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Abstract: For a mobile robot, navigation in a densely crowded space can be a challenging and
sometimes impossible task, especially with traditional techniques. In this paper, we present a
framework to train neural controllers for differential drive mobile robots that must safely navigate a
crowded environment while trying to reach a target location. To learn the robot’s policy, we train a
convolutional neural network using two Reinforcement Learning algorithms, Deep Q-Networks (DQN)
and Asynchronous Advantage Actor Critic (A3C) and develop a training pipeline that allows to scale the
process to several compute nodes. We show that the asynchronous training procedure in A3C can be
leveraged to quickly train neural controllers and test them on a real robot in a crowded environment.

Keywords: mobile robotics; neural networks; control systems; reinforcement learning; crowd navigation

1. Introduction

Since the early days of mobile robotics, robot autonomy and the possibility of using
robots in scenarios that involve interaction and collaboration with human beings have
attracted great interest. A crucial requirement to enable such applications is that people
must feel safe and comfortable with an autonomous robot moving and performing tasks
around them. This is particularly true in contexts such as Smart Factories. The use of
mobile robots, often referred to as Autonomous Mobile Robots (AMRs), within this scenario, is
relatively new and is spreading in the industry [1,2], usually as “fleets” that are controlled
by a fleet manager [3,4]. In Smart Factories, mobile robots may perform their tasks on their
own or in a collaborative manner either with other machines, robotic systems, or human
operators. In the latter case, safety should be the main concern, since the robot must not
harm humans in its close proximity. On the other hand, the robot needs to be capable of
inferring human intentions and to properly reacting when operating among humans [5].
A common issue arising in highly populated environments is the so-called freezing robot
problem [6], i.e., the robot getting stuck when surrounded by dense crowds. Due to the
huge potential of fully autonomous systems in industrial and commercial applications,
the crowd navigation problem for mobile robots has been investigated by many authors
over the past years. Trautman et al. in 2013 used interactive Gaussian Processes to achieve
improved cooperation between robots and humans in dense crowd navigation settings [7].
Ref. [8] instead make use of a communication scheme to reduce the collisions within a fleet
of autonomous robots. This work is the natural continuation of our previous work [9],
where the controller for a differential drive mobile robot, represented by an Artificial Neural
Network (ANN or just NN, for short), was trained by means of the NEAT algorithm [10]
using an evolutionary strategy.

This work aims to exploit computer simulations that are cheap and fast in order to
train a controller for a mobile robot that will operate in the real world. Such a setting is
often referred to in the literature as SIM2REAL [11] and has gained a lot of interest in recent
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years. A crucial aspect of SIM2REAL is that there must be a good degree of alignment
between the simulated environment and the real scenario, in order to make the learned
policy transferable to the real world. In our case, in order to obtain a reliable environment
it is important to carefully choose the method used to model the crowd behavior.

Crowd simulation [12] is an established approach to simulate crowds in several
applications and in particularly in video games.

There are different approaches that can be used to perform crowd modeling and
simulation: force-based interactions, pedestrians flow, rule-based, psychology-sociology
inspired, and others. Comprehensive surveys and discussions about crowd modeling and
simulation techniques are available in the literature [12,13]. In our work, we rely on a social
force model based on the work of Helbing et al. [14]. In Refs. [14,15], the authors model
the behavior of crowds reacting to panic situations using a model based on forces that
are inspired by self-driven many-particle systems; furthermore, a similar approach has
been used in other crowd models [16]. In particular, they consider so-called interaction
forces to model the pedestrian velocity changes. Such forces are used to represent empirical
observations about walking humans, such as the fact that pedestrians tend to keep a
velocity-dependent distance between each other and with walls. The authors also introduce
a repulsive interaction force to encode the psychological observation that pedestrians tend
to stay away from each other. Finally, body forces and sliding friction forces are included to
account for granular interactions that occur within the crowd, especially when a panicking
situation arises. The same authors have also developed the software implementation of
this crowd model, which they called PySocialForce, and released it as a python package.
Our work implements their software, which has been further extended within this work.

With the increasing availability of resources and computing power, Reinforcement
Learning (RL) techniques have been successfully used to solve control and optimization
problems in several domains ranging from video games [17], chip placement [18], and
control of stratospheric air balloons [19] and nuclear reactors [20]. The use of deep NNs
that can easily handle high-dimensional inputs has been a key enabler in the recent success
of RL. In robotic applications, the input of the control system is usually composed by the
readings of many sensors and actuators mounted on the robot. Hence, directly learning a
policy to solve the desired task can be extremely difficult [21]. Yet, deep RL has made it
possible to achieve both mapless robot navigation [22] and avoidance of moving human
obstacles [23], by leveraging perceptual information and NNs. To tackle navigation in
crowded environments, previous work tries to leverage RL and simulation models to train
the robot’s controller [24,25]. Furthermore, Ref. [26] used the SEM for crowd motion and a
NN, based on the chunk concept for its input layer, to control a mobile robot [26].

Other examples of RL applied to PySocialForces include the work of Ref. [24]. How-
ever, our approach differs in several ways. We extended the social forces model to include
more complex social behaviors (agents can stop, split, group, change direction, etc.). The pa-
per by Ref. [24] uses Proximal Policy Optimization (PPO) first presented by Ref. [27], while
we use two algorithms called Deep Q-Networks (DQL) [28] and Asynchronous Advantage
Actor Critic (A3C) [29]. In 2022, Ref. [30] proposed to use a deep Q network (DQN) to ease
the computational burden of the training phase, together with a graph representation of
the robot-crowd system. Additionally, they implement a social attention mechanism for the
crowd simulation. Our approach differs in several ways: we implement a methodology
that works similarly to real-world sensing, while the DQN implementation mentioned
above assumes that the position of the crowd is always known. Environment-wise, our
implementation considers both fixed and dynamic obstacles. Additionally, our complex
crowd model allows for a more realistic simulation. All these aspects minimize the reality
gap in our implementation. Along the same lines, in 2019, Ref. [25] proposed a study where
dense crowds were simulated via a self-attention model in the context of deep NNs. While
this work considers an estimation of the crowd’s future state based on perfect knowledge
of its configuration, our work focuses on a system where the perception of the crowd is
central to the problem. The main contributions of our work are:
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*  Development of an extended social forces model, which allows the introduction of
more general social behavior such as pedestrians stopping, grouping, splitting, sudden
change of direction in the environment and so on, together with the introduction of
the pedestrian-to-robot repulsive force;

¢ Development of a functional and dimensionally efficient CNN-based architecture to
tackle the Crowd Navigation problem;

e Rigorous benchmarking of DQL and A3C RL algorithms applied to a crowd navi-
gation problem;

*  Detailed presentation of the parallel and asynchronous computational strategies em-
ployed to speed up training, with the illustration of the full pipelines used for the two
variants. In the two applications we consider the cases in which different computa-
tional resources are available (GPU or multiple CPUs);

*  Development of a Robot Operating System (ROS) [31] package for robot control using
the trained NN, mapping, visualization, localization, position estimation, and trajecto-
ries definition. Targets and waypoints can be easily provided through the handy Rviz
GUIL The package can be used both in simulated and experimental environments;

e  Experimental validation of the trained controller on a commercially available mo-
bile robot, testing in a realistic scenario the strategy trained on the newly proposed
extended Social Forces model.

The paper is structured as follows: in Section 2 the problem statement is outlined,
i.e., the modeling of the single components of the simulated environment, which comprise
the crowd dynamics model, the mobile robot model, the model of the environment and
the robot’s perception system; in Section 3 we describe the methodology adopted to solve
the problem, i.e., the architecture of the RL, the algorithm, and the topology of the NN
used; in Section 4 the training results obtained for both the DQL and A3C algorithms are
reported, while in Section 4.2 the validation process findings are summarized; in Section 5
the experimental validation and results are described; finally in Section 6 we present the
concluding remarks as well as the planned future works along this line of research.

