi, Z.; Mo, N.; Shi,

L.; Zheng, Y.; Liu, X. Rejection of

Synchronous Vibrations of AMB

System Using Nonlinear Adaptive

Control Algorithm with a Novel

Frequency Estimator. Machines 2023,

11, 188. https://doi.org/10.3390/

machines11020188

Academic Editors: Mehdi Vahdati,

Dingxi Wang and

Senthil Krishnababu

Received: 30 November 2022

Revised: 28 December 2022

Accepted: 8 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Rejection of Synchronous Vibrations of AMB System Using
Nonlinear Adaptive Control Algorithm with a Novel
Frequency Estimator
Xiaoyu Bian 1,2,3, Zhengang Shi 1,2,3, Ni Mo 1,2,3,*, Lei Shi 1,2,3, Yangbo Zheng 1,2,3 and Xingnan Liu 1,2,3

1 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
2 Collaborative Innovation Center of Advanced Nuclear Energy Technology, Beijing 100084, China
3 The Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education,

Beijing 100084, China
* Correspondence: moni@mail.tsinghua.edu.cn

Abstract: This paper focuses on the synchronous vibration suppression of an active magnetic bearing
(AMB) system without a rotating speed sensor. One of the most intractable problems with AMB
systems is the synchronous vibration caused by the mass imbalance of the rotor. Moreover, practically
all existing unbalance control algorithms require the rotating speed sensor to determine rotation speed.
However, in some unique applications, it is impossible to install and use the rotating speed sensor
as intended. This study provided a nonlinear adaptive control (NAC) algorithm and a modified
frequency estimator to address the above issues. The proposed approach can suppress current and
displacement vibrations by regulating the control structure. The frequency estimator calculates the
rotating speed based on the position of the rotor at different moments, which has a quick response
time, high precision, and effective tracking. The NAC algorithm can achieve unbalanced control
based on the period iteration strategy. Additionally, the Lyapunov method is used to demonstrate
the stability of the NAC algorithm. Finally, the experimental and simulation results also confirm
the effectiveness and reliability of the overall control scheme. The results from simulations and
experiments indicate that the novel frequency estimator can track the speed accurately and that its
error can be regulated to within ±0.05 Hz. The overall control schema can reduce the displacement
vibration’s amplitude by 72.2% and the current vibration’s amplitude by 65.6%.

Keywords: active magnetic bearing; synchronous vibration; frequency estimator; nonlinear adap-
tive control

1. Introduction

The active magnetic bearing (AMB) utilizes the controllable electromagnetic force to
realize the non-contact motion control of the rotor. Compared with traditional mechanical
bearings, AMB has two characteristics. The first is no mechanical contact, which brings
numerous benefits, including micro-friction, no wear, low power consumption, high rotat-
ing speed, no lubrication, and no sealing. Second characteristic is that the AMB system’s
dynamic performance is controllable, allowing for the employment of online control al-
gorithms for shock absorption and vibration isolation. Besides, we can also use AMB to
identify unknown structural characteristics. These advantages make AMB systems widely
used in various industries, including the military, ultra-clean vacuum environments, the oil
and gas industry, machine tools, etc. [1–7].

However, due to machining and assembly errors, uneven density, and corrosion, the
rotor often has a mass imbalance. The mass imbalance is the primary source of excitation
for the AMB system [8]. It will cause a misalignment of the rotor’s geometric and inertial
axis. And it will also result in deflection and internal stress on the rotor, causing the rotor,
stator, and base to vibrate, which will reduce the efficiency of the system and even lead to
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various accidents in severe cases. Therefore, the suppression of the unbalance vibrations is
a key issue in the AMB system.

