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Abstract: Intelligent on-site fault diagnosis and professional vibration analysis are essential for the
safety and stability of rotating machinery operation. This paper represents a fault diagnosis scheme
based on two-stage compressed sensing for triaxial vibration data, which realizes fault diagnosis
for rotating machinery based on compressed data and data reconstruction for professional vibration
analysis. In the 1st stage, the triaxial vibration signals are compressed using a pre-designed hybrid
measurement matrix; these compressed data can be used both for time-frequency transform and for
vibration data reconstruction. In the 2nd stage, the frequency spectra of the triaxial vibration signals
are fused and further compressed using another pre-designed joint measurement matrix, which
inhibits the high-frequency noises simultaneously. Finally, the fused spectra are employed as feature
vectors in sparse-representation-based classification, where the proposed batch matching pursuit
(BMP) algorithm is utilized to calculate the sparse vectors. The two-stage compression scheme and
the BMP algorithm minimize the computational cost of on-site fault diagnosis, which is suitable for
edge computing platforms. Meanwhile, the compressed vibration data can be reconstructed, which
provides evidence for professional vibration analysis. The method proposed in this study is validated
by two practical case studies, in which the accuracies are 99.73% and 96.70%, respectively.

Keywords: fault diagnosis; sparse representation; compressed sensing; data fusion

1. Introduction

Fault diagnosis improves the safety, reliability, and maintenance efficiency of rotating
machinery, and vibration signal analysis is one of the most popular diagnosis techniques.
Many novel methods and indexes are proposed for rotating machinery based on vibration
signals, such as feature mode decomposition [1], iterative adaptive crucial mode decompo-
sition [2], Gini index [3], and neural network-based methods [4]. These methods provide
remarkable performance for fault diagnosis. Meanwhile, emerging technologies such as
edge computing and industrial internet of things are widely used in mechanical systems,
based on triaxial vibration data. Intelligent fault diagnosis implemented in edge computing
platform is becoming a promising supplement for vibration analysts’ professional analysis.
Considering the computational capability of the edge computing platform, combined with
the effects of triaxial vibration data fusion and reduction, the promotion of algorithm
efficiency is essential for on-site fault diagnosis. Meanwhile, for the diagnosis of some
intractable faults, original vibration data is the fundamental for the calculation of effective
indexes such as sparsity indexes [5]. Alternatively, professional vibration analysis is re-
quired, in which case data reconstruction is also necessary [6]. Thus, a triaxial vibration data
processing scheme which integrates data compression, data reconstruction, data denoising,
and data fusion [7] into high-efficiency fault diagnosis is essential for practical engineering
applications. Fortunately, compressed sensing provides an efficient data compression and
reconstruction tool for fault diagnosis. Fault diagnosis based on compressed sensing has
been an emerging research field in the past few years, and related research mainly focus on
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dictionary matrix construction and learning, feature extraction of compressed data, and the
combination with machine learning [8], etc.

First, the dictionary learning or dictionary matrix construction improves the robustness
or accuracy of fault diagnosis. In Ref. [9], an adaptive compressed sensing method is
presented to identify a weak fault signature and improve fault diagnosis accuracy, in which
the dictionary learning method is employed. In Ref. [10], a dictionary matrix composed
of labeled samples acquired from different conditions is constructed, which improves the
robustness of fault diagnosis. However, few dictionary matrices can currently integrate
the fault sensitive information of all triaxial vibration signals, even though in practice,
most of the rotating machinery monitoring systems contain vertical, horizontal, and axial
vibration sensors.

Next, to improve the computational efficiency, fault sensitive features are extracted
in the compressed domain. For example, in Ref. [11], weak fault features are extracted
based on wavelet packet decomposition and particle swarm optimization. In Ref. [12],
wavelet packet energy entropy is extracted from the compressed data, and then used as
features for sparse autoencoder. In these studies, a random matrix is employed as the
measurement matrix. However, the frequency characteristics of the original vibration
signals are destroyed: thus, the widely-used and edge computing-friendly time-frequency
transform cannot be applied to these compressed data.

The combination of compressed sensing and machine learning reduces the pressure of
data transmission, storage and calculation of machine learning. In Ref. [13], a fault diagnosis
approach which combines a Teager energy operator demodulation and deep autoencoder
of compressed sensing is proposed, which improves the fault diagnosis robustness and
accuracy. In Ref. [14], a fault diagnosis scheme based on compressed sensing theory and an
improved multi-scale neural network is presented, where compressed sensing is employed
for data reduction. However, machine learning, especially deep learning, requires powerful
computational capability of the computation platform, which poses a challenge for its
application in on-site and real-time fault diagnosis.

The three fundamental elements of compressed sensing are: measurement matrix
design, dictionary matrix construction, and sparse vector calculation [15]. The existing
fault diagnosis methods based on compressed sensing mainly involve a dictionary matrix
construction [16] and a sparse vector calculation: few compressed-sensing-based fault diag-
nosis methods focus specifically on the design of an expressly appropriate measurement
matrix for triaxial vibration data which would aim to retain frequency characteristics and
reduce high-frequency noise, as well as enabling multisource fusion. Yet, these issues are
critical in practical engineering. Meanwhile, the combination of high-rate compression
and data reconstruction for vibration data processing is also a bottleneck issue, since full
original vibration data storage and transmission are expensive, while data reconstruction
can hardly be realized in traditional feature extraction methods.

To solve the above problems, in this study, considering the synergy of the on-site
intelligent diagnosis implemented in an edge computing platform and the professional
analysis based on original vibration data and compressed sensing, a new fault diagnosis
scheme is proposed, which contains a two-stage compression scheme, exclusive design of
the measurement matrices, and batch matching pursuit algorithm. The main contributions
of this study are summarized as follows.

(1) The proposed two-stage compression scheme provides an extremely high data com-
pression efficiency for on-site fault diagnosis, while the original vibration data can be
reconstructed for professional vibration analysis.

(2) Novel measurement matrices are designed for fault diagnosis based on compressed
sensing, which emphasize retention of frequency characteristics, high-frequency noise
reduction, and multisource data fusion.

(3) For sparse representation-based classification, a batch match pursuit algorithm is pro-
posed, which improves the efficiency of sparse vector calculation in sparse representation.
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The subsequent sections of this paper are arranged as follows. In Section 2, the
architecture and the details of the fault diagnosis method are presented. In Section 3,
the proposed method is validated using two practical cases, including maintenance level
recognition of a landfill gas power generator (LGPG) and fault diagnosis of the driving
gear in a battery swapping system (BSS). In Section 4, conclusions of this work are drawn,
and future work described.

2. Methodology

The structure of the proposed method is shown in Figure 1. In this study, triaxial
vibration signals of rotating machinery are acquired, including monitoring data collected
from vertical, horizontal and axial vibration sensors, the vibration data are then compressed
in two stages: the 1st stage of compression is a time-domain compression, where vibration
data acquired from different sensors are respectively compressed; the 2nd stage of com-
pression is a frequency-domain compression, during which the frequency spectra obtained
from the triaxial vibration signals are fused. In the 1st stage, to retain the frequency features
of the vibration data, a hybrid measurement matrix is designed, which is composed of a
diagonal matrix and a random matrix. In the 2nd stage, to fuse the spectra and filter out
the high-frequency noises, a joint measurement matrix is designed based on the sigmoid
function. Finally, the fused frequency spectrum is employed as the input feature vector
of sparse-representation-based classification (SRC), in which the sparse vector is calcu-
lated based on the proposed BMP algorithm, and the fault pattern of the testing sample
is determined by evaluating the quality of signal reconstruction. Note that considering
the randomness of the hybrid measurement matrix, the original vibration data can be
reconstructed based on compressed sensing, and these reconstructed data provide evidence
for enhanced fault diagnosis, similar to a vibration analysts’ professional analysis.

