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Abstract: This paper addresses the problem of estimating the state of a class of interval and pos-
itive nonlinear switched systems. The considered system class is represented by Metzler–Takagi–
Sugeno fuzzy switched models with positive Lipschitz nonlinear functions and bounded disturbance.
The fuzzy switching interval observers need real-time measurable values of premise variables. The
introduced design method in this paper allows us to compute the lower and upper bounds of the sys-
tem state under assumption that unknown disturbances are norm-bounded, computing the observer
gain to achieve such robustness. Formulations and proofs of the design condition for switching fuzzy
positive interval observers document that the diagonal stabilisation principle is implementable by
a common set of LMIs in the construction of strictly positive interval observer gains, guaranteeing
Metzler and Hurwitz observer system matrices and positiveness of the lower and upper bounds
of the estimated system states. Design conditions for the interval-switching observer structures
are formulated via linear matrix inequalities to also ensure H∞-norm disturbance attenuation and
corresponding Lipschitz parameter upper bounds. The proposed algorithm structures are informal
and easily creatable as is illustrated by a numerical example.

Keywords: Takagi–Sugeno models; switched systems; Metzler systems; parametric constraints;
interval observer design

1. Introduction

Specific state observers for a class of complex systems with nonlinear dynamics are
needed for realizing state feedback control to infer online estimation of unmeasurable
system states. By using the Takagi–Sugeno (T-S) fuzzy models [1], the state-space represen-
tation schemes are preferred when projecting the design task into the fuzzy representation.
Consequently, related techniques [2–4], are widely recognised as the effective methods in
approximating a great class of nonlinear systems to provide a mathematical formalization
within the linear matrix inequalities (LMI) formulation [5].

When maintaining analogous features and platforms of the application for systems
with nonnegative states [6,7], the dynamics of the mathematical models of the system
should be represented by the theory of Metzler matrices [8,9]. To describe the nature and
the nonnegative responses of this class of systems, some additional parametric constraints
are necessary to reflect the system positiveness [10]. Benefits of a potential unification are
presented in [11], when reflecting the diagonal stabilization and associated Metzler system
matrix parametric representations in the construction of LMI-based design techniques.

The system matrix parametric constraints give rise to substantially complex design
methods when applied to positive systems with interval-defined model parameters [12].
To demarcate the object of study in this field, Metzler matrix properties are reflected for in-
terval observers analysis in [13]. This result is mainly reflected in [14,15], when formulating
and solving the design observer task for systems with T-S fuzzy interval models.
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The switched positive systems induce analogous settings, following from the interval
bounds on the system state [16]. To use them interchangeably by combining positivity
criteria with the premise variable bounds, the independent design lines are formulated
in [17–19] when synthesizing stabilizing controllers. Because the positiveness must be
maintained, the same framework is used in [20] for switched-interval observer design,
wherein the observer structure design uses sufficient stability criteria in the form of LMIs
to guarantee observer exponential stability. Due to the continuum nature of the premise,
variables in all these solutions are supposed based on the available measurement of the
considered premise variables.

The nonoverlapping LMI compatibility in the design of T-S and the Metzler T-S (M-T-S)
fuzzy interval switched observers is solved in the paper to form algorithmic platforms for
the problem’s solution with relation to the incorporated M-T-S system positivity. The pre-
sented results substantially extend and strengthen those given in [21] to accomplish the
relationships between observer state upper and lower vector states, H∞ disturbance at-
tenuation and the Metzler constraints. Despite the specific limitations of the concept of
diagonal stabilization, the design is formulated as a feasibility problem with standard algo-
rithmic aspects. The proposed approach constitutes a unified algorithmic structure with
specific parametric representations to design an interval switching observer for systems
with T-S and M-T-S fuzzy models, preferring the asymptotic convergence of the interval
estimation errors.

The presented procedure primarily changes the theoretical base of the synthesis of
interval observers for positive and cooperative systems with the T-S models using the
diagonal stabilization principle, and it in no way affects the basic requirements for the
construction of fuzzy premise variables and the synthesis of switched fuzzy controllers.
A common gain matrix of the interval observer delivers anticipated performances in
both mathematical analysis and practical use and can be considered as a compulsion of
conservatism. The application limitation lies in the measurability of the premise variables,
but this measurability is also necessary for the synthesis of T-S fuzzy switched regulators.
Because the methodology is based only on LMIs, its computational complexity is standard
(see, for example [22,23]), which addresses the problem of switched-interval observer
asymptotic stability. There are still insufficient results in the literature for considering the
effects of unmeasured premise variables to design the controller and observers for the
switched T-S fuzzy system [24,25] and, despite the presented results, the synthesis of the
switched positive fuzzy observers still remains for authors an open question that requires
solutions that are as robust as possible against this effect in the M-T-S fuzzy system.