Dynamic balancing is typically utilized to lessen the mass imbalance. However,
this approach has significant time-consuming and complex procedures as drawbacks.
Fortunately, the AMB has active control qualities, which implies that the online unbalance
control algorithms can suppress the unbalanced vibration. The unbalance control has been
widely studied since the 1980s. The two classifications used to categorize the existing
unbalance control methods are unbalance compensation and automatic balancing. The
former is to keep the rotor rotating around its geometric axis. These methods are suitable
for high-precision occasions. However, when the rotating speed is too high, it will lead to
saturation of the power amplifiers. The latter is to force the rotor to rotate around the inertia
axis. These methods have the advantages of lowering house vibration, preventing amplifier
saturation, minimizing reactive power loss, and passing rigid mode critical speed [9,10].

Advanced nonlinear control techniques are employed in the unbalanced control of
AMB systems to address the drawbacks of linear controllers, such as the waterbed ef-
fect [11–13]. The sliding mode control scheme with global invariance was proposed in [14]
to optimize the performance of the auto-centering control of the AMB system. Tung
et al. [15] used a fuzzy gain tuning mechanism to realize the unbalance vibration suppres-
sion. However, these control algorithms are usually complicated to implement. The notch
filter [16–18] is widely employed in unbalance vibration control of AMB systems due to its
advantages of simplicity, independence from the mathematical model, strong practicabil-
ity, and reduced calculation. Peng proposed two modified notch filters in references [19]
and [20]. An optimal notch filter was designed to realize synchronous vibration control
for a magnetically suspended centrifugal compressor [19]. However, this method needs
to calculate the optimal phase angle corresponding to different rotating speeds, and the
implementation is complicated. A two-stage notch filter was proposed for synchronous
vibration control of the magnetically suspended rotor system [20]. Herzog et al. [21] de-
signed a generalized multi-variable notch filter to reject the unbalance vibration, which
revises the poor stability problems with conventional notch filters and presents a unified
view for both the “notch filter” approach and the “adaptive feed-forward compensation”
scheme. Moreover, this method needs to calculate the parameter matrix at different rotating
speeds in advance and store it in the look-up table. However, the notch filter may affect the
closed-loop stability of the AMB system.

The adaptive feed-forward compensation approach, when compared to the notch
filter, not only has the benefits of the notch filter but also resides in the outer loop of the
control loop, maintaining the closed-loop system’s stability margin [22]. Direct and indirect
adaptive feed-forward vibration controllers (AFVCs) have been designed to accomplish
both displacement nulling and current nulling [23]. Analogously, Turker et al. [24] realized
the displacement nulling and current nulling based on the recursive least square technique.
However, the approaches suggested in references [23,24] are both vulnerable to local
optimums. Zhou et al. [25] utilized the least mean square (LMS) method to track the
displacement vibration phase and the influence coefficient algorithm to compensate for
the synchronous vibration. However, this control scheme is complicated. Zhu et al. [26–28]
implemented the unbalance compensation using the recursive seeking algorithm, the
variable step size real-time iterative seeking algorithm, and the variable angle compensation
algorithm, respectively. He et al. [29] used the iterative learning control (ILC) method based
on the frequency domain approach to suppress the unbalance vibration for the MIMO AMB
system. Nonami et al. [30] proposed a Fourier coefficient adaptation algorithm to suppress
the unbalance vibrations of the AMB system. However, this algorithm’s sampling period
(iteration period) is constant, which lessens the method’s robustness.