From the perspective of application, the operations involved in the proposed method
are vector multiplication, matrix multiplication, and Fourier transform. Since these oper-
ations are basic mathematical operations for nearly all of edge computing platforms, the
fault diagnosis scheme proposed in this study can be easily implemented in any on-site
fault diagnosis application. Moreover, the data size is reduced significantly thanks to the
two-stage compression, which improves the computational efficiency.

2.1. Vibration Data Compression Based on Compressed Sensing

For on-site fault diagnosis based on an edge computing platform, to reduce the
computational burden of the edge computing platform, data compression is necessary.
Compressed sensing is proposed by way of signal sparsity, which compresses the original
signal with a measurement matrix, and later reconstructs the original signal from the
compressed signal.

Suppose the original vibration signal is x, and its size is N× 1; the vibration signal can
be sparsely represented based on a dictionary matrix Ψ, such as a discrete Fourier matrix,
whose size is N × N:

x = Ψα (1)

where α is a sparse vector, whose size is N × 1, and which contains k nonzero elements,
k� N.

Next, the original vibration signal can be compressed using a measurement matrix
Φ, whose size is M× N (M� N), the measurement matrix should be uncorrelated to the
dictionary matrix, and is usually a random matrix. The compression is expressed as:

y = Φx (2)

Here, y is the compressed signal, and its size is M× 1. Since M� N, the size of the
original signal is reduced significantly.

In the reconstruction stage, the goal is to estimate the original vibration signal x̂ from the
compressed vibration signal y. Before the reconstruction, an operation matrix ACS is obtained:
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ACS = ΦΨ ∈ RM×N (3)

An estimated sparse vector α̂ can then be calculated based on greedy algorithms such
as the orthogonal matching pursuit (OMP) algorithm, and the number of iterations is k:

y = ACS · α̂ (4)

Finally, the estimated original vibration signal x̂ is obtained:

x̂ = Ψα̂ (5)Machines 2023, 11, x FOR PEER REVIEW 5 of 33 
 

 

 
Figure 1. Framework of the proposed method. 

2.1. Vibration Data Compression Based on Compressed Sensing 
For on-site fault diagnosis based on an edge computing platform, to reduce the com-

putational burden of the edge computing platform, data compression is necessary. Com-
pressed sensing is proposed by way of signal sparsity, which compresses the original sig-
nal with a measurement matrix, and later reconstructs the original signal from the com-
pressed signal. 

Suppose the original vibration signal is x , and its size is 1N × ; the vibration signal 
can be sparsely represented based on a dictionary matrix Ψ , such as a discrete Fourier 
matrix, whose size is N N× : 

x α= Ψ  (1)

Figure 1. Framework of the proposed method.



Machines 2023, 11, 242 5 of 30

2.2. Time-Domain Compression and Time-Frequency Transform

Generally speaking, to ensure the independence of the resamples according to the
measurement matrix for the original vibration signal x, a random matrix is always selected
as the suitable measurement matrix. However, in this study, the frequency spectrum will
later feature in the fault diagnosis, while the random measurement matrix destroys the
frequency characteristics of the vibration signals: thus, a random matrix cannot be used as
the measurement matrix directly.

To solve the above problem, in this study, a hybrid measurement ΦT is designed for
time-domain vibration signal compression. The measurement matrix ΦT is composed of
two matrices: diagonal matrix ΦTD and random matrix ΦTR. The former, ΦTD, is used to
retain the frequency characteristics of the original vibration signal, and the latter, ΦTR, is
utilized to ensure the independence of data resamples [17].

Suppose the original vibration signal is x ∈ RN×1, the compressed signal is y ∈ RM×1,
and N is the integer multiple of M; suppose also that:

N/M = c (6)

Here, c is an integer. The diagonal matrix is then constructed as:

ΦTD =



1 1 · · · 1
c

0 0 · · · 0
c

· · · 0 0 · · · 0
c

0 0 · · · 0
c

1 1 · · · 1
c

· · · 0 0 · · · 0
c

...
...

. . .
...

0 0 · · · 0
c

0 0 · · · 0
c

· · · 1 1 · · · 1
c


∈ RM×N (7)

Based on measurement matrix ΦTD, the adjacent values of x are summed: in essence,
it is a data down-sampling operation. Thus, the frequency characteristics of the vibration
signal is retained. ΦTR is a random matrix, and its size is also M× N. Therefore, the hybrid
measurement matrix is expressed as:

ΦT = ΦTD + αΦTR (8)

where α is the coefficient of the random matrix.
Next, the vibration signals acquired from different vibration sensors are compressed as:

yM×1 = ΦT,M×N · xN×1 (9)

Given that two arbitrary rows of ΦT are uncorrelated, the inner production between
each row of ΦT and x can be considered as an independent resample for the original signal,
and all of the resamples are non-redundant.

Note that the 1st stage compression in Equation (9) is conducted in the time-domain,
and the compressed data will be reconstructed for enhanced fault diagnosis or professional
analysis. The reconstruction is realized based on Equations (4) and (5), and the key issue of
data reconstruction is the calculation of sparse vector α̂. Generally speaking, the nonzero
elements in α̂ are obtained one-by-one based on a greedy algorithm. As described in
Equation (1), the sparse vector contains k nonzero elements: to obtain all these k nonzero
elements based on Equation (9), the compressed signal y should at least contain k elements.
In other words, to achieve the reconstruction, the length of the 1st stage compressed M
must satisfy:

M ≥ k (10)

Meanwhile, k is determined by the characteristics of the vibration signal, and the
selection of dictionary matrix Ψ for signal reconstruction in Equation (1). For vibration
signals, either a discrete Fourier transform (DFT) matrix or a discrete cosine transform
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(DCT) matrix is always selected as the dictionary matrix. If DFT is employed as the
dictionary matrix, the number of nonzero elements is that in the frequency spectrum of the
vibration signal.

Based on the above analysis, to ensure the accurate reconstruction from the compressed
vibration signal, the compression rate CR1 in the 1st stage should satisfy:

CR1 = 1/c1 ≥ k/N (11)

According to our review for previous studies about the vibration signal compression
and reconstruction based on compressed sensing, the compression rate of vibration signal
ranges from 0.21 to 0.75.

Subsequently, the frequency spectrum of compressed signal y(i), i = 1, 2, · · · , M is
obtained. Suppose the frequency spectrum is y f (k1), k1 = 0, 1, · · · , M− 1, then:

y f (k1) =

∣∣∣∣∣M−1

∑
0

y(i)e−j 2π
M k1i

∣∣∣∣∣ (12)

Considering the sampling points in y(i) are real numbers, then:

y f (k1) =

∣∣∣∣∣M−1

∑
0

y(i)
(

cos 2πk1
i

M
− j sin 2πk1

i
M

)∣∣∣∣∣ (13)

The frequency spectrum is symmetrical, and only half of the spectrum is therefore
effective. Thus, supposing M is an even number, and M = 2M1, we take the y f (k1),
k1 = 1, 2, · · · , M1 as the effective frequency spectrum.

2.3. Frequency-Domain Compression and Fusion

In general, for rotating machinery, the fundamental frequency and the characteristic
frequencies of faults are distributed in low and medium frequency bands, while the compo-
nents in the high frequency band are always noises. Therefore, a joint measurement matrix
ΦF is constructed for noise reduction, and the multi-direction frequency spectra fusion is
carried out at this stage.