2. Problem Statement

This section includes a description of the problem statement. More specifically: (i) the
crowd model used to represent the moving crowd; (ii) the kinematics model of the consid-
ered mobile robot, together with the modeling of its perception system; (iii) the description
of the simulated environment; and (iv) the “map chunk” model that has been introduced
to speed up the training process of the controller.

2.1. Social Forces Model

To simulate the moving crowd and its behavior, we make use of an engine based on
the Social Forces Model. In particular, we use the Python module PySocialForce, which is
an implementation of the Extended Social Forces (ESF) model [32], extending [33]. For the
purpose of this work, we extended the original implementation in order to make it more
general, including generic social actions that can be observed in real crowds in day-to-
day activities. In particular, we added terms to the model representing the following
phenomena: pedestrians and groups stopping in the environment; pedestrians dynamically
grouping with other pedestrians or existing groups; single pedestrians leaving their groups
and heading in other directions; groups splitting into smaller groups; and the possibility
for pedestrians and groups to meet with each other.

The Social Forces model, which has been largely studied in past, aims at describing
and simulating a moving crowd by adopting a microscopic perspective. The model assumes
that the motion of a single pedestrian in the crowd can be described by Newton’s second
law, as a sum of “forces”, capturing different social effects that are assumed to define the
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crowd’s movement. In the Extended Social Forces Model [32], the motion of the single
pedestrian i is described by the following differential equation:

n
%= fri+ Y fij+ fuwit feir 1)
=

in which the force acting on the pedestrian can be decomposed in the following components:

*  f:iis an external force that pushes the motion of the pedestrian i to a desired location;
*  fij represents the repulsive force contribution coming from the interaction with

another pedestrian j;

*  fw,i models the repulsive force contribution due to an obstacle w present in the
environment;
*  fg,iisagrouping force.

In the Extended Social Forces Model [32], every force component has been character-
ized and tuned through experimental observations of real crowds. The in-depth functional
description of each term can be found in Refs. [32-35]. For completeness, we report in
Appendix A a brief overview of the force model.

In order to improve the realism of the training environment, we extended the basic
ESFM in the following directions:

1.  Weintroduced at each simulation step the possibility of modifying the structure of
groups (by merging and splitting groups), of stopping (and restarting the motion of)
groups or pedestrians in order to simulate people chatting on the street, and of new
(groups of) pedestrians entering into the scene. All these events are managed by an
event selection engine, whose details are reported in Appendix A;

2. We modified the way in which f;; is computed to improve the obstacle avoidance
of pedestrians. We indeed noticed that simulated pedestrians, during the process of
avoiding static obstacles, exhibit a lane-following behavior; furthermore, when close
to the obstacles of complex shape, some of them get stuck in a local minimum. In case
an obstacle is blocking the way of the pedestrian i towards the target, we correct the
direction of f;;, towards a new temporary target point. This is chosen to be close to
the original target and with no obstacles within a prescribed radius, or with obstacles
as distant as possible. Technical details are reported in the Appendix A.

Finally, we considered also a variant of ESFM adding a new force modeling repulsion
of the pedestrians from the robots. We noticed that using such a modified model for
training and testing led to a significant improvement in the learned controller performance.
However, this force term should be fitted to experimental data not available to us. Hence,
in all the results reported in this paper, this term was not used to avoid learning an
overconfident controller. Its tuning and integration in the learning framework is a research
direction that we plan to pursue in future work.

2.2. Mobile Robot Kinematics

As a case study and field test for our work, we considered a differential drive Wheeled
Mobile Robot (WMR), characterized by two independent driving wheels sharing a common
axis of rotation. This configuration allows the robot to drive straight, steer, and rotate
in place. The robot cannot move laterally due to its kinematic and non-holonomic con-
straints. To describe its motion, we introduce two reference frames: an inertial reference
frame (O, éx,¢é,) and a local frame integral with the WMR (C, 1, }). The rotation ¢ between
the two reference frames represents the robot heading. This can be seen in Figure 1.
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Figure 1. Kinematic model of a differential drive mobile robot, with focus on the relation between
the robot’s frame and the inertial frame.

Using the notation in Figure 1, and under the assumptions of pure rolling and no
lateral slip, the forward differential kinematics model for a differential drive mobile robot
is described as follows (in the robot local reference frame):

0 o] [Ferten)
x=1y|=|0| = 0 )
LA T (¢r = g1)

where Ry, is the radius of the wheels, ¢; and ¢, are the wheels’ angular speeds, respectively,
for the left and the right one, and L is the distance between the wheels. Lastly, %,  and
& are the linear and angular velocities of the WMR expressed in its local reference frame,
as shown in Figure 1. The same velocities—and thus the kinematic model itself—can be
expressed in the inertial frame, by means of a transformation, as follows:

%7 = RTx 3)

where R is the rotation operator between the local and the inertial frame.

Moreover, the WMR speed is limited to maximum values in order to reduce the
admissible robot’s speed. Thus, ¥ = v € [0, V), and & = w € [~Wmax, Winax], while
y = 0. The other parameters characterizing the WMR and the 2D-LiDAR are summarized
in Table 1.

From a high-level control point of view, the robot receives linear and angular ve-
locity setpoints [v*, w*|, which are tracked exploiting (2). In order to have a finite set of
inputs that a NN can choose from, the setpoints are updated at each step, considering the
differential input

u = [Av, Aw] 4)

so that at time instant k, considering the saturation functions sat,, sat,, one has:

v* (k) = saty(v*(k—1) + Av(k)) 5)
w* (k) = saty,(w* (k—1) + Aw(k)) (6)
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Table 1. Summary of the parameters describing the whole environment simulation, including the

robot, pedestrians, and range sensor.

Parameter Value Parameter Value
Ruw 0.1m Rp 0.3 m
L 0.5m Ry 0.6m
Umax 1ms! Winax 1rads™!
'min 0.3m T'max 10m
A [—7t/2,7/2] rays 135
W x H 20m x 20m Aiin 32m

2.3. Environment Description

The environment used for in-simulation training is defined as a bi-dimensional space,
having width W and height H with static obstacles and moving pedestrians, where the
environment’s reference frame coincides with the inertial frame. At the beginning of an
episode, the static obstacles are generated with random positions and shapes in order to
expose the robot to diverse situations and generalize the problem. Pedestrians can instead
enter and exit the environment on its boundaries. No information is given to the WMR
about the environment, as it gathers local information via its perception system, which is
discussed in detail in the next section.

In Figure 2, we can see an example of a training scenario where the robot spawns in
a randomly generated point P and has to reach the randomly generated target location
T while avoiding collisions with the moving crowd. This is represented by the points p;,
which denote the single pedestrians, while a generic group of pedestrians is indicated with
gi. Since both the robot’s position and the target are randomly generated, in order to ensure
that all trajectories are characterized by comparable length and degree of difficulty, we
have elected to set a condition on the minimum initial distance between the two, that is:

dist(P, T) > dyin @)

The choice of randomly generating the robot’s initial position and the target location
has been made in order to reduce the possibility for the robot to find workarounds to reach
the target location (e.g., move close to the edges of the environment).

o, o g

L

B
] IR0
()

[}
A"Uf]l
T
vy ! |
(™) () ()
() () ()
® o6
) (@) (),
]

Figure 2. Schematic representation of the simulated environment: the robot spawning location and its
target destination are highlighted in blue and red, respectively; three static obstacles are represented.
Each pedestrian p; is indicated as a circle having its own speed v;, while the group is represented
with an enveloping dashed rectangle and depicted with g;.
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To enforce a safety distance between the robot and the other elements of the environ-
ment and to take into account the physical dimensions of both the robot and the pedestrians,
we set a safety radius Ry for the former, while for the latter we set a safety radius Rp, as
shown in Figure 3. Static obstacles instead have been grown in size to consider a safety
turning radius, which is needed for obstacle avoidance maneuvers.