The paper is organized as follows. In Section 2 the constructive switching observer
structure and fundamental design conditions for T-S fuzzy switching systems is adduced.
To adapt the principle of fuzzy switched positive interval observers, the major theoretical
starting points and redeployments are introduced in Section 3 to construct the basis of
the observer positiveness in LMI representation. In Section 4, the conditions that allow
us to design M-T-S interval switched observers by using the transformed set of LMIs are
formulated. The illustrative solution is included into Section 5. The results section outlines
the illustrative solution of given problems in Section 5, underlying Metzler–Hurwitz
switched observer mode dynamics. The substantive concepts provided by the methodology
are summarized in Section 6, outlining as well some topics in the future works.

Throughout the paper, the following notations are used: xT and XT denote the trans-
pose of the vector x, and the matrix X, respectively. Here, diag [ · ] marks a (block) diagonal
matrix, and a square symmetric matrix X ≺ 0 means that X is a negative definite matrix.
The symbol ∗ is used as an ellipsis in a block symmetric matrix, In indicates the nth order
unit matrix, R (R+) qualifies the set of (nonnegative) real numbers, Rn×n (Rn×n

+ ) refers to
the set of (nonnegative) real matrices, and Rn×n

−+ covers the set of Metzler matrices.
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2. Takagi–Sugeno Fuzzy Switching Observer

The considered system class covers a variety of switching multiinput and multioutput
(MIMO) nonlinear dynamic systems, which is representable for a more complex system
behavior by the continuous-time T-S fuzzy models

q̇(t) =
s

∑
i=1

hσ
i (ϑ(t))(Aσ

i q(t) + Bσ
i u(t)) + f σ(q(t)) + Dd(t) , (1)

y(t) = Cσq(t) , (2)

where q(t) ∈ Rn, y(t) ∈ Rm are vectors of the state and output variables, d(t) ∈ Rd is a norm-
bounded disturbance, and the local mode state-dependent nonlinearities f σ(q(t)) ∈ Rn are
Lipschitz. The system matrix parameters involved in the state-space model are Aσ

i ∈ Rn×n,
Bσ

i ∈ Rn×r, Cσ ∈ Rm×n, D ∈ Rn×d, σ ∈ Σ denotes a concrete active mode from the set of
switched modes Σ = {1, . . . nw} with the total number of modes nw.

According to the degree of membership, the T-S fuzzy rule-based switching system
description establishes for an ith fuzzy rule the normalized membership function hσ

i (ϑ(t))
for all σ ∈ {1, . . . , nw}, where

0 ≤ hσ
i (ϑ(t)) ≤ 1,

s

∑
i=1

hσ
i (ϑ(t)) = 1 , (3)

for i ∈ {1, . . . , s}, reflecting the total number of possible fuzzy rules s and the set of total
number o of premise variables ϑ(t) =

[
θ1(t) θ2(t) · · · θo(t)

]
.

The premise variables govern the blending of the linear submodels, associated with
anticipated nonlinear changes in the system operating conditions. The considered class
of T-S fuzzy switched systems deals only with measurable premise variables, which are a
subset of the system state variables.

To embed into the design task the nonlinearity of corresponding Lipschitz properties,
the following definition is suitable.

Definition 1 ([26,27]). Let f (s) : X→ Rn be a vector function defined onX ⊂ Rn and s ∈ X.
The function f (s) is said to satisfy locally Lipschitz condition at s if there exists a neighborhood S+
of s and real λ > 0, such that

‖ f (x)− f (y)‖ ≤ λ‖x− y‖ for all x, y ∈ S+ . (4)

Definition 1 is the basic assumption in the formulation of the H∞-norm based T-S
observer design criterion (see, for example [28]).

Specifying the observer performances to be compatible with the common notation of
the switching T-S fuzzy system when switching together with a subsystem that is in action,
the algorithm of the switching T-S fuzzy observer is prescribed as

q̇e(t) =
s

∑
i=1

hσ
i (ϑ(t))(Aσ

i qe(t) + Bσ
i u(t)) + f σ(qe(t)) +

s

∑
i=1

hσ
i (ϑ(t))Jσ

i Cσ(q(t)− qe(t)) , (5)

ye(t) = Cσqe(t) , (6)

where qe(t) ∈ Rn is the observer state vector and the design subjects are the matrices
Jσ

i ∈ Rn×m, i ∈ {1, . . . , s}, σ ∈ {1, . . . , nw}.
Because the observation produces the observer errors

e(t) = q(t)− qe(t), ey(t) = Cσe(t) , (7)
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and then, because the premise variables are measurable and qe(0) = 0 is freely assignable,

ė(t) =
s

∑
i=1

hσ
j (ϑ(t))(Aσ

i − Jσ
i Cσ)e(t) + ∆ f σ(t) + Dd(t)

=
s

∑
i=1

hσ
i (ϑ(t))Aσ

eie(t) + ∆ f σ(t) + Dd(t) ,
(8)

where the following notation is associated

Aσ
ei = Aσ

i − Jσ
i Cσ, ∆ f σ(t) = f σ(q(t))− f σ(qe(t)) . (9)

Note, (8) promotes also a switching structure.