Most of the above-stated methods require the rotating speed of the rotor to be deter-
mined by the rotating speed sensor. However, the speed sensor’s dependability is limited,
and a significant inaccuracy might arise in a high-temperature, high-pressure environment.
Moreover, the rotating speed sensor might not be able to be installed ordinarily due to the
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restricted space inside the mechanical structure. In general, it is feasible to estimate the
rotational speed using the vibration signals of the AMB system. Yang et al. [31] designed
a quadrature phase locked loop algorithm to obtain the rotating speed. However, the
error of this method is relatively large. Wu et al. [32] designed a phase shift second-order
generalized integrator frequency-locked loop to achieve the rotating speed observation.
However, this algorithm will be affected by the harmonic components. Reference [30]
designed a frequency estimation algorithm to calculate the rotating speed. However, the
effect of the frequency estimation is closely related to the initial value of the difference
equation. Vahedforough et al. [22] used a modified adaptive observer method to estimate
the rotating speed of the rotor and combined it with the AFB algorithm to reject the unbal-
ance vibration. However, this frequency tracker possesses a slow convergence rate. An
adaptive notch filter [33,34] was used to estimate the rotating speed of the AMB system.
However, these algorithms are sensitive to noise. Bodson [35] gave a detailed overview
of available approaches for the estimation of an unknown frequency. The methods in-
clude the extended Kalman filter, neural network theory, adaptive notch filter, fast Fourier
transform, and phase-lock loop (PLC). However, in terms of robustness, accuracy, and
tracking performance, the aforementioned frequency estimation algorithms are challenging
to simultaneously meet the requirements of the unbalance control of the AMB system.

Aiming at the limitations of previous research, this paper proposes a nonlinear adap-
tive control (NAC) algorithm combined with a novel frequency estimator to suppress the
synchronous vibrations of the AMB system. This control method can achieve automatic
balancing and unbalance compensation by switching the control structure. The frequency
estimator calculates the rotating speed based on the position of the rotor. Therefore, its
response time is short, and its tracking performance is excellent. Different from the refer-
ence [28], the NAC algorithm’s iteration period is adaptively adjusted by the rotating speed
and iteration parameter, which makes the algorithm more adaptive. Firstly, this paper
describes the 4-DOF AMB rigid rotor model. Then, the overall structure of the strategy with
the frequency estimator and NAC algorithm is presented. Meanwhile, the principles of the
frequency estimator and the NAC algorithm are analyzed. Moreover, the stability of the
NAC algorithm is proven by the Lyapunov method. Finally, simulations and experiments
are performed to demonstrate the reliability of the overall control scheme.

2. Dynamic Model of 4-DOF AMB Rotor System

As shown in Figure 1, a typical AMB system includes a shaft, power amplifiers,
sensors, a controller, radial and axial magnetic bearings, etc. In this work, the rotating
speed of the rotor is lower than its first bending critical frequency. Therefore, the rotor of
the AMB system in this work can be regarded as a rigid rotor. In Figure 1, O− xyz is the
fixed coordinate system; G and I are the geometric and inertial centers, respectively; and lg
and li are the geometric axis and inertial axis of the rotor, respectively.

The dynamic model of the rotor can be expressed as follows:

M
..
qi + G

.
qi = Bu f (1)

where M is the mass matrix, G is the gyroscopic matrix, u f =
(

fxA fxB fyA fyB
)T is

the electromagnetic force vector, and qi = (βi, xi,−αi, yi)
T is the generalized coordinate

vector of the inertial center I.
Since the rotor moves in a small range near the equilibrium point, u f can be treated

linearly as follows:
u f = −Ksqb + Kii (2)

where qb = (xbA, xbB, ybA, ybB)
T is the generalized coordinate vector of the rotor dis-

placement on the upper and lower AMB planes, Ks = diag(KsA, KsB, KsA, KsB) is the dis-
placement negative stiffness matrix, Ki = diag(KiA, KiB, KiA, KiB) is the current stiffness
matrix, and i =

(
ixA, ixB, iyA, iyB

)T is the control current vector.
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Based on the geometric relationship shown in Figure 1, we can get:

qb =


a 1 0 0
b 1 0 0
0 0 a 1
0 0 b 1

qc = BTqc qse =


c 1 0 0
d 1 0 0
0 0 c 1
0 0 d 1

qc = Cqc (3)

where qc = (βc, xc,−αc, yc)
T is the generalized coordinate vector of the geometric center

G, and qse = (xseA , xseB, yseA, yseB)
T is the generalized coordinate vector of the rotor

displacement on the upper and lower displacement sensor planes.
When the rotor possesses the mass imbalance, the relationship between qc and qi can

be written as follows:

qi = qc +


δ sin(Ωt + ξ)
e cos(Ωt + ϕ)
−δ cos(Ωt + ξ)
e sin(Ωt + ϕ)

 (4)

where δ and e are the dynamic and static imbalances, respectively, and ξ and ϕ are the
initial phases of the dynamic and static imbalances, respectively.