Suppose the effective frequency spectra of compressed vibration signals collected
from different channels are y fV(k1), y fH(k1), and y fA(k1), k1 = 1, 2, · · · , M1, and all of
these spectra are expressed as column vectors; then, we consolidate these vectors as a new
column vector ξ:

ξ = y fF(k2) =
(

y fV(k1)
T y fH(k1)

T y fA(k1)
T
)T

, k2 = 1, 2, · · · , 3M1 (14)

Since data fusion improves the performance of fault diagnosis [18], a joint measure-
ment matrix ΦF is constructed for the compression and fusion of the vector ξ, and ΦF is
composed of low-pass matrix ΦFL and random matrix ΦFR:

ΦF = ΦFL + βΦFR (15)

where β is the coefficient of random matrix.
Based on the frequency spectrum analysis, the low-pass matrix ΦFL is generated from

Equation (16) (shown in Figure 2):

yL(t) = 1− 1
1 + e−t , t ∈ (−5, 5] (16)
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Next, we fetch M1 data points from yL with equivalent interval sampling, and these
data points constitute a row vector φL = yL(k1), k1 = 1, 2, · · · , M1. The low-pass matrix is
generated by repeating the vector φL:

ΦFL =


φL φL φL
φL φL φL
...

...
...

φL φL φL


M2×3M1

(17)

Here, M2 is the length of the compressed spectrum.
The size of the random matrix ΦFR is also M2 × 3M1. Based on Equation (15), the

joint measurement matrix ΦF ∈ RM2×3M1 is obtained. Finally, the frequency spectra are
compressed and fused using the constructed joint measurement matrix ΦF:

ν = ΦF · ξ, ν ∈ RM2×1, ΦF ∈ RM2×3M1 , ξ ∈ R3M1×1 (18)

In Equation (18), the inner product between any row of ΦF and ξ can be regarded as a
resample for all the frequency spectra. Meanwhile, the fusion of three frequency spectra
is achieved. Considering that each element of column vector ν is a weighted sum of ξ,
and the weights corresponding to high-frequency components are smaller than others, the
compression and fusion process is also a denoising process.

Unlike the compression in the 1st stage, the purposes here of the 2nd stage compression
are data reduction, data fusion, and denoising. Because of the random component ΦFR in
the measurement matrix ΦF, the M2 resamples for the vector ξ are mutually independent.
In view of the purpose of data reduction, the range of M2 is M2 ∈ [λ, 3M1); in other words,
to ensure the accuracy of fault diagnosis, the range of the compression ratio in the 2nd
stage is:

CR2 = M2/3M1 ∈ [λ/3M1, 1) (19)

To find out the relationship between the fault diagnosis accuracy and the compression
ratio in the 2nd stage CR2, we carried out several fault diagnosis tests on the basis of
different datasets, including the datasets employed in this study, the bearing vibration data
from Paderborn University (PDBU) [19], and the widely-used bearing monitoring dataset
from Case Western Reserve University (CWRU). To better demonstrate the relationship,
the relative accuracy RA is employed here, which is calculated as follows:

RA = Ai/Max(Ai), i = 1, 2, · · · , 12 (20)
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where Ai is the fault diagnosis accuracy of the ith test based on each dataset. For all the
four datasets, 12 tests were carried out, and the relationship between CR2 and RA is shown
in Figure 3. As these tests reveal, the compression ratio in the 2nd stage should be equal to
or greater than 0.2.
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In many fault diagnosis methods based on compressed sensing, after the 1st stage
data compression in the time-domain, the compressed data are directly used for feature
extraction and fault diagnosis. Unlike these methods, in this study, the 2nd stage compres-
sion in the frequency-domain is implemented after the 1st stage compression. The reasons
for the 2nd stage compression are explained as follows.

(1) After the 1st stage compression in the time-domain, many advanced feature ex-
traction techniques are still required. However, some of these advanced feature extraction
algorithms are difficult to run directly based on edge computing platform, whereas FFT
is a fundamental operation for nearly all computational platforms—including embedded
systems which are more practical for on-site fault diagnosis. (2) In conventional compressed
sensing-based fault diagnosis, a random matrix is always employed as the measurement
matrix, which destroys the frequency characteristics of the compressed signal. Fortunately,
in this study, on the basis of the proposed hybrid measurement matrix in Equation (8),
the frequency characteristics of the compressed signal are retained during the 1st stage
compression, which makes the time-frequency transform possible. (3) For vibration signals,
the high frequency components are always contaminated by noises. In this study, for the
frequency spectra, by using the proposed joint measurement matrix in Equation (15), the
high-frequency noises are suppressed during the 2nd stage compression. (4) For triaxial
vibration signals, the 2nd stage compression in the frequency-domain further reduces the
size of data during the spectrum fusion, thereby improving the computational efficiency.

In the remainder of this study, the compressed frequency spectrum ν will be employed
as the feature vector of fault diagnosis.

2.4. Sparse-Representation-Based Classification and Fault Diagnosis

Based on the SRC [20], the redundant dictionary matrix is constructed using the
compressed frequency spectra [21]. Suppose we have p patterns, and the number of labeled
samples in each pattern is nDS: then, the dictionary matrix can be shown in Figure 4:

D =
(
ν1 ν2 · · · νnDS ·p

)
(21)

Suppose the compressed frequency spectrum of testing sample is z, and its size is
M2 × 1, the same as the size of the labeled samples in D: then, z is sparsely represented by
D using the following greedy algorithm:

zM2×1 = DM2×nDS ·p · r̂nDS ·p×1 (22)



Machines 2023, 11, 242 9 of 30

In Equation (22), r̂ is the estimated sparse vector, as shown in Figure 5.
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The classifier is composed of sparse representation and reconstruction evaluation. In
sparse representation, the compressed frequency spectrum ν obtained from Equation (18) is
employed as data samples. Here, z is the testing data sample, the pattern of z is unknown
and yet to be determined, and D is the dictionary matrix composed of training data, the
patterns of which are known. Thus, the data samples in the dictionary matrix D are labeled
samples, as shown in Figures 4 and 5. Based on Equation (22), the underlying principle of
fault diagnosis is that the testing sample z can be represented by the linear combination of
the atoms (the labeled samples with different patterns) in the dictionary D. However, by
using the atoms whose pattern are the same as the testing sample z, the number of atoms
selected for representation can be minimized, because of the feature similarity. Thus, the
classification problem is regarded as an optimization problem, and the object function is:

r̂ = argminr:z=D·r‖r‖0 (23)

During the sparse representation, based on the sparse vector, the loss function is:

L = ‖z− D · r‖ (24)

The classifier is optimized according to the proposed batch matching pursuit (BMP)
algorithm, and the key procedure of the algorithm is solving a least squares problem, as
expressed in the non-zero elements calculation of BMP procedures. Since the number of
iterations of the algorithm is predetermined, the atoms which are most similar to the testing
sample z will be selected. In fact, nonzero elements in the obtained sparse vector r̂ is deter-
mined by the weights of the linear combination, and the position indices are the sequence
number of the selected atoms. Since the arrangement of labelled samples is predetermined,
the pattern of the testing sample can be recognized based on the reconstruction evaluation.