Remark 1. The observer error dependence of the nonlinear function can be obtained via representa-
tion in the square norm on the differentiability of (4) for κ = λ2 as

‖ f (q(t))− f (qe(t))‖
2 = ( f (q(t))− f (qe(t))

T( f (q(t))− f (qe(t))

≤ κ(q(t)− qe(t))
T(q(t)− qe(t))

= κ eT(t)Ine(t)

> 0 .

(10)

If the previous assumptions are reflected, it is possible to prove the following theorem,
which is the basic fundamental element of the proposed approach.

Theorem 1. If there exists a symmetric positive definite matrix P ∈ Rn×n, matrices V σ
i ∈ Rn×m

and a positive scalars κ, µ ∈ R+, such that for all i ∈ {1, . . . , s}, σ ∈ {1, . . . , nw}

P = PT � 0 , µ > 0 , (11)


PAσ

i + AσT
i P− V σ

i Cσ − CσTV σT
i + κIn ∗ ∗ ∗

DTP −µId ∗ ∗
Cσ 0 −µIm ∗
P 0 0 −In

 ≺ 0 , (12)

then, in a feasible case, the switching T-S fuzzy observer (5), (6) for the system (1), (2) is asymp-
totically stable and the set of observer gains for i ∈ {1, . . . , s}, σ ∈ {1, . . . , nw} can be found by
the rules

Jσ
i = P−1V σ

i . (13)

Proof. A following positive v(e(t)) can be served as the Lyapunov function for (8) and any
σ ∈ {1, . . . , nw} when using a symmetric positive definite matrix P ∈ Rn×n and a positive
scalar µ ∈ R+ in such a way that

v(e(t)) = eT(t)Pe(t) + µ−1
∫ t

0
(eT

y (τ)ey(τ)− µ2dT(τ)d(τ))dτ > 0 , (14)

whose time-derivative for all observer error trajectories satisfies

v̇(e(t)) = ėT(t)Pe(t) + eT(t)Pė(t) + µ−1eT
y (t)ey(t)− µdT(t)d(t) < 0 . (15)

Note, the variable µ is an upper bound of H∞ norm of the disturbance transfer function
matrix and therefore the integrand in the definite integral in (14) is always positive [29].
From an optimization point of view, it can be defined as a tuning parameter in design.
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Applying by substitution into inequality (15) the observer error dynamics (8) get the
following result

v̇(e(t)) =
s

∑
i=1

hσ
i (ϑ(t))e

T(t)(AσT
ei P + PAσ

ei)e(t)+

+
s

∑
i=1

hσ
i (ϑ(t))(e

T(t)PDd(t) + dT(t)DTPe(t))+

+
s

∑
i=1

hσ
i (ϑ(t))(e

T(t)P∆ f σ(t) + ∆ f σT(t)Pe(t))+

+ µ−1
s

∑
i=1

hσ
i (ϑ(t))e

T(t)CσTCσe(t)− µdT(t)d(t)

< 0 .

(16)

To be altered to suit the needs of an LMI structure, the following elements can be
written by using (4) and (10) as

eT(t)P∆ f σ(t) + ∆ f σT(t)Pe(t) ≤ eT(t)PPe(t) + ∆ f σT(t)∆ f σ(t)

≤ eT(t)PPe(t) + κ eT(t)Ine(t)
(17)

and constructing a common notation which is readily representable for all variables

eT
d (t) =

[
eT(t) dT(t)

]
, (18)

and then there are reasonable grounds to conclude that

v̇(ed(t)) =
s

∑
i=1

hσ
i (ϑ(t))e

T
d (t)Ω

σ
i ed(t) < 0 , (19)

where, for the covered systematization,

Ωσ
i =

[
AσT

ei P + PAσ
ei + κIn + µ−1CσTCσ + PInP ∗

DTP −µId

]
≺ 0 . (20)

Thus, it follows from the above that[
AσT

ei P + PAσ
ei + κIn + PInP ∗
DTP −µId

]
+

[
CσT

0

]
µ−1 Im

[
Cσ 0,

]
≺ 0 (21)

and using the Schur complement property [30] the condition can be rewritten asPAσ
ei + AσT

ei P + κIn + PInP ∗ ∗
DTP −µId ∗
Cσ 0 −µIm

 ≺ 0 . (22)