In practical terms, in the grid-like simulated environment, the cells of the grid in which
these elements stand are marked as occupied.

Tnin

Figure 3. Working principle of the 2D LiDar range sensor. The figure shows a general scanning
area, positioned ahead of the WMR, defined by (¥, max, Ax, nmys), in which two pedestrians
are detected.

2.4. Robot Perception

It is assumed that the WMR is equipped with a 2D LiDAR laser scanner, which grants
perception to the robot and gathers information from the surrounding environment. This
system is based on a ray-casting algorithm and enables the robot to detect objects within
the LiDAR range. However, in order to allow the robot to react to dynamic obstacles such
as pedestrians, the controller’s policy is given as input the sequence of the last k LIDAR
readings, where k is a tunable parameter.

The rays of the perceptual system mounted on the WMR span in a radial area around
the robot, which is defined by the sensor’s range 7,,4x and the scanning angle Ax. The ray
density in the scanning area is regulated by the scan resolution s;, defined as s, = Aa/nyqys,
where 11,4y5 is the number of the rays. In Figure 3 we show a representation of the above
setup: when a ray meets an obstacle, it returns the distance r; of the intersection point,
otherwise, the scanner maximum range is returned. Since the angle «; is known implicitly
(as it is an arbitrarily defined value) the information about all intersection points is readily
known in polar coordinates (r;, «;).

In order to discard false readings coming from the robot geometry, we introduced a
minimum scanning range r,,,,, slightly greater than the robot. In the simulated environ-
ment, we do not employ an ideal 2D LiDAR, but we consider every ray to be subject to
false positive and negative readings with probabilities of pr,, pf,, respectively.

The real WMR used for the field-tests has a scanner that only points in the forward
direction of the robot. This considerably increases the complexity of the problem, making it
much more difficult for the agent to navigate the crowd. Furthermore, the scanner cannot
have a full polar view of the space around the WRM due to geometry constraints and to the
LiDAR location. This is addressed in the experimental section of this manuscript. In Table 1
we report the parameters and specifications for the scanner and robot environment used in
the simulation.

2.5. Map Chunk Model

In Figure 4, we illustrate the robot perception model (referred to as chunk model) that
we used in the RL setup, as described in Section 3.1.3. In the depicted scenario, both static
obstacles and pedestrians are present. The scanning area of the robot, i.e., the space around
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it that is spanned by the LIDAR system, is split into 14 sections, each containing information
about the closest object. This approach was designed in order to reduce the dimensionality
of meaningful data associated with the environment’s status and possible robot collisions.

Figure 4. Schematic view of the chunking principle of the field of view of the robot. In this example
the area is split into eight sections: for each section the distance from the closest obstacle/pedestrian
is taken.

With the above chunking process, we can obtain two perceptual outputs represented
by the vectors d”, if only pedestrians are considered, and 4", when the closest of all map
obstacles is taken (fixed obstacles, box edges and pedestrians), where

dn, iel,...,n) ®)
dl, i€l,...,ng 9

and d" < d¥, Vi.

Although the perception system only scans ahead of the robot with an 180° angle of
view, the chunking process can be leveraged in two ways to speed up the training process of
the controller. Indeed, we devise two auxiliary tasks that share weights with the controller
NN but have different final layers for the specific problem:

e The first auxiliary task consists in estimating the position of all surrounding obstacles
using past observations (here d™ is used);

¢  The second task instead optimizes a policy that maximizes a one-step reward penaliz-
ing states, where the robot is surrounded by pedestrians from multiple directions (d”
is used, since proximity to a fixed obstacle does not necessarily pose a collision threat).

3. Methodology

The problem of navigating a dynamic crowded environment can be seen as a Markov
Decision Process (MDP), and is therefore solved with RL techniques [36], in which an agent
observes states s and performs actions a. In this setting, RL can be used to find a policy,
i.e.,, a mapping from states to actions, that controls the agent and optimizes a given criterion
represented by the reward function associated with the MDP.

A MDP describes, in probabilistic terms, a transitions system defined by a tuple
(S, A, Py, R,), where S is the state space, A is the action space, P(s'|s, ) is the probability of
transitioning to state s’ if action 4 is chosen at state s, and R(s, 4, s") is the reward associated
with the transition s % s. In the crowd navigation problem, the state is represented by the
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WMR state, the static obstacles configuration, and the pedestrians” dynamics, while the
agent actions are the possible signals the controller can send to the robot. The transition
probability P(+) is defined by the joint dynamics of the robot and the pedestrians. In such
a MDP model, it is not practically feasible to infer the probabilistic model P(-) due to the
stochastic behavior of pedestrians and the dependency on the number of agents involved.
Therefore, we employ the RL framework and leverage the ability of deep NNs to learn the
optimal policy 7.

In the next sub-sections, we describe the crowd navigation MDP (Section 3.1), the RL al-
gorithms we use (Section 3.2), and the neural NN employed for the robot
controller (Section 3.3).

3.1. Elements of the Markov Decision Process

When solving MDPs with RL, the definition of the MDP elements plays a critical role
in making the problem feasible. In the following sections, we describe how we model such
elements in our work.

3.1.1. State Space

To enable robot navigation in a crowded environment, the state space S, i.e., the space
of possible inputs to the NN, must be informative and include relative position, orientation,
and speed of the robot with regards to the target location together with obstacles, pedestri-
ans, and other environmental objects. Furthermore, the state observed by the controller
needs to provide enough information to determine the motion of the pedestrians. We can
identify two main objectives in our task: (i) reach the desired target, and (ii) avoid collisions
with pedestrians and objects. While these two goals are not completely independent, we
can consider them separately in order to determine the information required to achieve
each of them.

If we assume that no obstacles or pedestrians are present, the policy 7(s) would only
require the robot’s inertial and dynamic information in order to reach the target state. So,
we define the internal robot state as:

Srpt = [.X'T, 19T/ 0, (U] (10)

where, in this case, xT and 0t are the relative distance and orientation between the robot
and the target point.

In order to avoid collisions, the robot policy has to know the dynamics of every solid
element in the environment reference frame. In particular, using the limited information
provided by the LiDAR sensor, the position and speed of each element cannot be known
exactly. However, it is possible to infer such quantities by providing the agent with past
observations of the perceptual system and the evolution of its internal state.

For this reason, given p equally spaced LiDAR observations and a time window of m
past observations, we define the environment observation state as:

Senv = {S1,-+-,Sm} (11)
where
S; = (ll,i/ e ’lp,i' 0, wi) (12)

In this notation, at time instant i, [ ji is the LiDAR detected distance of the j-th ray,
withj =1,..., p, while v; and wj are, respectively, the linear and angular speed of the robot
observed still at time i. Therefore, each element s of the State Space S is defined by the pair

s = (Senv, Syot) (13)

3.1.2. Action Space

To keep the learning problem size manageable, we consider a discretization of the
robot’s actions. Specifically, for the linear and angular speed variations which the differ-
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ential drive mobile robot can generate, we consider nine combinations of three values for
each action. Hence the action a is composed as:

a = (Av, Aw) (14)

where
Av € {—Avmax, 0, Avmux} (15)
Aw € {=Awmax,0, —Awmax } (16)

3.1.3. Reward Function

In RL methods, the design of the reward function plays a key role in defining the
hardness of the learning problem. For example, a simple reward structure may only provide
positive or negative feedback when the target is reached or a collision occurs, respectively.
However, such a sparse signal hampers the learning capabilities of the agent and makes
it much more difficult to achieve the optimal policy. Furthermore, a properly designed
reward function can considerably speed up the convergence of the agent’s policy.