Substituting Equations (2)–(4) into (1), the dynamic model of the geometric center of
the rotor with mass imbalance can be written as follows:

M
..
qc + G

.
qc = −BKsBTqc + BKii + ∆f (5)

where Equation (6) is as follows:

∆f =


(Jt − Jz)Ω2δ sin(Ωt + ξ)

mΩ2e cos(Ωt + ϕ)

(Jz − Jt)Ω2δ cos(Ωt + ξ)
mΩ2e sin(Ωt + ϕ)

 (6)

Because of the existence of Ks, the open-loop system depicted in Equation (5) is
unstable. Hence, the closed-loop feedback control is used to achieve stability. The block
diagram of the closed-loop AMB system is shown in Figure 2, where Gc is the feedback
controller, Gw is the power amplifier matrix, and Kse is the displacement sensor gain matrix.
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3. Concrete Implementation of NAC Algorithm with the Frequency Estimator

In order to eliminate the unbalance vibration caused by the disturbance shown in
Equation (6), this note designed an NAC algorithm combined with a novel frequency
estimator. The overall algorithm structure is shown in Figure 3. Firstly, the frequency
estimator module can accurately calculate the rotating speed of the rotor and achieve speed
tracking based on displacement sensors signals. Then, the NAC algorithm takes the current
and displacement vibration signals as the suppression targets, respectively, and realizes the
automatic balancing and unbalance compensation.
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3.1. Frequency Estimator

Actually, the unbalanced vibration signals themselves contain the rotating speed
information. Therefore, we can use the online algorithm to calculate the rotating speed
of the vibration signal. The rotating speed signal must exhibit real-time, high precision,
and dependability properties for the AMB system’s unbalance control, which places strict
demands on the frequency estimator.

The novel frequency estimator proposed in this note is to simulate the working
principle of the rotating speed sensor. As shown in Figure 4, the rotor performs synchronous
positive precession in the air gap of AMB. Here, P(k) = (x(k), y(k))T and P(k−m) =

(x(k−m), y(k−m))T are the rotor position vectors at times k and k + 1, where k is the
sampling time. Next, we can determine the angle difference ∆θ according to the positions
of the rotor P(k) and P(k−m), as follows:

∆θ = tan−1
[‖P(k)× P(k−m)‖2

P(k)·P(k−m)

]
(7)
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As well, the rotating speed can be written as follows:

Ωe ≈
∆θ

m·Ts
=

1
m·Ts

· tan−1
[‖P(k)× P(k−m)‖2

P(k)·P(k−m)

]
(8)

where m is the time difference between the two rotor position vectors, Ts is the sampling
period, and [·] and [×] denote the dot product and cross product of vectors, respectively.

Usually, the displacement vibration signals not only contain synchronous components
but also include noise and harmonic components. As a result, Ωe will undoubtedly depart
from the genuine rotating speed value, indicating that Ωe contains an error. This work
designs a double-loop filtering module (DLFM) and a real-time reference averaging module
(RRAM) to enhance the accuracy and robustness of the frequency estimator. Figure 5 depicts
the flow chart of the frequency estimator, where the core principle of the initial estimation
module (IEM) is Equation (8).
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As illustrated in Figure 5, the DLFM based on a dual-loop filtering structure can
significantly minimize the error of Ωe. Moreover, the DLFM requires a small amount of
calculation and is convenient for development and application. However, there may be
gross errors in the output of DLFM due to the harmonic components. The RRAM can
effectively identify and remove gross errors in real time. And it can also further improve
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the precision of the frequency estimator. Finally, the output of the frequency estimator,
Ω f inal , can be utilized to suppress imbalanced vibrations.