Analogously it can be straightforward to writePAσ
ei + AσT

ei P + κIn ∗ ∗
DTP −µId ∗
Cσ 0 −µIm

+

P
0
0

In
[
P 0 0

]
≺ 0, (23)
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and the final form of LMI after applying again the property of Schur complement is
PAσ

ei + AσT
ei P + κIn ∗ ∗ ∗

DTP −µId ∗ ∗
Cσ 0 −µIm ∗
P 0 0 −In

 ≺ 0 . (24)

Respecting Aσ
ei introduced in (9), the basic rule in including the system matrix parame-

ters into the LMI structure means that

PAσ
ei = PAσ

i − PJσ
i Cσ = PAσ

i − Vσ
i Cσ , (25)

where Vσ
i = PJσ

i for i ∈ {1, . . . , s}, σ ∈ {1, . . . , nw}.
Thus, one can conclude from this that (24), (25) imply (12) of the standard structure,

and so it is possible to close the proof.

3. Metzler–Takagi–Sugeno Fuzzy Switching Observer

In this case the Lipschitz function, f (q(t)) ∈ R+ is positive, Bσ
i ∈ R

n×r
+ Cσ ∈ Rm×n

+ ,
D ∈ Rn×d

+ are nonnegative, and Aσ
i ∈ R

n×n
−+ are strictly Metzler. Such redefined sys-

tem is noted as the M-T-S fuzzy switching positive system and its state variable vector
is nonnegative.

To respect these assumptions, a matrix Aσ
i with only negative diagonal elements and

with strictly positive (greater then zero) off-diagonal elements is considered the strictly Met-
zler matrix. Consequently, a strictly Metzler matrix Aσ

i is so defined under n2 constraints
(structural parametric constraints)

aσ
lh < 0, l = h, aσ

lh > 0, l 6= h, ∀l, h ∈ 〈1, n〉 . (26)

To guarantee the parametric constraints fulfillment in design of closed-loop systems,
or in observer system matrices, the diagonal stabilization principle has to be used [31].

Remark 2. If a strictly Metzler A ∈Mn×n
−+ is represented with relation to the observer design task

in the following rhombic form, where the diagonal exactness are constructed by the column index
defined multiple circular shifts of elements of the columns of A as follows [11],

AΘ =



a11
a21 a22
a31 a32 a33

...
...

...
. . .

an1 an2 an3 · · · ann
a12 a13 · · · a1n

a23 · · · a2n
. . .

...
an−1,n


, (27)

then the diagonal matrix structures, related to AΘ with the index h = 0, . . . , n− 1,

A(ν, ν) = diag
[
a11 a22 · · · ann

]
≺ 0 , (28)

A(ν + h, ν) = diag
[
a1+h,1 · · · an,n−h a1,n−h+1 · · · ah,n

]
� 0 , (29)

represent the set of Metzler parametric constraints (26).
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Moreover, utilization of this principle leads to the Metzler matrix A parameterizations as [11]

A =
n−1

∑
h=0

A(ν + h, ν)LhT , L =

[
0T 1

In−1 0

]
, (30)

where L ∈ Rn×n is the circulant permutation matrix. Implementing (30) for any Ae = A− JC ∈
Rn×n
−+ address the needs of the following parametrization (see, for example, [32])

Ae =
n−1

∑
h=0

(
Ai(ν + h, ν)−

m

∑
k=1

JkhCdk
)

LhT , (31)

where, with relation to (28), (29), the diagonal matrices Jkh, Cdk ∈ Rn×n
+ are defined as follows:

CT =
[
c1 · · · cm

]
, Cdk = diag

[
cT

k
]
, (32)

J =
[
j1 · · · jm

]
, Jk = diag

[
jik
]
, Jkh = LhT JkLh . (33)

To apply this parametrization principle the following corollary is objective.

Corollary 1. Using Remark 2 and the error Equations (8) and (9) entails the parametrizations

Aσ
i (ν, ν) = diag

[
aσ

i11 aσ
i22 · · · aσ

inn
]

(34)

Aσ
i (ν + h, ν) = diag

[
aσ

i,1+h,1 · · · aσ
i,n,n−h aσ

i,1,n−h+1 · · · aσ
ihn

]
(35)

CσT =
[
cσ

1 · · · cσ
m
]
, Cσ

dk = diag
[
cσT

k
]
, (36)

Jσ
i =

[
jσ
i1 · · · jσ

im
]
, Jσ

ik = diag
[
jσ
ik
]
, Jσ

ikh = LhT Jσ
ikLh . (37)

With Lyapunov function (14) and Corollary 1, it is possible to give the design criteria.