The simulation environment we consider in this work is composed of a square-shaped
space where pedestrians have free access through the perimeter; conversely, for the robot,
this boundary represents an obstacle. Static obstacles, for both the pedestrians and the
robot, are placed randomly within the environment and have various random polygonal
shapes (see Figure 5). At the beginning of each training episode, a new map is generated
with a random target and robot initial coordinates satisfying the minimum initial distance.
A trajectory, i.e., a single episode run, is considered to be successful when target coordinates
are reached and no collision occurred, either with pedestrians or obstacles.

iteration = 298 ped alert = 3.7

run = 3 )

tot reward = 2. target reach = 22.3
» )

O ‘
10 . s D
%

"1 - ”‘« q
ayp O
e

-20 =15 —-10 =5 0 5 10 15

20

15

il

L

Figure 5. Learning environment: the blue rectangle represents the robot and the arrow its current
heading; the red dots show the LiDAR scanner readings; the green circle represent the target location
that the robot must reach; finally, in black the obstacles are represented. Obstacles can be either static
or dynamic (black dots represent pedestrians).
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Taking into account the previous considerations, we defined a reward function R,

which in the MDP framework provides a signal to the agent after each transition s = 5.
In particular, we consider three possible scenarios:

e In the state s/, the episode stops because the robot has successfully reached the target,
hence a positive reward is provided: R = +K;

e Inthe state s/, the episode ends because a collision occurs or the simulation time has
expired, i.e., the maximum number of environment interactions has been reached,
hence a negative reward is given: R = —K(0.75 + FD);

* A terminal state is not reached and the robot can keep progressing and receives a
reward R = +k(DB — SM — PPM).

Here K, k are final and intermediate rewards constants, and FD is the robot’s dis-
tance from the target at the end of the simulation. The distance FD is normalized with
respect to the maximum possible one in the environment space (i.e., the square diagonal).
The other terms in the third case play the role of providing intermediate bonuses and
penalty components. They are defined as follows:

¢ The direction bonus is DB = 1 if the distance from the target has decreased in the
current transition after action 4, otherwise it is set to DB = 0;

*  The saturation penalty (or malus) is SM = 1 if the actuator has been saturated as an
effect of action 4, otherwise itis SM = 1;

o The pedestrians proximity penalty is given by PPM = cp Z:Zl(l - df )3 where cp is a
constant and df was defined in (9) as the normalized distance of the closest pedestrian
in the i-th chunking sector. We consider the term df instead of d" because it only
considers pedestrians, the rationale being that a trajectory running close to an obstacle
in order to avoid pedestrians should not be penalized. Finally, the cubic exponent
ensures that pedestrians farther than ~ 1/3 of the LiDAR range do not have a negative
impact on the intermediate rewards.

3.2. Reinforcement Learning Architecture

In this paragraph we show how the NN has been trained with two classical RL
techniques: parallel Deep Q-Learning (DQL) and Asynchronous Advantage Actor Critic
(A3C). While this article is not meant to be a detailed illustration of the implementation
details, it is worth mentioning that the underlying NNs code has been developed using
the PyTorch package for Python. The parallelization described in the next subsections
was obtained using Ray [37], a universal API for building distributed applications with a
particular focus on RL applications, which allows to make minimal changes in the code
through Python decorators in order to make it parallel.

3.2.1. Deep Q-Learning

Deep Q-Learning was the first RL method to be applied to deep NNs [28]. It is
derived from Q-Learning, a classical RL algorithm to estimate the State-Action value function
Q7 (s, a), also called Q-function, of the optimal policy 7t*. The Q-function of a given policy
7t estimates the average of the discounted return, i.e., the sum of all future rewards achieved
by using 7t to choose actions after starting in state s and applying action 4. In the case of
7r*, the value function Q* (s, a) provides the return of the optimal policy and satisfies the
Bellman optimality equation,

Q*(s,0) = B[+ ymax Q*(s',) (17)
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where 7 is the discount factor for future rewards, and the expectation is computed with
respect to the probability distribution of rewards r and the environment dynamics. Ideally,
if Q*(s, a) is known, the optimal policy selects action 4 as:

a = argmax Q(s,a’) (18)

Fl,

Mnih et al. have shown in their research [28] that the iterative version of (17) converges
to Q*:
Qis1(s,a) « E|r+ymaxQ;(s’,a’) (19)
ﬂ/

hence it is possible to learn the optimal policy by iteratively improving the estimated
Q-function. When the Q-function is approximated using a NN (Q(s,4;0) ~ Q*(s,a),
where 0 represents the NN’s weights), the convergence in (19) is achieved by solving a
regression problem. In particular, observed transitions (s, a, 7, s") are used to provide a target
value—this practice is known as bootstrapping—Dby leveraging the approximate Q-function
to estimate future rewards. This step acts as an ex-post assessment of the value of action g,
and results in the loss function:

L(6:) = E[ (s — Q(s,:6))?] 20)

where the expectation has to be computed over MDP variables s, 4, r,s’, and the Temporal
Difference target y; is defined as

yi =r+ymaxQ(s’,a’;6;_1) (21)
ﬂ/

To estimate the expectation in Equation (20), the DQL algorithm exploits “experience
replay” [38], that allows minimizing the loss L(f) via Stochastic Gradient Descent (SGD).
This technique requires that observed transitions (s¢, a; — s;41) are stored in a circular
memory; this is then used to train the Q-function with mini-batch SGD. This approach has
two main advantages: (i) each transition is used for multiple updates, and (ii) variance is
reduced by using uncorrelated transitions in a batch.

In DQL, the balance between exploitation and exploration during training is ob-
tained by using an epsilon-greedy policy [39] to choose action a during interaction with
the environment:

[ a= argmax, Q(s,a’) , wp.é€
= { a~ Ufay,ay} , wp.1l—¢ (22)

and ¢; shrinks at each iteration with a factor 0 < ¢ < 1 until a minimum value €y;n
is reached:
€ = maX<C€ c€t-1, emin) (23)

In this work we implemented a multi-node asynchronous version of the DQL algo-
rithm, which is schematized in Figure 6. The training is divided into iterations, which are
defined by the number of transitions that are simulated with a given Q-function version.
During each iteration i, the reference Q-function used to run the simulations (QZ,TH) is
exported to multiple environment instances on different worker nodes, and the transitions
are stored in an iteration memory (IM). The time required to fill the IM is used by the main
thread to update the NN weights on the GPU with batches extracted from the “global
memory" GM, providing the new Q-function Qg . The oldest transitions within the GM
are replaced with the IM, so the next iteration can be run.

This implementation has multiple advantages: (i) all computational resources are
always exploited, (ii) fixed-sized iterations are a natural choice for evaluation and storage of
training progress, (iii) memory relocation from CPU to GPU occurs only between iterations,
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(iv) when deploying on a cluster, the local memory capacity at each worker node can be
adapted to the available resources at each node.

workers on GPU
policy |
update for % Q-function ;  Global Memory transitions
simulation ./<:7' Batch Update | update batch
P —— updated for
L while IM is not full: | iterations == NN training
‘ I
OL(0:)
x df < df — &
| remove old
iterations
-t === Iteration ¢
: Memory =~ if full :
continuously
A w} simulating
H s
CPU 1 CPU 2 using Qg, , CPUn \
Worker 1 Worker 2 Worker n
(St @ty Tts St41)
Worker j reset
St+1

Figure 6. Schematic representation of the multi-node asynchronous DQL algorithm. The upper
part of the diagram (NN update) and the lower (agents simulations) are performed in parallel on
different nodes, at the end of each iteration, data is shared (NN coefficients from the updater node
and transitions memory from the simulating nodes).