To reduce the computational burden, in this study, we propose a BMP algorithm,
where more than one nonzero elements are obtained in each iteration. Compared to the
one-by-one principle in a traditional OMP algorithm, the calculation efficiency is improved
significantly. The procedures of the proposed algorithm are listed as follows (Algorithm 1):

Algorithm 1

Algorithm input:
Redundant dictionary: DM2×nDS ·p
Compressed frequency spectrum: zM2×1
Number of (fault) patterns: p
Iteration times: nIter
Number of support vectors contained in each iteration: nSV
Algorithm output:
Estimated sparse vector: r̂nDS ·p×1
Variables in the algorithm:
Counter of iteration: times = 1, 2, · · · , nIter
Cosine distance between any two vectors: dcos
Indices of nonzero elements in r̂: r̂Pos 1×nSV ·nIter

Nonzero elements in sparse vector: r̂Element 1×nSV ·nIter

Selected support vector set for z:MSV M2×nSV ·nIter

Vector of residue: Res
Algorithm procedures:
Parameters initialization
Counter of iteration: times = 1
Sparse vector: r̂0 =

(
0 0 · · · 0

)T
nDS ·p×1

Initial indices of nonzero elements in r̂: r̂Pos,0 = [ ]
Initial vector of residue: Res0 = z
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νcol is the colth column vector of D, and col = 1, 2, · · · , nDS · p.
Selecting nSV maximum values from dcos, the position indices of these maximum nSV values are:

r̂Pos,times , 1×nSV = (col1, col2, · · · , colnSV )

Consequently, the obtained position indices in the iteration are merged into the existing
position indices:

r̂Pos = r̂Pos ∪ r̂Pos,times

Next, based on r̂Pos, a batch of support vectors is selected from the redundant dictionary, and
these support vectors contribute most in the reconstruction:

MSV,times = Dr̂Pos = D(:, r̂Pos)

After that, the selected atoms in the redundant dictionary are replaced by null vectors:

D
(
:, r̂Pos,times

)
= 0

By using MSV,times, the nonzero elements in r̂Element,times are calculated based on the
least-square method:

r̂Element,times =
(

MSV,times
T ·MSV,times

)−1
·MSV,times

T · z

After this process, the new residual vector Restimes is calculated:

Restimes = z−MSV,times · r̂Element,times

c. Iteration
The procedures in sparse vector calculation are repeatedly executed for nIter times, and nSV · nIter
nonzero elements in the sparse vector are obtained.
Finally, these nonzero elements are filled into the sparse vector in accordance with the vector of
indices r̂Pos:

r̂nDS ·p×1 : r̂r̂Pos = r̂(r̂Pos) = r̂Element

Compared to the traditional OMP algorithm [22], the number of iterations of BMP is
1/nSV times of OMP, which reduces the computational burden significantly. Thus, for the
edge computing platform and on-site fault diagnosis, the BMP algorithm provides a more
efficient solution.

After sparse representation, reconstruction evaluation is conducted to determine the
pattern of samples tested. Since the atoms or the labeled samples in the dictionary D are
grouped by patterns, and each column vector in matrix D corresponds to a single element in
the sparse vector r̂, the values and distributions of nonzero values in r̂ indicate the pattern
of the testing sample. Thus, the estimated sparse vector r̂ is divided into p isometric parts,
each part containing nDS elements based on retention of partial elements (other elements
being set as zeros), p partial sparse vectors are derived from r̂, and these partial sparse
vectors are denoted r̂1, r̂2, . . . ,r̂p respectively, as shown in Figure 5.

Next, we reconstruct the compressed frequency spectrum of testing sample z by using
the partial sparse vectors r̂u, u = 1, 2, · · · , p, respectively:

ẑu = D · r̂u, u = 1, 2, · · · , p (25)

By comparing z and ẑu, the reconstruction error can be obtained:

Erru = ‖z− ẑu‖/‖z‖ (u = 1, 2, · · · , p) (26)

Based on sparse representation and compressed sensing, the partial sparse
vector—composed of the elements corresponding to the targeted atoms in the dictionary
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matrix—reconstructs z better than other vectors. Thus, the subscript of the minimum Erru
is the pattern to be determined [10]:

Pattern = u s.t.min(Erru) u = 1, 2, · · · , p (27)

3. Efficiency Analysis

In this section, the efficiency of the proposed method is analyzed from two perspec-
tives: the data size analysis, and the key algorithm efficiency analysis. The analyses are
based on triaxial vibration signals.

3.1. Data Size Analysis

Generally, the classical fault diagnosis scheme is composed of feature extraction and
pattern recognition. To ensure the accuracy of fault diagnosis, time-domain features,
frequency-domain features, and time-frequency domain features are always extracted from
the triaxial vibration signals. Since frequency-domain analysis is critical for fault diagnosis
based on vibration signals, here, we compare the data size of the proposed scheme with
that of the conventional scheme for time-frequency analysis based on triaxial vibration
data. The data size in the fault diagnosis procedures are shown in the dash red frames of
Figure 6, where c1 is the reciprocal value of the 1st stage compression ratio, and c2 is the
reciprocal value of the 2nd stage compression ratio.
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Note that the data compression is based on inner product between the measurement
matrix and the original vibration signal, as shown in Equations (9) and (18). In essence,
the compression is an inner product between a matrix and a vector. For the 1st stage
compression, the size of the measurement matrix is M× N, and the size of the original
vibration signal is N × 1; thus, the computational complexity of the 1st stage compression
is O(M ∗ N). Here, we take the Fourier transform as a benchmark: the computational
complexity of the Fourier transform for the original vibration signal is O(N ∗ N), which is
lower than other advanced feature extraction and pattern recognition algorithms. Since
N/M = c1, the computational complexity of the 1st stage compression is only 1/c1 times
that of the Fourier transform. Similarly, the computational complexity of the 2nd stage
compression is O(M2 ∗ 3M1). Thus, for feature extraction, except for the data compression,
the computational burden of the proposed method is 1/c1 times that of the conventional
method; and for pattern recognition, the ratio is 1/c1c2.

As a rule, to ensure the accuracy of data reconstruction for professional analysis,
the compression ratio of the 1st stage compression c1 is smaller than 5. For example, in
Section 4.1 of this study, the 1st stage compression ratio was c1 = 3, and the 2nd stage
compression ratio was c2 = 5; thus, for both feature extraction and pattern recognition, the
computational burdens were reduced significantly.
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Comparing the overall computational burden based on time consumption under
the same conditions with respect to feature extraction algorithms such as time-frequency
transform, wavelet package decomposition, or empirical mode decomposition, the total
computational burden of the proposed method is much smaller. This conclusion is sup-
ported by the comparison of relative time consumption depicted in comparative case study.

3.2. Sparse Representation Efficiency Analysis

The key procedure of fault diagnosis is sparse representation-based classification,
and from the perspective of computation burden, sparse representation consumes most of
computational resources. Thus, the improvement of fault diagnosis efficiency is mainly
determined by efficiency promotion of the sparse representation algorithm. In this study,
the widely-used OMP algorithm is improved upon by the BMP algorithm.

In the OMP algorithm, in each iteration, only one atom is selected from the dictionary
matrix. If we then need n nonzero elements in the sparse vector, n atoms are supposed to be
selected from the dictionary matrix: thus, the number of iterations is n. Since nDS · p vector
multiplications are conducted in each iteration, the total number of vector multiplications
is nDS · p · n.

In the BMP algorithm proposed in this study, nSV atoms are selected in each iteration.
Thus, if n atoms are required, only n/nSV iterations are required, and the total number of
vector multiplications is nDS · p · n/nSV . Therefore, the proposed BMP algorithm increases
the computational efficiency for nSV times.

4. Case Study
4.1. Maintenance Level Recognition of Landfill Gas Power Generator
4.1.1. Engineering Background

Landfills are generally located in remote areas; thus, efficient data compression, fusion,
storage and on-site maintenance level recognition are necessary. Meanwhile, for some in-
tractable faults, such as coherent faults, professional analysis and enhanced fault diagnosis
based on the original data are needed. Therefore, data reconstruction from the compressed
data is also essential.