Theorem 2. The matrices Aσ
ei ∈ R

n×n
−+ for all i ∈ 〈1, s〉, σ ∈ {1, . . . , nw} are strictly Metzler and

Hurwitz if for by the system (1), (2) defined strictly Metzler matrices Aσ
i ∈ R

n×n
−+ and nonnegative

matrices Cσ ∈ Rm×n
+ , D ∈ Rn×d

+ there exist positive definite diagonal matrices P, V σ
ik ∈ R

n×n
+

and positive scalars κ, µ ∈ R+, such that for i = 1, . . . , s, σ ∈ {1, . . . , nw}, h = 1, . . . , n− 1

P � 0, Vσ
ik � 0 , (38)

PAσ
i (ν, ν)−

m

∑
k=1

V σ
ikCσ

dk ≺ 0 , (39)

PLh Aσ
i (ν + h, ν)LhT −

m

∑
k=1

Vσ
ikLhCσ

dkLhT � 0 , (40)


PAσ

i + AσT
i P−

m
∑

k=1
V σ

ikllTCσ
dk −

m
∑

k=1
Cσ

dkllTV σ
ik + κIn ∗ ∗ ∗

DTP −µId ∗ ∗
Cσ 0 −µIm ∗
P 0 0 −In

 ≺ 0 . (41)
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Confirming the feasible task, the gains for i ∈ {1, . . . , s}, σ ∈ {1, . . . , nw}, are defined as

Jσ
ik = P−1V σ

ik , jσ
ik = Jσ

ikl , Jσ
i =

[
jσ
i1 · · · jσ

im
]
, lT =

[
1 · · · 1

]
. (42)

Proof. According to the parametrization of Aσ
ei (34)–(37) it has to yield for all i, σ and the

related h

Aσ
i (ν, ν)−

m

∑
k=1

Jσ
ikCσ

dk ≺ 0 , (43)

Aσ
i (ν + h, ν)LhT −

m

∑
k=1

Jσ
ikhCσ

dkLhT � 0 . (44)

Multiplying this by the positive definite diagonal matrix P, the left side of the inequal-
ity (43) yields

PAσ
i (ν, ν)−

m

∑
k=1

PJσ
ikCσ

dk ≺ 0, (45)

and using the notation V σ
ik = PJσ

ik then (45) implies (39).
Analogously, multiplying the left side of (44) by PLh yields

PLh Aσ
i (ν + h, ν)LhT −

m

∑
k=1

PLhLhT Jσ
ikLhCσ

dkLhT � 0, (46)

and with the notation V σ
ik = PJσ

ik, then (46) implies (40), because LhLhT = In.
In the given sense, (39), (40) force the Metzler parametric constraints in the design task.
Writing now for Aσ

ei = Aσ
i − Jσ

i Cσ ∈ Rn×n
−+ , then

P(Aσ
i − Jσ

i Cσ) + (Aσ
i − Jσ

i Cσ)TP

=P
(

Aσ
i −

m

∑
k=1

jσ
ikcσT

k

)
+
(

Aσ
i −

m

∑
k=1

jσ
ikcσT

k

)T
P

=P
(

Aσ
i −

m

∑
k=1

Jσ
ikllTCσ

dk

)
+
(

Aσ
i −

m

∑
k=1

Jσ
ikllTCσ

dk

)T
P,

(47)

and using the analogy with (25) when applying (47), then (41) results. This concludes the
proof.

The obtained design conditions are convenient for the M-T-S fuzzy switching observer
synthesis, assuming that the premise variables are directly measurable. Because Aσ

ei ∈ R
n×n
−+

for all i ∈ 〈1, s〉, σ ∈ {1, . . . , nw} are strictly Metzler and Hurwitz, the observer asymptotic
stability is guarantied.

4. Metzler–Takagi–Sugeno Fuzzy Switching Interval Observer

In this case, there are also considered nonnegative disturbance d(t) ∈ Rd
+, Lipschitz

function f (q(t)) ∈ Rn
+, the output matrices Cσ ∈ Rm×n

+ , and the disturbance input matrix
D ∈ Rn×d

+ , but q(0) as well as the strictly Metzler system parameters Aσ
i are unknown but

bounded by known constant bounding vectors and known constant bounding matrices
of appropriate dimensions in such a way that for all i ∈ 〈1, s〉, σ ∈ {1, . . . , nw} (these
inequalities are understood elementwise):

0 ≤ q(0) ≤ q(0) ≤ q(0) , Aσ
i ≤ Aσ

i ≤ Aσ
i , (48)