3.2.2. Asynchronous Advantage Actor Critic (A3C)

The A3C algorithm [29] has been implemented for the same discrete action space
specified in Section 3.1.2. This algorithm is a Policy Gradient (PG) method, i.e., the policy is
directly optimized by computing gradients that update its weights in order to maximize
the objective function

J(8) = By p[G(7) (1)

which is the average return achieved by the policy and can be estimated by sampling
trajectories from the environment using the policy 7y:

1 N Ti—1 1 N T;-1
J7(0) ~ N Yo X Ar(sipair) = N Y. ) Gi (25)
i=1 =0 i=1 =0

where G; ; is the compounded sum of all rewards in a given trajectory, from any intermediate
point until the end.

A3C is derived from the REINFORCE algorithm (or Vanilla PG) in which (25) is maxi-
mized through SGD. The modifications introduced in A3C are mostly aimed at reducing
the high variance that characterizes Monte Carlo sampling. One way to reduce variance
is to consider the advantage A(st, a¢) of taking a certain action with respect to a baseline,
instead of G;; computed from the raw rewards (whose signs may be arbitrary). The actor-
critic algorithms implement a version of this concept in which the baseline is provided
by a critic function, that approximates the state-value function V{’ (s) for policy 7t (the
actor). Moreover, causality allows the advantage at the ¢-th instant to be calculated without
considering past rewards. Using Actor-Critic with “reward to go”, the Advantage becomes:

T-1
A(st,ar) =1 — Vp(se) = (Z ')/t,_tr(st/,at/)) — Vip(st) (26)

t'=t
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The overall loss function to be minimized becomes

Lasc = —J™(0) + J?(6:) — BH™(6) (27)

where the advantage loss is

N —
Z Z 51 ts alt (28)

and H(0) is the entropy component added to avoid early convergence to local minima

T;—1

N
2 Z ( Zn si,a)log 7t(s;,a )) (29)

i=1t

ZIH

The formula for the gradient that maximizes (25), can be approximated as:

T;

|
—

1

Ve](8) ~ N

i [N agks

-
i

Volog mg(ais,sit) A(sit air) (30)
0

Our implementation is schematically represented in Figure 7: the A3C configuration
is obtained by running the threads i = 1,..., N in parallel, accumulating the gradients
computed on different nodes, and performing the optimization step locally in the main
thread. In order to make performances between the different RL methods comparable,
the code maintains the “iteration” structure described in Section 3.2.1, effectively ending
the iteration when the total number of simulated steps reaches the “Iteration Memory” size.

Neural Network
mi(s), Vi(s) Training Step

df + df + % ngdﬁ,
i Gradients
1 i Collection
Workers b, ¢ dby + Z gradi
Policy !
Update
| \
Worker 1 Worker 2 Worker N T—1
S S S 3
¢ ¢ ! ¢ grad, : Z A 1 Vologmg(ai4]si)
Single =0
Trajectory -
St, Gt St, Q¢ Simulation St, 4 Tio1
(A
grads, :
St+1 St+1 St+1 Z 8‘9

Figure 7. A3C algorithm scheme. Worker nodes simulate with action a chosen according to policy
i (s). Gradients are accumulated until a transitions threshold is reached, then NN weights are
updated via backpropagation, and policy 7t; 1 is obtained.
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3.3.

Neural Network Topology
The NN we use is comprised of three main parts (Figure 8):

A three-layer Convolutional Neural Network (CNN) which “reads” the surrounding
map by evaluating the information from the 2D LiDAR range sensor, together with
the robot longitudinal and rotational speed (s.iv);

A Fully Connected Neural Network (FCNN) with three hidden layers (which we
call the action branch), that defines a navigation policy using robot state information
s,p+ and the CNN outputs. In the figure, this NN is indicated with the FC-A prefix.
The three hidden layers are indicated respectively with FC-A1, FC-A2, and FC-A3;
A secondary FCNN that takes the CNN outputs as inputs and returns the estimated
distance of the closest identified object in each direction (referred to as map branch).
In the figure, this NN is indicated with FC-M, and the same convention used for the
previous applies. For this purpose, not only the visible angle is considered but the full
360° area surrounding the robot, which is appropriately divided into 1, sectors. This
output is only used during training to accelerate the map reconstruction convergence.

Convolutional Layers Fully Connected Layers
2d MaxPooling 2d MaxPooling FC-M1(20) FC-M2(20)
5x3 kernel 3 x 3 kernel
3x1 stride 2x1 stride
~ flatten()
o e
P Map
Branch
[ —
| | T < Out (18)
E// flatten()
¢/
L {—=1
<_/> |
] S — [ﬂ] Action
%\ Robot state I Bra nCh
2d C luti | inputs (4) <
=~ Layecr)?;z;klgrr;ag fd Con;/o;u;tjonal| S Out (9)
ayer: 3x3 kerne ) | .
Range Sensor Input, FC-A_in(16) WL <=
(135x6)x3channels FC_A1(4O%C-A2(4O)

Figure 8. Schematic representation of the NN used in the DQL case Q(s). For policy learning 71(s), a
SOFTMAX layer is added at the end, while in the case of the state-value function V(s) the last layer

has

a unique output.

Since the sensory input provided to the robot’s controller is three-dimensional with

length p, width m, and n.;, = 3 channels, where the components are filled with the data
in (11), the CNN is a natural choice for the range sensor inputs, given its continuous spatial
distribution. The CNN is three-dimensional because the third dimension represents the
time. In other words, the third dimension is used to store past observations. Furthermore,
v and w components are taken constant along the tensor length in the complete controller’s
input. The convolutional architecture applies a two-dimensional convolution over the
normalized input tensor built from s, and is designed with internal layers that have 16
and 10 channels, respectively.

In our NN, each CNN layer consists of:

A 2D convolution with kernel 5 x 3 for the first layer, 3 x 3 for the following ones;
A ReL.U activation function;

A 2D MaxPooling layer with stride 3 x 1 for the first layer, 2 x 1 for the following ones;
A normalization layer across the dimension of the features.
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In the map branch, the flattened CNN output is passed to 2, 20-neuron fully connected
layers that return the sector-based obstacle distance used during training:

dr, el n (31)

For the action branch, the CNN outputs are flattened and stacked with the internal
robot state s,;. The resulting new tensor does not have intrinsic spatial features to be
detected, therefore a FCNN is used (again with ReLU activation functions and batch
normalization after each intermediate layer). The final number of outputs corresponds
to the number of actions, as explained in Section 3.1.2. When the NN is used for policy
learning (as in the A3C case), a SOFTMAX layer is added after the final one, whereas for
value function V (s) the last layer consists of a single node.

To summarize, from an input/output perspective, the NN can be seen as two different
functions that share some weights and return objects p and d":

P, A" = 70 (Senvs Srvt) (32)

with
p= [p(”l |Senv; Srht)/ . P(anu ‘senv/ Srbt)] (33)

“Map Loss” Addition for Faster Convergence

RL loss functions (20), (27) can be complemented with additional information, in order
to enhance the learning process. In the crowd navigation problem, the dual nature of
the information that should be learned (map and strategy) allows for the use of extra
information, besides the rewards.

We thus define the additional component “map loss” as:

ng
Lmap(ei) = Z(dgj - d;‘n)2 (34)

i=1

where the distances d}" are extracted from the map chunk model in Section 2.5. The back-
propagation effect with Ly, is used to ensure that the CNN learns faster how to exploit
the present and past information, in order to infer as accurately as possible the position of
all fixed and moving obstacles, including those in the shadow cone behind the robot.

4. Results

In this section we evaluate the effectiveness of the controllers’ design, at first by
assessing the RL training process (Section 4.1), then by carrying out a testing campaign
within the simulated environment, using the trained NN (Section 4.2).