The schematic diagram of the landfill gas power generator (LGPG) case study is shown
in Figure 7, and its real figure is shown in Figure 8. The LGPG is driven by a gas engine;
the generator and gas engine are connected by a shaft supported by several bearings.
Because of harsh conditions such as electric corrosion, the bearings are always damaged,
and to prevent system breakdown, condition-based maintenance is essential. Thus, in
this section, maintenance level recognition is applied to the LGPG. To ensure the safety
and stability of power generation, professional vibration analysis is implemented for the
LGPGs periodically by vibration analysts certified by ISO-18436, based on the vibration data
acquired in the field, and maintenance recommendations are provided. In the maintenance
report, the maintenance level for the rotor system of the LGPG is identified as normal,
maintenance, or high-risk, according to the fault pattern or degradation condition. In the
normal condition, the rotor system works well, and regular inspection is required; in the
maintenance condition, more inspections and services are recommended for the system;
while in the high-risk condition, spare parts should be purchased for replacement, or the
LGPG should be shut down for further investigation.

Note that the type of bearings in the LGPG is 6924C3 manufactured by KOYO, and the
rotational speed of the system is around 1000RPM. Vibration data were collected using three
vibration sensors, mounted on the bearing house of the generator, as shown in Figure 8.
Three vibration sensors were mounted: in the axial direction (A direction), horizontal
direction (H direction) and vertical direction (V direction), respectively. The vibration data
were acquired for 12 s every 4 h synchronously, and the sampling rate of data acquisition
was 8 KS/s.
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4.1.2. Data Set Description

The project lasted for nearly four months, and 30 data files were employed for main-
tenance pattern recognition. Since the sampling rate was 8 KS/s, and each acquisition
lasted for 12 s, one data file contained 96,000 data points for each channel. Considering the
rotational speed was 1000 RPM, for each channel, a rotational cycle of the shaft contained
480 data points. Vibration data collected during two rotational cycles were defined as a
data sample, and the number of data points in each data sample was 960; thus, one data
file can be divided into 100 data samples. The details of data samples are shown in Table 1.

Table 1. Data sets description.

Maintenance Pattern Normal Maintenance High-Risk Total

Number of data files 10 10 10 30
Number of data samples 1000 1000 1000 3000

Number of labeled samples 750 750 750 2250
Number of testing samples 250 250 250 750

Based on the maintenance manual of the LGPG, the maintenance operations can be
divided as maintenance and high-risk, and the component should be replaced for high-
risk conditions. Thus, the patterns to be recognized contains normal, maintenance, and
high-risk, as shown in Table 2, where 750 labeled data samples were utilized to construct
the dictionary matrix, while the other 250 data samples in each pattern were used for
algorithm validation.
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Table 2. Details of dictionary matrix and testing samples.

Maintenance Pattern Normal Maintenance High-Risk

Atoms in dictionary matrix #1–#750 #751–#1500 #1501–#2250
Testing samples #1–#250 #251–#500 #501–#750

4.1.3. Data Processing and Pattern Recognition

Based on the definition of data samples, the length of the original data sample was
N = 960. In the 1st stage compression, based on compressed sensing, the length N = 960
was shortened to M = 320, which means that three data points in the original vibration
signal were compressed to one data point in the compressed vector.

The size of the diagonal matrix, random matrix, and hybrid measurement matrix
were M× N = 320× 960, and these matrices are shown in Figure 9. Here, the coefficient
of random matrix was α = 0.05. Based on Equation (9), the length of the compressed
data was 320, and the original and the compressed vibration data are shown in Figure 10.
because of the compression, the number of data points was reduced, as indicated in the
x-axis (data point index). As mentioned in Equation (8), the compression in the time-
domain can be regarded as a data down-sampling operation. Therefore, compared with
the original vibration signal, the sampling rate of the compressed vibration data was
M/N = 320/960 times that of the original vibration data, while their time record lengths
were the same, as indicated in the time axis in Figure 10. The results indicate that, based
on the constructed hybrid measurement matrix, the variation of the compressed vibration
signal is nearly identical to the original vibration signal, except for the signal length.
Meanwhile, a part of the high-frequency component is removed.
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Next, the frequency spectrum of the compressed signal was obtained based on Equa-
tion (13), as illustrated in Figure 11: the spectrum partly retains the frequency characteristics
of the vibration data.
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Later, in the 2nd stage compression, the spectra obtained from the vibration data in all
directions were compressed and fused based on the joint measurement matrix. First, the
spectra were connected in order of vertical, horizontal, and axial directions longitudinally,
and the resulting length was 3M1 = 3× 160 = 480, the consolidated frequency spectrum
is shown in Figure 12a. Next, the joint measurement matrix ΦF was constructed: the
coefficient of random matrix in ΦF was β = 0.1, and its size was M2 × 3M1 = 96× 480,
as shown in Figure 12b, revealing the compression rate was 96÷ 480 = 0.2. Based on
Equation (18), the consolidated frequency spectrum was compressed, and the spectra were
fused synchronously. the resulting compressed spectrum ν is shown in Figure 12c, and its
length was M2 = 96.
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The redundant dictionary D was constructed using the compressed spectra based on
Equation (21) and Figure 4, and the compressed spectra—used as atoms in the
dictionary—were grouped by patterns of labeled samples, as listed in the 2nd row of Table 2.
The dictionary matrix is shown in Figure 13, and its size is M2 × nDS · p = 96× 2250.
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As shown in the 3rd row of Table 2, to validate the proposed method, for each
maintenance pattern, 250 testing sample were employed. For the testing samples, based
on the BMP algorithm and the constructed dictionary D shown in Figure 13, the sparse
vectors were obtained. In the calculation, the number of support vectors in each iteration
was nSV = 2, and the number of iterations was nIter = 3. As shown in Figure 14, for testing
samples #2, #127, #152, #377, #502, and #627, the values and position indices of nonzero
elements in the calculated sparse vectors indicate their patterns.
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Finally, three partial sparse vectors were derived from the original sparse vector r̂. These
partial sparse vectors were employed to reconstruct the compressed spectrum respectively,
and the reconstruction errors were calculated based on Equation (26). Supposing the cor-
responding reconstruction errors of r̂1, r̂2, r̂3 were Erri,1, Erri,2, Erri,3, and i = 1, 2, · · · , 750
was the number of testing sample, then, the reconstruction error matrix was:

ERR =

Err1,1 Err2,1 Err3,1 · · · Err750,1
Err1,2 Err2,2 Err3,2 · · · Err750,2
Err1,3 Err2,3 Err3,3 · · · Err750,3


3×750

(28)
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The reconstruction error matrix is shown in Figure 15, and two testing samples (#474
and #665) were misclassified. The pattern recognition results are shown in Figure 16: since
the number of testing samples was 750, the diagnosis accuracy was 99.73%.
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4.1.4. Data Reconstruction and Analysis

Another advantage of the proposed fault diagnosis scheme is that the compressed
data can also be reconstructed based on compressed sensing, although the constructed
signal is not identical with the original signal. In view of the low storage-consumption and
the low-computational consumption, this is acceptable in engineering applications.

In this case study, the compression rate was 0.33: we therefore saved 66.67% in
data storage and computational resources. In the data reconstruction, a discrete Fourier
transform (DFT) matrix was employed as the dictionary matrix, and its size was 960× 960.
A traditional OMP algorithm was then used to calculate the sparse vector [22]. Here, we
take the 1st vibration signal of horizontal direction as an example. The original vibration
signal and the reconstructed vibration signal are shown in Figure 17: it is noteworthy
that the time record lengths of all signals in Figure 17 are identical, while the number of
data points in the compressed vibration signal are much less than that of the original and
reconstructed vibration signals. The results reveal that the reconstructed signal is nearly
identical to the original vibration signal; thus, the enhanced fault diagnosis or professional
vibration analysis can be conducted accurately based on the reconstructed signal.