3.2. NAC Algorithm

The NAC algorithm contains two parts: synchronous frequency detection and adaptive
iteration. The input of the NAC algorithm is the displacement or current error signals.
Here, we use e(k) = (exA, exB)

T to denote the error signal.

3.2.1. Synchronous Frequency Detection

As mentioned above, in addition to the synchronous components, e(k) also contains
noise and harmonic interference. The synchronous frequency detection can calculate
the synchronous DC components of the error signal e(k). This method can adapt to the
applications where the speed varies with time. In addition, it is a simple and easy-to-
implement method based on the Fourier analysis, as follows:

ec(n) =
∑λn

p=(n−1)λ+1 ∑
Np
k=1 ep(k) cos

(
ψp(k)

)
∑λn

p=(n−1)λ+1 Np
(9)

es(n) =
∑λn

p=(n−1)λ+1 ∑
Np
k=1 ep(k) sin

(
ψp(k)

)
∑λn

p=(n−1)λ+1 Np
(10)

where ec(n) = (ecA(n), ecB(n))
T and es(n) = (esA(n), esB(n))

T are the synchronous DC
components in the nth iteration period, n is the number of iterations, p is the count of the
rotation periods, Np is the number of sampling points in the pth rotation period, and ep(k)
is the displacement or current error signal in the pth rotation period. Finally, ψp(k) is the
rotor phase, which we can obtain by interpolation, as follows:

ψp(k) = ψp(k− 1) + 2πΩ f inalTs (11)

If ψp(k) is greater than 2π, we assume that the rotor rotates once, then p = p + 1
and ψp(0) = 0. Equations (9) and (10) state that the NAC algorithm’s iteration period is
equal to λ times the rotation period, where λ is an integer greater than zero. Therefore,
the rotational speed and λ are both used to modify the iterative period. Changing λ in the
right way can enhance the anti-interference performance of the algorithm.

3.2.2. Adaptive Iteration

The adaptive iteration module takes the synchronous DC components ec(n) and es(n)
as the objective function and makes them converge to zero. Define a(n) = (aA(n), aB(n))

T

and b(n) = (bA(n), bB(n))
T are the Fourier coefficients of the feed-forward compensation

signals, which can be expressed as follows:

r
[
ψp(k)

]
=


aA(n− 1) sin

[
ψp(k)

]
+ bA(n− 1) cos

[
ψp(k)

]
aB(n− 1) sin

[
ψp(k)

]
+ bB(n− 1) cos

[
ψp(k)

]
aA(n− 1) cos

[
ψp(k)

]
− bA(n− 1) sin

[
ψp(k)

]
aB(n− 1) cos

[
ψp(k)

]
− bB(n− 1) sin

[
ψp(k)

]
 (12)

The adaptive law is as following:
aA(n + 1) = aA(n)− waA(n + 1)ecA(n + 1)
aB(n + 1) = aB(n)− waB(n + 1)ecB(n + 1)
bA(n + 1) = bA(n)− wbA(n + 1)esA(n + 1)
bB(n + 1) = bB(n)− wbB(n + 1)esB(n + 1)

(13)
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where waA, waB, wbA and wbB are the iteration factors, which can be written as follows:
waA(n + 1) = waA(n)sgn

(
e2

cA(n)− e2
cA(n + 1)

)
waB(n + 1) = waB(n)sgn

(
e2

cB(n)− e2
cB(n + 1)

)
wbA(n + 1) = wbA(n)sgn

(
e2

sA(n)− e2
sA(n + 1)

)
wbB(n + 1) = wbB(n)sgn

(
e2

sB(n)− e2
sB(n + 1)

) (14)

The initial iteration parameters are as follows:
(aA(0) aB(0) bA(0) bB(0)) =

(
0 0 0 0

)
(ecA(0) ecA(0) esA(0) esB(0)) =

(
0 0 0 0

)
(waA(0) waB(0) wbA(0) wbB(0)) =

(
w0 w0 w0 w0

) (15)

where w0 is the initial value of the iteration factor, which affects the iteration step size of
the NAC algorithm. Moreover, the NAC algorithm proposed in this note is nonlinear, and
w0 has a perceptible effect on the stability of the algorithm.