0 ≤ ϑ(t) ≤ ϑ(t) ≤ ϑ(t) . (49)

Due to the comprehensiveness of the interval defined system parameters and measur-
able premise variables, then it can be defined the following:
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q̇e(t) =
s

∑
i=1

hσ
i (ϑ(t))

(
Aσ

i qe(t) + Bσ
i u(t) + Jσ

i (y(t)− ye(t))
)
+ f σ(qe(t))

=
s

∑
i=1

hσ
i (ϑ(t))

(
(Aσ

i − Jσ
i Cσ)qe(t) + Bσ

i u(t)
)
+

s

∑
i=1

hσ
i (ϑ(t))Jσ

i Cσq(t) + f σ(qe(t)) ,
(50)

q̇
e
(t) =

s

∑
i=1

hσ
i (ϑ(t))

(
Aσ

i q
e
(t) + Bσ

i u(t) + Jσ
i (y(t)− y(t))

)
+ f σ(q

e
(t))

=
s

∑
i=1

hσ
i (ϑ(t))

(
(Aσ

i − Jσ
i Cσ)q

e
(t) + Bσ

i u(t)
)
+

s

∑
i=1

hσ
i (ϑ(t))Jσ

i Cσq(t) + f σ(q
e
(t)) ,

(51)

where (2) yields together with

ye(t) = Cσqe(t) , y
e
(t) = Cσq

e
(t) (52)

and with the more specific scope for t ≥ 0 if qe(0) = q(0), q
e
(0) = q(0) it is

0 ≤ q
e
(t) ≤ q(t) ≤ qe(t) (53)

Aσ
ei = Aσ

i − Jσ
i Cσ, Aσ

ei = Aσ
i − Jσ

i Cσ . (54)

By using the observation errors

e(t) = q(t)− qe(t), e(t) = q(t)− q
e
(t) , (55)

it follows from (1), (53), (54) that

ė(t) = q̇(t)− q̇e(t)

=
s

∑
i=1

hσ
i (ϑ(t))Aσ

eie(t)−
s

∑
i=1

(
hσ

i (ϑ(t))Aσ
ei − hσ

i (ϑ(t))Aσ
ei

)
q(t)+

+ f σ(q(t))− f σ(qe(t)) + Dd(t)

=
s

∑
i=1

hσ
i (ϑ(t))Aσ

eie(t) + ∆ f σ(q(t), qe(t))−Λσ(ϑ(t), ϑ(t))q(t) + Dd(t) ,

(56)

ė(t) = q̇(t)− q̇
e
(t)

=
s

∑
i=1

hσ
i (ϑ(t))Aσ

eie(t)−
s

∑
i=1

(
hσ

i (ϑ(t))Aσ
ei − hσ

i (ϑ(t))Aσ
ei

)
q(t)+

+ f σ(q(t))− f σ(q
e
(t)) + Dd(t)

=
s

∑
i=1

hσ
i (ϑ(t))Aσ

eie(t) + ∆ f σ(q(t), q
e
(t))−Λσ(ϑ(t), ϑ(t))q(t) + Dd(t) ,

(57)

where
∆ f σ(q(t), qe(t)) = f σ(q(t))− f σ(qe(t)) , (58)

∆ f σ(q(t), q
e
(t)) = f σ(q(t))− f σ(q

e
(t)) , (59)

Λσ(ϑ(t), ϑ(t)) =
s

∑
i=1

(
hσ

i (ϑ(t))Aσ
ei − hσ

i (ϑ(t))Aσ
ei

)
, (60)

Λσ(ϑ(t), ϑ(t)) =
s

∑
i=1

(
hσ

i (ϑ(t))Aσ
ei − hσ

i (ϑ(t))Aσ
ei

)
. (61)
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Remark 3. By using (4) and (55) and adopting the standard manipulations defined by (10), then
(58), (59) can be rewritten in the inequality forms as

‖∆ f σ(q(t), qe(t))‖
2 ≤ κ eT(t)e(t) , ‖∆ f σ(q(t), q

e
(t))‖2 ≤ κ eT(t)e(t) . (62)

Keeping in mind that Aσ
ei, Aσ

ei have to be strictly Metzler and Hurwitz and the upper and
lower bounds of the measurable premise variables are also measurable, then

lim
ϑ(t)→ϑ(t)

Λσ(ϑ(t), ϑ(t)) =
s

∑
i=1

(
hσ

i (ϑ(t))Aσ
ei − hσ

i (ϑ(t))Aσ
ei

)
= 0 , (63)

lim
ϑ(t)→ϑ(t)