4.1. Training Results

The training settings chosen for the DQL and A3C algorithms allow to compare the
RL performance in terms of convergence speed and reward outcome. However, due to
the training setup, it is not possible to directly compare the training simulations, for two
reasons: (i) at iteration ¢, the A3C training algorithm generates full trajectories following
policy 7, while in the DQL case, the best-known action is not always chosen due to the
e-greedy approach; (ii) in both A3C and DQL, at each iteration approximately the same
number of transitions s, a; — s;y1 is calculated. However, trajectories in general have
a variable duration (especially as the training progresses along), so an exact amount of
trajectories per iteration can not be guaranteed.

While the latter issue is not particularly relevant since we are evaluating the frequency
of outcomes rather than total instances, the first one requires that, in order to assess the
controller performance during training, every five iterations of the e-greedy approach
is avoided in favor of a pure exploitation policy (18), and only these iterations will be
considered for the evaluation of the training progress.
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The graphs in this section (Figures 9-12) show the evolution of the relevant training
and performance indicators as the iterations number grows. Training statistics are com-
puted by averaging out the results obtained for all simulation steps/trajectories in the
DQL and A3C cases, respectively. Simulation settings used for RL and for the navigation
environments are summarized in Table 2.

In Figure 9 (DQL) the following variables are shown from top to bottom: (i) the
“exploration ratio” €; (23) used for action selection, (ii) the average g-value loss L (20) for
each transition for the current iteration, and (iii) the average loss on the map estimation
task fmap (34). One can observe that both the average losses Land Zmap tend to converge
to a limit value, which is necessarily greater than 0, given that half of the map evolution
can only be estimated and not “seen”, due to the 180 degrees opening of the LiDAR sensor.

Performance indicators for the pure exploitation iterations of the DQL training are
shown in Figure 10: (i) average duration of a single run in the simulated environment f.;
(ii) average cumulative reward G; (iii) outcome frequencies. The observer can infer that
the NN learns relatively early how to adequately perform the task (= 300 iterations) with
the average cumulative reward G reaching a plateau in positive territory. After iteration
i =2 1000 the success ratio stabilizes, suggesting that a local minimum has been reached.

Figures 11 and 12 display relevant statistics for the A3C training. In Figure 11 one has
the averages of different losses, all clearly converging to values or ranges: (i) advantage
loss J? in Equation (28); (ii) policy loss ] in Equation (25); (iii) map loss on the map
estimation task Lyqp; (iv) normalized average of the entropy H" in Equation (29). Among
the considered losses, one can see that the “map loss” is the first to converge, although it
remains at a considerably higher level compared to the DQL case, likely due to the higher
performance of large batches training for supervised classification of image-like data.

Performances are shown in Figure 12: (i) evolution of the average duration of a single
run f.; (ii) evolution of the cumulative reward G, together with the filtered curve using a
moving average filter with window size w = 100 (red curve); (iii) outcome frequencies.
A3C-trained NN, compared to the DQL one, takes longer before showing some early
progress. However, once the average reward starts growing, a long phase of steady
improvement can be seen, until convergence is reached. Overall, a considerably higher
success ratio is exhibited already around iteration i ~ 500.

Table 2. Main simulation hyper-parameters used for the simulated environment and of the training
of the NN.

Parameter DQL A3C
pedestrians density 0.04 ped /m?
scan noise: lost scans 0.5%
scan noise: corrupt scans 0.2%
simulating agents 25
steps per iteration 25,000
minibatch size 256 -
n. epochs per iteration 600 -
optimizer ADAM
initial learning rate 1x107° 2x1073
v discount factor 0.9

B (AC entropy coefficient) - 0.05
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Figure 9. DQL training variables evolution: in the top row for €; in the middle row for the average of
the g-value loss L; in the bottom row for the average of the “map loss” Lyqp.
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Figure 10. Summary of the DQL performance: in the top row, the evolution of the average of the
duration of the single simulation run f.; in the middle row, the evolution of the average of the
cumulative reward G; in the bottom row, the evolution of the statistic of the simulation termination
reason ratio.
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Figure 11. A3C training variables evolution: in the top row for the average of the advantage loss TP;
in the second row for the average of the policy loss 7" in the third row for the average of the “map
loss” fmu,, ; in the bottom row for the average of the normalized entropy q".
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Figure 12. Summary of the A3C performance: in the top row the evolution of the average of the
duration of the single simulation run f; in the middle row the evolution of the average of the
cumulative reward G; in the bottom row the evolution of the statistic of the simulation termination
reason ratio.

In order to evaluate the effects of the introduction of the additional loss component
Lyap defined in Equation (34), a sample training with the A3C algorithm both with and
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without this element has been performed. The findings are shown in Figure 13, which com-
pares the convergence speed of A3C for both cases in terms of average cumulative reward
G. The graph shows that the auxiliary task is especially helpful during the initial phase of
the training process, speeding up the learning process by approximately 200 iterations.

50 1

25 4

0-

o5 ]

5 =50+

_75 4

—100 A

no map output
with map output

—— no map output (m.a.)

—— with map output (m.a.)

—125 A

—150 1

0] 200 400 600 800 1000 1200 1400

)
Figure 13. A3C average cumulative reward with and without “map output” for the first 1500
iterations. Filtered outputs are obtained using a moving average with a rolling window w = 100.

4.2. Testing Results

In order to quantify and evaluate the performance of the two proposed controllers,
a validation testing campaign has been carried out.

These simulated tests have been designed to assess how the controller responds in
complex scenarios, in order to learn the limits of the device, before setting up an exper-
iment with potential risks to hardware and people. Sets of NNs weights used in this
evaluation process are the ones that showed the best training performances during the
hyperparameters selection process, which yielded the hyperparameters set listed in Table 2.

Parallelized simulations allow for generating several thousands of random indepen-
dent scenarios, which allow for a statistical evaluation of the performances in different
levels of difficulty of the surrounding environment, where the difficulty is associated with
increasing average pedestrians density, as per Table 3.

Table 3. Mapping between the difficulty levels and the pedestrian density in the environment.

Difficulty Pedestrian Density [peds/m?]
0 0
1 0.02
2 0.08
3 0.1

The trained NN has been extracted and loaded in the simulated model of the robot
and used to produce the proper actions for the robot, leading it from a starting point safely
to the target. The NN version chosen to be extracted, for both DQL and A3C, in order to
have a coherent comparison, is the one represented by the last iteration i = 3560. For both
NN the testing process has been carried out at four difficulty levels, with #n = 10,000 runs
for each level.

Test results are summarized graphically in Figure 14 for the two controllers. Data (see
Table 4) is presented in terms of the frequency of the possible outcomes for each difficulty
level. Failures are distinguished depending on gravity: hitting a pedestrian is the least
desirable outcome, followed by collision with an obstacle, and the simulation ended due
to timeout.
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Figure 14. Barplots indicating the performances of the trained NNs and obtained with the validation
process: in (a) the bar plots showing the success, pedestrian collision, obstacle collision, and timeout
ratios, respectively, for the DQL trained NN; in (b) the bar plots showing the same but for the case of
the A3C trained NN.

Table 4. Summary of the results for the validation campaign conducted over the two trained NNs

Success [%] Pedestrian [%] Obstacle [%] Timeout [%]
Difficulty DQL A3C DOQL A3C DOQL A3C DQL A3C
0 88.83 99.71 0.00 0.00 11.00 0.17 0.17 0.12
1 67.62 86.13 22.28 13.20 10.10 0.31 0.00 0.36
2 4492 66.91 46.145 31.96 8.93 0.55 0.00 0.58
3 28.92 52.01 63.75 46.50 7.33 0.85 0.00 0.63

As expected, for both validated NN the success ratio tends to decrease as the pedes-

trian density increases. This is due to the increased complexity of the problem, such that
the robot finds itself more often in situations where collisions are unavoidable. When the
pedestrian density increases, the obstacle collision ratio exhibits a positive trend. This is
due to the robot trying evasive maneuvers to avoid pedestrians, ending up in collisions
with close obstacles as a result of that.