4.2. Fault Diagnosis of Driving Gear in Battery Swapping System
4.2.1. Engineering Background

The application of a battery swapping system (BSS) increases the efficiency of electric
heavy truck (EHT) operation. However, because of the conditions of electrification, the
driving gear in rack and pinion drives (RPD) of BSSs are always damaged by electric
erosion, leading to gear tooth surface wear, or even causing teeth to break. To improve the
efficiency of maintenance and commercial transportation, fault diagnosis for the driving
gear is necessary.
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As shown in Figures 18 and 19, the driving gear is a key component of a BSS. For this
research, in the uniform motion stage, the rotating speed was 180RPM. Vibration signals
were acquired by using three vibration sensors (axial, horizontal, and vertical) and the data
acquisition chassis synchronously; the vibration sensors were mounted near the driving
gear, as shown in the left part of Figure 19; and the sampling rate was 4 KS/s. The uniform
motion time consumption of one single-direction motion cycle was 1 s, which means that
one data sample contained 4000 data points.
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4.2.2. Description of Data Sets

In this case, three kinds of faults were injected to the driving gear: unilateral tooth
wear (UTW), bilateral tooth wear (BTW), and tooth break (TB), as shown in Figure 20.
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Figure 20. Fault injection of the driving gear.

The data sets are described in detail in Table 3. The number of labeled samples was 60,
and the features of these labeled samples were utilized to construct a dictionary matrix,
while other samples were employed as testing samples. The arrangements of the dictionary
matrix and testing samples are shown in Table 4.

Table 3. Data sets description.

(Fault) Pattern Normal Unilateral
Tooth Wear

Bilateral
Tooth Wear

Tooth
Break Total

Abbreviation NM UTW BTW TB -
Number of data samples 25 30 46 50 151

Number of labeled samples 15 15 15 15 60
Number of testing samples 10 15 31 35 91

Table 4. Details of dictionary matrix and testing samples.

(Fault) Pattern NM UTW BTW TB

Atoms in dictionary matrix #1–#15 #16–#30 #31–#45 #46–#60
Testing samples #1–#10 #11–#25 #26–#56 #57–#91
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4.2.3. Data Processing and Fault Diagnosis

The length of each data sample was N = 4000; in other words, the size of the original
vibration signal was 4000× 1. Here, in the time-domain compression, the compression rate
was 0.25; thus, the length of the compressed vibration signal was M = 1000, and four data
points in the original vibration signal were compressed to one data point in the compressed
vibration signal.

Based on the compression rate, the size of diagonal matrix, random matrix, and hybrid
measurement matrix were M×N = 1000× 4000. These matrices are illustrated in Figure 21,
and the coefficient of random matrix was α = 0.1. The original signal was compressed by
using the constructed hybrid measurement matrix. Taking the 6th data sample collected
from the vertical vibration sensor as an example, the length of the signal was shortened to
M = 1000, as shown in Figure 22. Here, the time record lengths of the original vibration
data and the compressed vibration data are the same, while due to compression, the length
of the compressed vibration signal is much shorter than that of the original vibration data.
The variation trend changed little during the compression, and the compressed signal
efficiently retains the most salient features of the original signal.
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The vibration signals acquired from the vertical, horizontal, axial vibration sensors
were combined as a column vector whose length was 3M1 = 3× 500 = 1500, and the
column vector was compressed and fused using a pre-designed joint measurement matrix
ΦF (β = 0.1). The consolidated frequency spectrum is shown in Figure 24a, the mea-
surement matrix ΦF is shown in Figure 24b, and the compressed spectrum is shown in
Figure 24c. In Figure 24b, the size of ΦF is M2 × 3M1 = 300× 1500; thus, the compression
rate was 300÷ 1500 = 0.2. Based on Equation (18), the spectra were compressed and
fused synchronously; Figure 24c shows the compressed spectrum ν, of size M2 = 300. The
compressed spectra were used to construct the dictionary matrix, and the number of rows
of the dictionary matrix was also M2 = 300.
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Next, the frequency spectrum of the compressed vibration data was calculated using
discrete Fourier transform: the spectrum is shown in Figure 23.
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Figure 24. RPD: compression of frequency spectra.

The dictionary matrix D was constructed based on Equation (21) and Figure 4. The
dictionary matrix D was constructed by using all the compressed spectra listed in the 2nd
row of Table 4; the size of D was M2 × nDS · p = 300× 60, as shown in Figure 25.
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Here, 91 testing samples listed in the 3rd row of Table 4 were utilized to validate the
proposed method. The sparse vectors were then calculated based on Equation (22) and the
proposed BMP algorithm. The parameters of BMP algorithms were: nSV = 2 and nIter = 2.
The sparse vectors of all testing samples are shown in Figure 26: most of the sparse vectors
indicate the patterns of the testing samples correctly, based on the position indices and
values of nonzero elements, except for the sparse vectors #28, #60, and #85.
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Finally, four partial sparse vectors were derived from the original sparse vectors based
on Figure 5, and these partial sparse vectors were utilized to reconstruct the compressed
spectrum of the testing sample. Next, the reconstruction errors were obtained based on
Equation (26), and expressed as a matrix similar to Equation (28). Unlike the first case study,
here, the number of rows was p = 4, and the number of columns was 91, determined by
the number of testing samples. The reconstruction error matrix is shown in Figure 27.
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The fault diagnosis results were determined based on the minimum reconstruction
error principle, and the diagnosis results are shown in Figure 28. Three testing samples
were not recognized correctly; therefore, the accuracy of fault diagnosis was 96.70%.



Machines 2023, 11, 242 26 of 30
Machines 2023, 11, x FOR PEER REVIEW 29 of 33 
 

 

 
Figure 28. RPD: fault diagnosis results. 

4.2.4. Data Reconstruction and Analysis 
As in the first case study of LGPG, the original signals were also reconstructed from 

the compressed signal for professional vibration analysis or enhanced fault diagnosis. In 
this case, the compression rate was 0.25, which means 75% of data storage and computa-
tional resources were saved. The data reconstruction was also conducted based on an 
OMP algorithm, and the dictionary matrix was a DFT matrix, of size 4000 4000× . Here, 
we take the axial vibration signals of the 1st testing sample as an example: the original 
vibration signal, the compressed vibration signal, and the reconstructed vibration signal 
are shown in Figure 29. It can be seen that the time record lengths of all signals are the 
same, while the number of data points in the compressed signal is a quarter of that in the 
original vibration signal. The reconstructed RPD vibration signal is nearly identical to the 
original vibration signal, which proves the effectiveness of the data reconstruction. 

 
Figure 29. RPD: vibration signal reconstruction. 

  

Figure 28. RPD: fault diagnosis results.

4.2.4. Data Reconstruction and Analysis

As in the first case study of LGPG, the original signals were also reconstructed from the
compressed signal for professional vibration analysis or enhanced fault diagnosis. In this
case, the compression rate was 0.25, which means 75% of data storage and computational
resources were saved. The data reconstruction was also conducted based on an OMP
algorithm, and the dictionary matrix was a DFT matrix, of size 4000× 4000. Here, we take
the axial vibration signals of the 1st testing sample as an example: the original vibration
signal, the compressed vibration signal, and the reconstructed vibration signal are shown
in Figure 29. It can be seen that the time record lengths of all signals are the same, while the
number of data points in the compressed signal is a quarter of that in the original vibration
signal. The reconstructed RPD vibration signal is nearly identical to the original vibration
signal, which proves the effectiveness of the data reconstruction.
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5. Comparative Case Study

To demonstrate the advantage in computational efficiency and the effectiveness of
the proposed method, the accuracies and computational time consumptions of fault diag-
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nosis based on several conventional fault diagnosis methods are listed in this section. In
accordance with Section 3, this section contains two parts: the 1st part is the comparison
between the proposed scheme and a state-of-the-art fault diagnosis scheme; the 2nd part is
the computational efficiency comparison between the proposed BMP algorithm and the
classical OMP algorithm. The training and testing data used for the comparisons are the
same as those in Section 4, which were acquired from the bearing of the LGPG and driving
gear of the BSS.