Λσ(ϑ(t), ϑ(t)) =
s

∑
i=1

(
hσ

i (ϑ(t))Aσ
ei − hσ

i (ϑ(t))Aσ
ei

)
= 0 (64)

and, evidently, it is satisfied by

Aσ
i − Jσ

i Cσ ≤ Aσ
i − Jσ

i Cσ ≤ Aσ
i − Jσ

i Cσ , (65)

because
Aσ

i ≤ Aσ
i ≤ Aσ

i . (66)

In addition, considering for useful analyses and comparative results the interval bounded
output matrices Cσ, Cσ, where

Cσ ≤ Cσ ≤ Cσ , (67)

then the generalization of the standard Metzler interval observer matrix structures cannot be
obtained, because

Aσ
i − Jσ

i Cσ � Aσ
i − Jσ

i Cσ � Aσ
i − Jσ

i Cσ . (68)

Because Λσ(ϑ(t), ϑ(t))q(t), Λσ(ϑ(t), ϑ(t))q(t), are bounded and q(t) has to be posi-
tive (nonnegative), considering this formulation of the design task as an polytopic convex
problem, then

ė(t) =
s

∑
i=1

hσ
i (ϑ(t))Aσ

eie(t) + ∆ f σ(q(t), qe(t)) + Dd(t) , (69)

ė(t) =
s

∑
i=1

hσ
i (ϑ(t))Aσ

eie(t) + ∆ f σ(q(t), q
e
(t)) + Dd(t) . (70)

To apply this parametrization principle in design of this class of M-T-S observers,
the following corollary is objective.

Corollary 2. By using Remark 2 and the state observation error Equations (69), (69) entails the
system matrix parametrizations

Aσ
i (ν, ν) = diag

[
aσ

i11 aσ
i22 · · · aσ

inn
]
, (71)

Aσ
i (ν, ν) = diag

[
aσ

i11 aσ
i22 · · · aσ

inn
]
, (72)

Aσ
i (ν + h, ν) = diag

[
aσ

i,1+h,1 · · · aσ
i,n,n−h aσ

i,1,n−h+1 · · · aσ
ihn
]
, (73)

Aσ
i (ν + h, ν) = diag

[
aσ

i,1+h,1 · · · aσ
i,n,n−h aσ

i,1,n−h+1 · · · aσ
ihn

]
, (74)

whereas the parameterizations (36), (37) stay unchanged.
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To indicate related conditions and potentially strictly positive parameter solutions
of M-T-S fuzzy switching interval positive observers, the following presents a system-
atized method.

Theorem 3. The matrices Aσ
ei, Aσ

ei ∈ R
n×n
−+ for all i ∈ 〈1, s〉, σ ∈ {1, . . . , nw} are strictly Metzler

and Hurwitz if for given strictly Metzler matrices Aσ
i , Aσ

i ∈ R
n×n
−+ , and nonnegative matrices

Cσ ∈ Rm×n
+ there exist positive definite diagonal matrices P, V σ

ik ∈ R
n×n
+ and positive scalars

κ, κ, µ ∈ R+, such that for i = 1, . . . , s, σ ∈ {1, . . . , nw}, h = 1, . . . , n− 1, lT =
[
1 · · · 1

]
and

the design parameters defined in Corollary 2

P � 0 , V ik � 0 , (75)

PAσ
i (ν, ν)−

m

∑
k=1

V σ
ikCσ

dk ≺ 0 , PAσ
i (ν, ν)−

m

∑
k=1

V σ
ikCσ

dk ≺ 0 , (76)

PLh Aσ
i (ν+ h, ν)LhT−

m

∑
k=1

V σ
ikLhCσ

dkLhT � 0 , PLh Aσ
i (ν+ h, p)LhT−

m

∑
k=1

V σ
ikLhCσ

dkLhT � 0

(77)




PAσ

i + AσT
i P + κIn −

m
∑

k=1
V σ

ikllTCdk −
m
∑

k=1
Cσ

dkllTV σ
ik ∗ ∗ ∗

DTP −µId ∗ ∗
Cσ 0 −µIm ∗
P 0 0 −In

 ≺ 0 ,


PAσ

i + AσT
i P + κIn −

m
∑

k=1
V σ

ikllTCdk −
m
∑

k=1
Cσ

dkllTV σ
ik ∗ ∗ ∗

DTP −µId ∗ ∗
Cσ 0 −µIm ∗
P 0 0 −In

 ≺ 0 .

(78)

If the task is feasible, the rules to compute Jσ
i ∈ R

n×m
+ for i ∈ {1, . . . , s}, σ ∈ {1, . . . , nw},

are given by (42).

The proof is omitted being similar to the proof of Theorem 2.
Note that in the given sense (76) and (77) force the Metzler parametric constraints in

the design, and the LMIs in (78) prescribe the fuzzy interval observer asymptotic stability
and the solving task offers attenuation of disturbance effects by µ as an upper bound of
the H∞ norm of the disturbance transform function matrix with relation to the estimated
system output.