In terms of performance, the two trained NN display remarkable differences:

In the DQL case, the pedestrians collision ratio is greater than the A3C one for all
difficulty levels;

In the A3C case, a small number of timeout failures occur at all difficulty levels, while
for DQL this occurs only when there are no pedestrians (although with a negligible
frequency of 0.17%). In A3C, timeouts increase with difficulty, likely because the robot
has learned to engage in evasive maneuvers to avoid pedestrians, rather than rapidly
approaching the target;

The obstacle collisions ratio is negligible for A3C, while it still represents a consider-
able reason for failure in the DQL case.

Considering the above differences, one can safely state that the A3C trained NN

displays better performance than DQL at all difficulty levels, confirming that policy gradi-
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ent algorithms are better suited for tackling complex problems, thanks to their superior
capability to generalize out of sample.

The behavior of the DQL-trained NN raises the suspicion that it might have reached
a local minimum rather early in the training cycle. This was suggested by the graph in
Figure 10 where it can be seen that already around iteration i = 200 the DQL-trained NN
has learned a strategy, whereas the A3C keeps on learning and improving its performance.

5. Prototype Demonstration

In the following, we report the outcome of our proposed approach in a demonstration
carried out in a realistic—although controlled—scenario. We chose to use the NN that
showed better overall performance in Section 4.2: the A3C-trained NN. We investigated
two different use cases:

e Case 1. Without pedestrians: the environment is composed only of static obstacles.
The robot, through its trained controller, must be able to navigate the environment
safely from a starting point P; to a target point P;

*  Case 2. With pedestrians: the environment is composed of both static obstacles and
pedestrians moving in the environment. The mobile robot as in the previous case must
be able to reach a target location safely, but at the same time be capable of avoiding
incoming pedestrians.

In order to carry out the test we used a Neobotix MP-500 robot (Neobotix GmbH,
Hahnstrasse 2, Heilbronn, Germany), which is a ROS-Enabled differential drive mobile
robot shown in Figure 15a. Perception is provided by a SICK S300 (SICK Vertriebs-GmbH,
Willstaetterstrasse 30, Duesseldorf, Germany) bi-dimensional LiDAR Scanner, which is
placed on the front side of the robot and provides the sensor readings needed by the NN.
A dedicated ROS package has been developed for the purpose and has been tested prior
to deployment in the Gazebo [40] dynamic simulation environment. The package mainly
gathers sensor data and provides an interface for the NN to control the robot. Moreover,
it implements the following additional functionalities: Simultaneous Localization and
Mapping (SLAM), robots pose estimation, path planning, and user interaction. The ROS
network is created in a way that ensures a master-slave configuration through the Ethernet,
where the master is the laptop and the slave is the mobile robot. In this way a WiFi network
is not required for the two devices to communicate, which allows for potentially unlimited
operating range. The positioning of the robot in the environment is done combining two
methods: (i) a dead reckoning technique (i.e., odometry) which was used to estimate the
robot’s position by reading the wheels” encoders, (ii) a probabilistic method that uses map
knowledge and real-time readings from distance sensors. The combined information from
both techniques allows for continuous correction of the poses of points of interest.

5.1. Case 1. Without Pedestrians

For this use case scenario, we test the system working both with point-to-point mo-
tions and through way-points. Specifically, the tests have been conducted in an indoor
environment, i.e., the C6 laboratory of the University of Trieste.

In Figure 15b one can see the occupancy bi-dimensional map of part of the laboratory
environment, obtained via ROS. The generated map shows the presence of many static
obstacles; however, there are some obstacles that the LIDAR scanner was not able to detect.
The figure refers to the test case for the point-to-point motion. In this case, the robot starts
from the top left corner of the laboratory environment (indicated with the “START” label)
and must reach the commanded target point (indicated with the “TARGET” label), which
is placed at the bottom-right corner of the laboratory. The target point is chosen such that
the robot is forced to negotiate with various obstacles, as well as to perform a 90 degrees
turn and pass through a narrow corridor right before the target location. The blue line
represents the trajectory that the mobile robot has followed, which shows that the robot
has successfully performed the assigned point-to-point navigation and obstacle avoidance
task. Moreover, the robot kept a safe distance from the obstacles.
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Figure 15. Prototype demonstration. (a) The Neobotix MP-500 differential drive mobile robot used in
the experimental campaign; (b) trajectory of the mobile robot for the point-to-point motion in the
absence of dynamic obstacles; (c) the trajectory of the mobile robot for the path following through
given way-points in the absence of dynamic obstacles; (d) the trajectory of the robot for the point-to-
point motion in the presence of moving pedestrians as dynamic obstacles.

In the waypoints test the robot is commanded to move along a longer path compared
to that seen in the point-to-point test, as visible in Figure 15c. Together with the usual
textboxes, the assigned way-points are indicated with the “WAYPOINTS” label, while the
trajectory that the robot has performed is still shown as the blue curve. In the same figure,
it can be noted that the robot has been assigned to a path through a very narrow corridor
for most of its motion. However, similarly to the previous test, it can be seen that the robot
has successfully performed the motion through way-points, avoiding the static obstacles
that are present in the environment. Additionally, it has been noted that it is able to move
in narrow corridors successfully.

5.2. Case 2. With Pedestrians

The location for this final experimental test is still the laboratory elected as an indoor
testing environment. Conversely however, in this case, other than performing a point-
to-point motion and avoiding static obstacles, the robot is required to avoid moving
pedestrians that cross its path and move about in its close proximity. With reference to
Figure 15d, the starting and target points assigned to the robot are the same ones used
for the point-to-point motion test case described in the previous paragraph and indicated
in green and red, respectively. The trajectory followed by the mobile robot during this
point-to-point motion is again indicated with a blue curve.

The first detail one can notice in Figure 15d is that the curve representing the trajectory
followed by the robot has tangles in some regions. This is because in these regions a moving
pedestrian was in close proximity to the mobile robot, thus the latter had to perform some
evasive maneuvers in order to avoid the former. It can be noted that despite the complexity
introduced by moving pedestrians in the experimental environment, the mobile robot has
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still been able to avoid both static obstacles and pedestrians while at the same time moving
up to the assigned target completely and safely without any collisions. The findings of this
experimental testing also suggest that a simple bi-dimensional LiDAR scanner is able to
detect the legs of pedestrians, and it is suitable for crowd navigation applications.

Finally, Figure 16 reports some video frames that have been extracted from the robot
camera during its point-to-point motion. In some of the frames, the moving pedestrians
can be seen crossing the mobile robot’s path and being in its close proximity.

Figure 16. Extracted video frames from the robot camera during its point-to-point motion in the
presence of moving pedestrians.

6. Conclusions

In this work, we explored the development of a controller for a mobile robot capable of
moving toward target locations, while at the same time avoiding both static and dynamic
obstacles, e.g., pedestrians. The controller is based on a NN trained through two different
RL algorithms: DQL and A3C. Our findings show that the A3C-trained NN performs better
and generalizes the problem more effectively than the DQL-trained NN. Both algorithms
are able to reach convergence, however, we show that the DQL-trained NN learns a sub-
optimal strategy.

We leveraged the developed pipeline in order to run the NNs training in a highly
parallelized environment, thus greatly cutting down the training time.

We applied this methodology to the use case of a complex dynamic environment with
moving pedestrians. We have extended the ESFM to include realistic social behaviors of
the simulated crowd in order to minimize the reality gap of the simulation. Using both
trained NN, the robot is able to complete the assigned task with a remarkable success ratio
and at different pedestrian densities.