In this study, the software platform was MATLAB R2021a, and the main technical
specifications of the computer used are shown in Table 5.

Table 5. Technical specifications of the computational platform.

Processor 12th Gen Intel(R) Core (TM) i7-12700H 2.70 GHz

Memory Crucial DDR4 3200 MHz 8 GB × 2
GPU Intel Iris(R) Xe Graphics 128 MB

Hard drive Intel SSD 512GB PCI-E 3 × 4

5.1. Comparisons with State-Of-The-Art Fault Diagnosis Methods

Generally, a conventional fault diagnosis method is composed of feature extraction
and pattern recognition. For example, effective features can be based on wavelet transform,
and then an artificial neural network can be employed for pattern recognition [4]. In this
part, for feature extraction, time-domain features, frequency-domain features, and time-
frequency-domain features were extracted from the triaxial vibration data. For pattern
recognition, the classical radial basis function (RBF) neural network was employed.

The time-domain feature vector was composed of average value, variance, root-mean-
square value, peak value, kurtosis, and skewness. The frequency-domain features were
obtained based on the down-sampling of the frequency spectrum. The time-frequency
features were obtained based on three-layer wavelet package decomposition, and the db1
wavelet was employed.

In addition, two emerging deep learning methods—a one-dimensional (1D) convolu-
tional neural network (CNN) and 2D-CNN—were also used as benchmarks for comparison.
In 2D-CNN, the vibration signals were transformed to 2D images based on short-time
Fourier transform (STFT). The number of layers of CNN was 10, comprising one input
layer, on output layer, two convolutional layers, two rectified linear unit layers, two max
pooling layers, one full connection layer, and one SoftMax layer.

The accuracies and time consumptions of these fault diagnosis methods are listed
in Tables 6 and 7. For conventional fault diagnosis methods, the time consumptions of
feature extraction tFE and pattern recognition tPR are listed, respectively. For fault diagnosis
methods based on CNN, since feature extraction was not needed, the time consumption
was the total running time. Note that for the fault diagnosis method proposed in this study,
the two-stage compression was regarded as feature extraction, while the SRC was regarded
as pattern recognition.

Table 6. Comparisons based on maintenance level recognition of LGPG.

# Method Accuracy Time Consumption

1 TD + RBF 99.20% tFE: 0.886 s tPR: 6.595 s
2 FD + RBF 98.80% tFE: 3.207 s tPR: 7.225 s
3 TFD + RBF 99.87% tFE: 91.761 s tPR: 8.817 s
4 1D-CNN 99.87% 369.708 s
5 2D-CNN 99.87% 985.730 s
6 The proposed method 99.73% tFE: 0.129 s tPR: 2.285 s
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Table 7. Comparisons based on fault diagnosis of driving gear in BSS.

# Method Accuracy Time Consumption

1 TD + RBF 92.31% tFE: 0.113 s tPR: 0.902 s
2 FD + RBF 90.11% tFE: 0.834 s tPR: 1.420 s
3 TFD + RBF 96.70% tFE: 5.855 s tPR: 0.555 s
4 1D-CNN 92.31% 98.759 s
5 2D-CNN 96.70% 289.621 s
6 The proposed method 96.70% tFE: 0.041 s tPR: 0.014 s

The comparisons indicate that the time consumption of the proposed method is
much less than other fault diagnosis methods—up to several orders of magnitudes shorter
than that of conventional methods. Meanwhile, the accuracy of the proposed method is
equal to or slightly lower than other methods. From the perspective of feature extraction,
the two-stage compression algorithm reduces the data size adequately, and retains the
effective fault features at the same time. From the perspective of pattern recognition, the
proposed BMP algorithm improves the computational efficiency further than the classical
OMP algorithm. From the perspective of industrial applications, the high efficiency of the
proposed method provides a suitable solution for on-site fault diagnosis implemented on
edge computing platforms.

5.2. Computational Efficiency Comparison between BMP and OMP

As discussed above, the proposed BMP algorithm improves the efficiency of sparse
representation significantly. To demonstrate the improvement, the time consumptions of
BMP and OMP algorithm are listed for comparison in Tables 8 and 9. It can be seen that
the number of iterations of the BMP algorithm is half that of the OMP algorithm, and the
running time is shortened significantly: this indicates that the proposed BMP algorithm
improves the efficiency of sparse representation.

Table 8. Time consumption comparison based on maintenance level recognition of LGPG.

OMP BMP

Number of required atoms 6 6
Number of iterations 6 3

Number of testing samples 750 750
Time consumption/Test 1 3.992 s 2.316 s
Time consumption/Test 2 3.921 s 2.321 s
Time consumption/Test 3 3.928 s 2.277 s
Time consumption/Test 4 3.962 s 2.320 s
Time consumption/Test 5 3.910 s 2.274 s

Time consumption/Average 3.943 s 2.302 s

Table 9. Time consumption comparison based on fault diagnosis of driving gear in BSS.

OMP BMP

Number of required atoms 4 4
Number of iterations 4 2

Number of testing samples 91 91
Time consumption/Test 1 0.026 s 0.017 s
Time consumption/Test 2 0.027 s 0.015 s
Time consumption/Test 3 0.027 s 0.016 s
Time consumption/Test 4 0.028 s 0.015 s
Time consumption/Test 5 0.027 s 0.015 s

Time consumption/Average 0.027 s 0.16 s
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6. Conclusions

In this paper, aiming at intelligent fault diagnosis implemented on edge computing
platforms and the reconstruction of original vibration data for professional vibration
analysis, we propose a fault diagnosis scheme based on two-stage compressed sensing,
which provides an efficient scheme for triaxial vibration data processing, including high-
rate data compression, data reconstruction, data denoising, and data fusion.

First, a two-stage compression scheme is proposed: the 1st stage compression provides
compressed data for data reconstruction, the 2nd stage compression inhibits the high-
frequency components of triaxial vibration signals, and fuses them as a feature vector. Next,
considering the frequency characteristics of the vibration signal, two exclusive measurement
matrices for vibration signals are proposed. The data compression based on the proposed
hybrid measurement matrix retains the frequency characteristics, and the data compression
based on the proposed joint measurement matrix realizes axial vibration data denoising
and fusion at the same time. Finally, a new sparse vector calculation BMP algorithm is
proposed, which promotes the efficiency of sparse representation.

Future work is to mainly focus on three aspects. First, with a view to promoting
the robustness of the proposed method, the construction of dictionary the matrix will be
improved based on dictionary learning. Second, the relationship between the diagnosis
accuracy and the algorithm key parameters, such as the coefficient of random matrix, will
be studied. Third, to promote their sparsity, data preprocessing for the vibration signals
will be integrated into the fault diagnosis scheme.