3.3. Asymptotic Stability of the NAC Algorithm

It is crucial for the AMB system to operate steadily and dependably. The above anal-
yses show that the w0 affects the asymptotic stability of the algorithm. Therefore, it is
essential to analyze the effect of w0 on the asymptotic stability of the NAC algorithm. Actu-
ally, the acceleration and deceleration time of the rotor is much larger than the processing
time of the digital control system. As a result, it is only necessary to prove the asymptotic
stability of the algorithm at a steady-state speed. When the rotor is slender, the gyroscopic
effect can be ignored, and the rotor movements in the radial x and y directions can be
approximated as decoupled. Taking exA = xseA as an instance, after adding the overall
control scheme, it can be written as follows:

exA = Πr[aA sin(Ωt + $r) + bA cos(Ωt + $r)]
Πd[adA sin(Ωt + $d) + bdA cos(Ωt + $d)]

(16)

where adA and bdA are the Fourier coefficients of disturbance signal at the A end. As shown
in Figure 2, define Grx(jΩ) = Πrej$r to be the transfer function from the feed-forward
compensation signal to the displacement signal, and Gdx(jΩ) = Πdej$d to be the transfer
function from the disturbance signal to the displacement signal.

Substituting Equation (16) into Equations (9) and (10), we can get:{
ecA(n) = 1

2 [ΠrbA cos($r) + YcA + ΠraA sin($r)]
esA(n) = 1

2 [ΠraA cos($r) + YsA −ΠrbA sin($r)]
(17)

where YcA and YsA are the DC components of the disturbance signal, which can be written
as follows: {

YcA = ΠdbdA cos($d) + ΠdadA sin($d)
YsA = ΠdadA cos($d)−ΠdbdA sin($d)

(18)

Based on the adaptive iteration, we can get:{
ecA(n + 1) = ecA(n)− 1

2 Πr[wbA(n)ecA(n) cos($r) + waA(n)esA(n) sin($r)]
esA(n + 1) = esA(n) + 1

2 Πr[wbA(n)ecA(n) sin($r)− waA(n)esA(n) cos($r)]
(19)

The Lyapunov method is used to prove the asymptotic stability of the NAC algorithm.
Here, we construct the Lyapunov function as follows:

ΓA(n) = ecA(n)2 + esA(n)2 (20)
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According to the Lyapunov stability theorem, the asymptotic stability condition is
ΓA(n) ≥ 0 and ΓA(n + 1)− ΓA(n) < 0. Obviously, the first condition is satisfied for the
second, as follows:

ΓA(n + 1)− ΓA(n)
= 1

4 Π2
r [wbA(n)ecA(n) sin($r)− waA(n)esA(n) cos($r)]

2

+ 1
4 Π2

r [wbA(n)ecA(n) cos($r) + waA(n)esA(n) sin($r)]
2

+Πr
[
wbA(n)esAecA(n) sin($r)− waA(n)e2

sA(n) cos($r)
]

−Πr
[
waA(n)esAecA(n) sin($r) + wbA(n)e2

cA(n) cos($r)
] (21)

In the NAC algorithm, the iteration factors were waA(n) = wbA(n), and |waA(n)| =
|wbA(n)| = |w0|. Therefore, the Equation (21) can be rewritten as follows:

ΓA(n− 1)− ΓA(n)=
[
esA(n)2 + ecA(n)2

][1
4

Π2
r waA(n)2 −ΠrwaA(n) cos($r)

]
(22)

The stability condition of the NAC algorithm is as follows:

1
4

Π2
r waA(n)2 −ΠrwaA(n) cos($r) < 0 (23)

Based on Equation (23), as long as |w0| <
∣∣∣ 4 cos($r)

Πr

∣∣∣, the asymptotic stability of the
NAC algorithm can be guaranteed. Similarly, when exA = ixA, the asymptotic stability
condition is |w0| <

∣∣∣ 4 cos(ςr)
Ξr

∣∣∣. Define Gri(jΩ) = Ξrejςr to be the transfer function from
the feed-forward compensation signal to the current signal. This subsection analyzes the
asymptotic stability of the NAC algorithm and derives the stability conditions when the
error signal is the displacement or current signal, respectively.