Additionally, the approach has also been tested experimentally, replicating the success
of the simulations. Moreover, building from the raycasting approach used in the simula-
tions, we showed that a bi-dimensional LiDAR scanner can be effectively used to detect
pedestrians and thus provide meaningful data to the input of the NN. It must be pointed
out that the test environment was not “robot friendly” , i.e., it presented many challenges
for both the robot and its perception system.

Future work foresees an extension to not only consider bi-dimensional LiDAR sen-
sors but also a robot equipped with a vision system. This will allow performing sensor
fusion with the LiDAR readings, gaining more information about obstacles that are hardly
manageable with just the bi-dimensional scanners. Moreover, the scenarios pool, with the
simulated environment, will be further extended in order to include more critical scenarios
such as mazes and narrow corridors. Furthermore, we will investigate the possibility to
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apply the findings of this research in training a controller for a more complex mobile robot
such as those with four steerable wheels, in which each steering joint is subjected to joint
limit constraints, as for instance the Archimede rover presented by Caruso et al. in Ref. [41].
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WMR  Wheeled Mobile Robot

Appendix A. Social Forces Model

We discuss here in more detail the force representation of the Extended Social Forces
Model (ESFM) Ref. [32] that we use in the paper to describe the crowd movements.

Recall from the paper that the motion of each pedestrian is described by a sum of
social forces shaping its motion. More specifically, the motion of a single pedestrian i is
described by the following differential equation:

n
%= frit Y fij+ fowit fai (A1)
=1

in which the force acting on the pedestrian can be decomposed in the following components:

*  fiiis an external force that pushes the motion of pedestrian i to a desired location;

*  fij represents the repulsive force contribution coming from the interaction with
another pedestrian j;

*  fuw,: models the repulsive force contribution due to an obstacle w present in
the environment;

*  fgiisagrouping force.

In the following, we give more detail for each component, referring to Refs. [32-35]
for a detailed description. We also discuss three enhancements that we implemented in our
simulation: a repulsive force from robots, an event manager to make group and pedestrian
dynamic more realistic and challenging for the controller, and a simple controller correcting
the force f;; for obstacle avoidance purposes.
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Attraction to target.

Helbing et al. in Ref. [33] proposed that the target acceleration term is described by
the following relation:

vié;" — v;(t)

fui = S (A2)

~

where vf is the desired speed of the individual i, é;! is the versor of the desired direction,
v;(t) is the individual current speed vector, and finally 7 is a relaxing factor.

Repulsion from other pedestrians.

Moussaid et al. in Ref. [35] stated that the single repulsive interaction force acting
between the pedestrian 7 and a pedestrian j can be described as

fij= —Ae /B [e_(”/Be)zt 1 e (nBO?y, (A3)

where d is the distance between the pedestrians; ¢ is the interaction direction, i.e., the versor
pointing from i to j; n is the normal versor to t oriented to the left; 0 is the angle between
and the versor pointing from i to j; A, B, n, n' are the model parameters.

Repulsion from obstacles.

Johansson et al. in Ref. [34] stated that the repulsive force contribution to individual i,
due to proximity to obstacles and walls, can be modeled as a decaying exponential function
as follows:

fwi = ae~ /! (A4)

where dy, is the normal distance between individual i and the obstacle a and b are model pa-
rameters.

Grouping force.

Moussaid et al. in Ref. [32] introduced the grouping contributions—needed to
keep groups of individuals close to each other—defined to be composed of three terms,
as follows:

fei= gg,i+f£,i+f§,i (A5)

where f; ; is the gazing term, which is responsible for adjusting the i-th pedestrian position
in order to reduce its head rotation, f, g ; is the group attraction term responsible for attracting
pedestrians belonging to the same group, and f; ; is the group repulsive term responsible
for avoiding that the group members collide and overlap with each other. A complete
definition of the single terms is available in the literature [32].

Repulsion from robot.

Finally, we extended the original ESF implementation by adding an additional force
term by taking into account that individual pedestrians are aware of the robot. This is done
through an appropriate small repulsive force f;, added in Equation (A1), which activates
only in proximity of the robot, i.e., when the distance is below the dr threshold. These
parameters were set based on considerations lacking experimental validation. To avoid
learning an overconfident controller, relying on expected but untested behavior of the
pedestrians, we decided to keep this force component deactivated during training and
validation. In the end, in our simulation framework, pedestrians are not aware of the robot
moving in the environment. Hence, in our setting, the robot is considered a ghost, raising
no feedback from the crowd.

Event manager.

We introduced at each simulation step the possibility of modifying the structure of
groups (by merging and splitting groups), of stopping (and restarting the motion of) groups
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or pedestrians in order to simulate people chatting on the street, and of new (groups of)
pedestrians entering into the scene. All these events are managed by an event selection
engine. Specifically, there are three event selectors implemented, which are activated at
each time step of the simulation, i.e., every 0.4 s.

The first event selector manages the entrance into the scene of new pedestrians
as follows:

¢ With 0.2 probability it introduces in the scene a randomly chosen number of new
pedestrians (between 1 and 3) at random positions in the boundary, provided the
number of pedestrians in the scene is below the maximum number allowed (by the
difficulty of the scene);

*  With 0.2 probability it introduces in the scene a new group of pedestrians with 1 to 7
pedestrians, always at the boundary;

¢ With 0.1 probability it introduces both a group and new individual pedestrians;

*  With 0.5 probability it does nothing.

The second event selector manages existing groups as follows:

*  With 0.05 probability it splits an existing group into two groups, randomly dividing
the group members, and assigning a new target direction to the new group;

e With 0.01 probability it merges two existing groups (choosing as its target one of the
targets of the previous groups);

¢ With 0.09 probability it creates a new group from pedestrians not already belonging to
a group, sampling a new target;

*  With 0.85 probability it does nothing.
Finally, the third event selector stops and restarts the motion of groups and pedestrians

as follows:

e With 0.1 probability it randomly stops between 1 and 5 pedestrians not belonging
to a group. Pedestrians remain stopped for a maximum of 100 iterations, then start
moving again;

¢ With 0.1 probability it stops a group of pedestrians, for a maximum of 100 iterations,
by temporarily imposing as its target, of the pedestrians that are part of the group, the
current centroid of the group;

¢ With 0.1 probability it restarts the motion of 1 to 5 individual pedestrians previously
stopped, towards the original target;

*  With 0.1 probability it restarts the motion of a group previously stopped, towards the
original target;

e With 0.6 probability it does nothing.

Obstacle avoidance.

Simulated pedestrians, during the process of avoiding static obstacles, exhibit a lane-
following behavior; furthermore, when close to obstacles of complex shape, some of them
get stuck in a local minimum. To avoid this behavior, we introduced controller mechanisms
on each pedestrian acting on target force f;;(k) at step k. More specifically, at every
simulation cycle, each pedestrian has some information about their current position, the one
of the target, and obstacles on the way at a radius of 15 m. First, we evaluate if there is
any obstacle within 15 m along the line connecting the pedestrian with its target. If not,
the regular force f;;(k) as described above is used. Otherwise, we evaluate the presence
of obstacles within 15 m in the field of view of the pedestrian, by considering 22 discrete
directions (or rays). If some of these rays intersect no obstacle, then we consider as a new
direction the one such a ray closest to the target. If all rays have obstacles, we choose a
new direction as the ray with the furthest obstacle. In all cases, we compute a force f;; (k)
according to (A2), using either the original direction or a modified one. Finally, we set

frilk) = ax (k) + (1 —a) = fri(k— 1),
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using an exponential moving average with forget factor & = 0.8. We found that this simple
controller suffices to avoid undesired behaviors.
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