Author Contributions: Conceptualization, X.Y. and J.L.; data curation, X.Y. and J.L.; formal analysis,
X.Y. and J.L.; funding acquisition, Z.D.; investigation, X.Y.; methodology, X.Y.; project administration,
Z.D.; resources, X.Y.; software, X.Y.; supervision, Z.D.; validation, X.Y. and H.Y.; visualization, X.Y.
and J.L.; writing—original draft preparation, X.Y.; writing—review and editing, Z.D. and K.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (Grant No.
2022YFE0102700), National Natural Science Foundation of China (Grant Nos.51875054, U1864212).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Miao, Y.; Zhang, B.; Li, C.; Lin, J.; Zhang, D. Feature Mode Decomposition: New Decomposition Theory for Rotating Machinery

Fault Diagnosis. Ieee Trans. Ind. Electron. 2023, 70, 1949–1960. [CrossRef]
2. Zhao, H.; Niu, G. Enhanced order spectrum analysis based on iterative adaptive crucial mode decomposition for planetary

gearbox fault diagnosis under large speed variations. Mech. Syst. Signal Process. 2023, 185, 109822. [CrossRef]
3. Miao, Y.; Wang, J.; Zhang, B.; Li, H. Practical framework of Gini index in the application of machinery fault feature extraction.

Mech. Syst. Signal Process. 2022, 165, 108333. [CrossRef]
4. Gunerkar, R.S.; Jalan, A.K.; Belgamwar, S.U. Fault diagnosis of rolling element bearing based on artificial neural network. J. Mech.

Sci. Technol. 2019, 33, 505–511. [CrossRef]
5. Miao, Y.; Zhao, M.; Hua, J. Research on sparsity indexes for fault diagnosis of rotating machinery. Measurement 2020, 158, 107733.

[CrossRef]
6. Pan, Z.; Meng, Z.; Zhang, Y.; Zhang, G.; Pang, X. High-precision bearing signal recovery based on signal fusion and variable

stepsize forward-backward pursuit. Mech. Syst. Signal Process. 2021, 157, 107647. [CrossRef]
7. Song, Q.; Zhao, S.; Wang, M. On the Accuracy of Fault Diagnosis for Rolling Element Bearings Using Improved DFA and

Multi-Sensor Data Fusion Method. Sensors 2020, 20, 6465. [CrossRef] [PubMed]
8. Bai, H.; Yan, H.; Zhan, X.; Wen, L.; Jia, X. Fault Diagnosis Method of Planetary Gearbox Based on Compressed Sensing and

Transfer Learning. Electronics 2022, 11, 1708. [CrossRef]
9. Zhang, J.; Wang, G. Weak fault signature identification of rolling bearings based on improved adaptive compressed sensing

method. Meas. Sci. Technol. 2021, 32, 105104. [CrossRef]
10. Yuan, H.; Lu, C. Rolling bearing fault diagnosis under fluctuant conditions based on compressed sensing. Struct. Control Health

Monit. 2017, 24, e1918. [CrossRef]
11. Wang, C.; Liu, C.; Liao, M.; Yang, Q. An enhanced diagnosis method for weak fault features of bearing acoustic emission signal

based on compressed sensing. Math. Biosci. Eng. 2021, 18, 1670–1688. [CrossRef]

http://doi.org/10.1109/TIE.2022.3156156
http://doi.org/10.1016/j.ymssp.2022.109822
http://doi.org/10.1016/j.ymssp.2021.108333
http://doi.org/10.1007/s12206-019-0103-x
http://doi.org/10.1016/j.measurement.2020.107733
http://doi.org/10.1016/j.ymssp.2021.107647
http://doi.org/10.3390/s20226465
http://www.ncbi.nlm.nih.gov/pubmed/33198252
http://doi.org/10.3390/electronics11111708
http://doi.org/10.1088/1361-6501/ac0560
http://doi.org/10.1002/stc.1918
http://doi.org/10.3934/mbe.2021086


Machines 2023, 11, 242 30 of 30

12. Shi, P.; Guo, X.; Han, D.; Fu, R. A sparse auto-encoder method based on compressed sensing and wavelet packet energy entropy
for rolling bearing intelligent fault diagnosis. J. Mech. Sci. Technol. 2020, 34, 1445–1458. [CrossRef]

13. Pei, X.; Zheng, X.; Wu, J. Intelligent bearing fault diagnosis based on Teager energy operator demodulation and multiscale
compressed sensing deep autoencoder. Measurement 2021, 179, 109452. [CrossRef]

14. Hu, Z.-X.; Wang, Y.; Ge, M.-F.; Liu, J. Data-Driven Fault Diagnosis Method Based on Compressed Sensing and Improved
Multiscale Network. IEEE Trans. Ind. Electron. 2020, 67, 3216–3225. [CrossRef]

15. Donoho, D.L. Compressed sensing. Ieee Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
16. Candes, E.J.; Eldar, Y.C.; Needell, D.; Randall, P. Compressed sensing with coherent and redundant dictionaries. Appl. Comput.

Harmon. Anal. 2011, 31, 59–73. [CrossRef]
17. Candes, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [CrossRef]
18. Gunerkar, R.S.; Jalan, A.K. Classification of Ball Bearing Faults Using Vibro-Acoustic Sensor Data Fusion. Exp. Tech. 2019, 43,

635–643. [CrossRef]
19. Lessmeier, C.; Kimotho, J.K.; Zimmer, D.; Sextro, W. Condition Monitoring of Bearing Damage in Electromechanical Drive

Systems by Using Motor Current Signals of Electric Motors: A Benchmark Data Set for Data-Driven Classification. Eur. Conf.
Progn. Health Manag. Soc. 2016, 3. [CrossRef]

20. Li, J.; Wang, H.; Song, L.; Cui, L. A novel feature extraction method for roller bearing using sparse decomposition based on
self-Adaptive complete dictionary. Measurement 2019, 148, 106934. [CrossRef]

21. Cheng, H.; Liu, Z.; Yang, L.; Chen, X. Sparse representation and learning in visual recognition: Theory and applications. Signal
Process. 2013, 93, 1408–1425. [CrossRef]

22. Alahari, R.; Kodati, S.P.; Kalitkar, K.R. Floating Point Implementation of the Improved QRD and OMP for Compressive Sensing
Signal Reconstruction. Sens. Imaging 2022, 23, 20. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s12206-020-0306-1
http://doi.org/10.1016/j.measurement.2021.109452
http://doi.org/10.1109/TIE.2019.2912763
http://doi.org/10.1109/TIT.2006.871582
http://doi.org/10.1016/j.acha.2010.10.002
http://doi.org/10.1109/MSP.2007.914731
http://doi.org/10.1007/s40799-019-00324-0
http://doi.org/10.36001/phme.2016.v3i1.1577
http://doi.org/10.1016/j.measurement.2019.106934
http://doi.org/10.1016/j.sigpro.2012.09.011
http://doi.org/10.1007/s11220-022-00389-z

	Introduction 
	Methodology 
	Vibration Data Compression Based on Compressed Sensing 
	Time-Domain Compression and Time-Frequency Transform 
	Frequency-Domain Compression and Fusion 
	Sparse-Representation-Based Classification and Fault Diagnosis 

	Efficiency Analysis 
	Data Size Analysis 
	Sparse Representation Efficiency Analysis 

	Case Study 
	Maintenance Level Recognition of Landfill Gas Power Generator 
	Engineering Background 
	Data Set Description 
	Data Processing and Pattern Recognition 
	Data Reconstruction and Analysis 

	Fault Diagnosis of Driving Gear in Battery Swapping System 
	Engineering Background 
	Description of Data Sets 
	Data Processing and Fault Diagnosis 
	Data Reconstruction and Analysis 


	Comparative Case Study 
	Comparisons with State-Of-The-Art Fault Diagnosis Methods 
	Computational Efficiency Comparison between BMP and OMP 

	Conclusions 
	References