4. Simulation and Experimentation
4.1. Simulation

This paper conducted a series of simulations to verify the effectiveness of the overall
control scheme. The parameters of the simulation model are shown in Table 1. The rotating
speed is set to 6000 rpm, which is close to the second-order rigid mode of the rotor. The
vibration amplitude of the rotor is relatively large at this time. The maximum number of
iteration steps set in the simulation is 1000 steps. The controller sampling frequency is set
to 10 kHz. The eccentricity of the rotor is set to 0.01 m. The effect of the frequency estimator
and the NAC algorithm is as follows.

Table 1. Simulation parameters.

Parameter Value Unit

m 32.45 kg
Jt 0.88 kg·m2

Jz 0.05 kg·m2

KsA = KsB −35,428.09 N ·m−1

KiA = KiB 18.35319 N ·A−1

KseA = KseB 30,000 V ·m−1

a 0.41 m
b −0.39 m
c 0.48 m
d −0.47 m

Figures 6 and 7 show the simulation results of the frequency estimator. Define tr as
the response time. Figure 6 shows the response curve of the frequency estimator, and tr is
0.087 s. Moreover, the response curve is characterized by a sudden increase toward the end
of the response. The convergence result of the frequency estimator is 100.004 Hz, and the
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calculation error is within ±0.01 Hz. In order to verify the noise immunity of the frequency
estimator, the displacement signals with signal-to-noise (SNR) ratio of 13 dB and 20 dB are
used as the input signals of the frequency estimator in this paper. As shown in Figure 7,
Ωe is the output of the IEM, and its response time is zero. The error of Ωe is substantially
less when SNR is 20 dB than when it is 13 dB. Moreover, the error of Ω f inal is much smaller
than that of Ωe, and is within ±0.05 Hz. Besides, the response times corresponding to the
two cases in Figure 7 are consistent with the corresponding response times in Figure 6,
indicating that the response time of the frequency estimator is not affected by the noise.
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The simulation results of the overall control scheme are shown in Figure 8. The NAC
algorithm uses the rotating speed calculated by the novel frequency estimator to realize
displacement vibration elimination and current vibration elimination, respectively. As
shown in Figure 8a, the convergence time of the displacement vibration amplitude will be
shortened when the initial iteration factor is large. However, once the initial iteration factor
exceeds the stability range, the system will become unstable, and the vibration amplitude
will diverge. Similarly, the current vibration elimination also has such a phenomenon,
which is consistent with the previous theoretical analyses.
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4.2. Experiment

The effectiveness of the proposed algorithm is verified in an actual AMB system. As
shown in Figure 9, the experimental device is a magnetically suspended compressor, whose
parameters have been shown in Table 1. The rotor is placed vertically and has blades on
top. This setup has two sets of 16-pole radial AMBs, and one set of axial AMBs mounted on
the end of the rotor. The displacement sensors are eddy current sensors, which are installed
near the radial AMBs and axial AMB to measure the displacement of the rotor. The control
software is stored in the DSP chip-based digital control system.
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Figure 9. Experimental setup of the AMB system.

We used the rotating speed sensor as a control group to improve the experimental
results’ dependability. The rotating speed is set to increase from 0 Hz to 100 Hz (6000 RPM),
and then to decrease from 100 Hz to 0 Hz. Figure 10 shows the experimental results of
the rotating speed sensor compared to the frequency estimator when the rotating speed
varies in a straight line with time. The black line represents the rotating speed measured
by the rotating speed sensor, and the red line represents the rotating speed calculated by
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the frequency estimator. Since the response time of the frequency estimator is extremely
short, it has already completed the response when the rotor is in a suspended state. As
shown in Figure 10, the frequency estimator and rotating speed sensor are almost perfectly
synchronized.
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Figure 10. Experimental results of the frequency estimator.

The effectiveness of the overall control scheme in displacement vibration suppression
and current vibration suppression at a steady-state speed is verified. The rotating speed
is 6000 rpm (100 Hz), which is close to the second-order rigid mode of the rotor. The
initial iteration factor is set to 0.08. Figures 11 and 12 show the experimental results of
displacement vibration elimination and current vibration elimination, respectively, and the
comparison results of the A-end trajectories before and after convergence in these two cases.
As shown in Figure 11, after applying the control, the displacement vibration amplitude
converges quickly within 3.7 s, and the contrast of the A-end trajectories before and after
convergence is obvious. In Figure 12, the current vibration amplitude converges within 2.8 s.
According to the simulation results, both displacement vibration and current vibration
converge in 3.2 s when the initial iteration factor is 0.08. The simulation and experimental
results are nearly identical. And at the same time, we can see that the trajectory of the
A-end has also shrunk. When the current vibrations are suppressed, the electromagnetic
force vibrations will also be suppressed to a large extent, which is equivalent to automatic
balance. In this case, the rotor will rotate around its inertial axis, and the displacement
vibrations will show signs of reduction.
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Figure 12. Experimental results of current vibration elimination.

The overall control scheme’s validity is confirmed under the time-varying rotating
speed. The initial iteration factor is 0.08. The rotating speed increases from 0 rpm to
10,500 rpm at an acceleration of 60 rpm·s−1. Figure 13 shows the current and displacement
vibration amplitudes with and without control. The amplitudes of current and displacement
vibrations are significantly reduced after applying control. Moreover, the overall control
scheme performs well in the rigid mode frequency region. Figures 11–13 show much
noise. Poor grounding or age of the test bench’s insulated cable may be to blame for signal
noise. Noise may cause errors in the calculation of synchronous energy, thereby affecting
the performance of the control algorithm. In the overall control scheme, we set multiple
low-pass filters to reduce the impact of the noise on the AMB system.
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5. Discussion

Firstly, the simulations show that the frequency estimator has a short response time
and significant precision and robustness, which allow it to control the error within±0.05 Hz
even in the presence of noise. Moreover, the experiments show that the frequency esti-
mator has excellent tracking performance. Then, simulations and experiments verified
the effectiveness and reliability of the overall control scheme to suppress the current and
displacement vibrations. The simulation results show that the larger the initial iteration
factor, the faster the algorithm converges, but when it exceeds the stability threshold, the al-
gorithm becomes unstable. This is consistent with the asymptotic stability theory described
in Section 3. The experimental results also confirm the effectiveness of the algorithm in the
rotating speed range of 0–10,500 rpm. These results show that the control scheme proposed
in this paper provides a new perspective on speed estimation, which further improves the
performance of the AMB system and expands its application.
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6. Conclusions

The control scheme proposed in this paper can effectively suppress displacement and
current vibrations without the rotating speed sensor. The frequency estimator contains
three modules, which has the advantages of a short response time, high precision and
robustness, and significant tracking performance. The NAC algorithm takes synchronous
DC components as the objective function and suppresses the current and displacement
vibrations based on the periodic iteration strategy. In addition, the stability of the NAC
algorithm is proved by the Lyapunov method. Finally, the simulation and experimental
results demonstrate the effectiveness of the overall control scheme. However, the premise
of the control scheme still assumes that the rotor is rigid. If the rotor speed is near the
flexible region, the system will generate a phase delay, which will affect the performance of
the proposed method. Therefore, the corresponding research work on vibration control in
the flexible region will be further carried out in the future.
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