5. Illustrative Example

To illustrate the proposed interval observer design for M-T-S fuzzy switching model
(1), (2), all interval bounds on the system matrices and the required supporting design
parameters are given as

A1
1 =

−0.2720 1.9380 1.4540
0.0580−3.9610 0.0650
0.1100 0.0580−2.9080

, A1
2 =

−0.2730 1.9440 1.4510
0.0590−3.9610 0.1070
0.1090 0.0510−2.9180

,

A2
1 =

−0.2760 2.0940 1.4450
0.0520−3.9510 0.0920
0.1250 0.0840−2.9380

, A2
2 =

−0.2720 2.1020 1.4150
0.0570−3.9510 0.1200
0.1000 0.0770−2.9420

,
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A1
1 =

−0.2580 2.0160 1.5570
0.1420−3.6480 0.0720
0.2060 0.0730−2.5540

, A1
2 =

−0.2580 2.0660 1.5530
0.1420−3.6450 0.2010
0.2120 0.0510−2.5560

,

A2
1 =

−0.2410 2.1600 1.4450
0.1450−3.6420 0.1170
0.1830 0.0970−2.5950

, A2
2 =

−0.2680 2.1640 1.5560
0.1570−3.6390 0.1720
0.2020 0.0810−2.5750

,

where

ρ(A1
1) =

{
−0.1817−2.9680−3.9912

}
, ρ(A1

2) =
{
−0.1822−2.9785−3.9914

}
,

ρ(A2
1) =

{
−0.1787−3.0050−3.9814

}
, ρ(A2

2) =
{
−0.1857−2.9940−3.9853

}
,

ρ(A1
1) =

{
−0.0455−2.6845−3.7301

}
, ρ(A1

2) =
{
−0.0350−2.7040−3.7200

}
,

ρ(A2
1) =

{
−0.0429−2.7043−3.7309

}
, ρ(A2

2) =
{
−0.0389−2.7103−3.7328

}
,

and

C1 = C2 =

[
1 0 0
0 0 1

]
, D =

0.045
0.080
0.053

, L =

0 0 1
1 0 0
0 1 0

, l =

1
1
1

,

f 1(t) = f 2(t) =

q2(t)q3(t)
0
0

.

The straightforward calculation shows that the prescribed needs on the Aσ
i , Aσ

i are
strictly Metzler and Hurwitz and Aσ

i ≤ Aσ
i for all i, σ, and that C, D are nonnegative

matrices, and all are satisfied.
The system investigation for bounded q2(t) ≤ 1.5, q3(t) ≤ 1.3 offers the bound on

Lipschitz parameter κ as [33]∥∥∥∥∂ f (q(t))
∂q(t)

∥∥∥∥
2
=

∥∥∥∥∥∥
0 q3 q2
0 0 0
0 0 0

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
0 1.3 1.5
0 0 0
0 0 0

∥∥∥∥∥∥
2

= 1.9849 = λ , κm = λ2 = 3.94 ,

which is the upper constraint κm, because q(t) is positive.
Respecting the requirement (36), then C is diagonally represented as

C1
d1 = C2

d1 = diag
[
1 0 0

]
, C1

d2 = C2
d2 = diag

[
0 0 1

]
,

and, for example, the parametrization by the set of diagonal matrices of the matrix A2
2,

respectively, A2
2 of the switched fuzzy model is

A2
2(ν, ν) = diag

[
−0.2720−3.9510−2.9420

]
,

A2
2(ν + 1, ν) = diag

[
0.0570 0.0770 1.4150

]
, A2

2(ν + 2, ν) = diag
[
0.1000 2.1020 0.1200

]
,

A2
2(ν, ν) = diag

[
−0.2680−3.6390−2.5750

]
,

A2
2(ν + 1, ν) = diag

[
0.1570 0.0810 1.5560

]
, A2

2(ν + 2, ν) = diag
[
0.2020 2.1640 0.1720

]
.

At this level of description, one can also simply make sure that

A2
2(ν, ν) ≤ A2

2(ν, ν) , A2
2(ν + 1, ν) ≤ A2

2(ν + 1, ν) , A2
2(ν + 2, ν) ≤ A2

2(ν + 2, ν) .

All others system matrices must be parameterized in the same way to respect the
desired diagonal principle.

The SeDuMi toolbox [34] is applied in a standard way to construct and solve the
prescribed set of N = 44 LMIs, defined by Theorem 3. It is feasible that searching provides
the matrix and scalar variables

P = diag
[
0.4978 0.7549 0.8280

]
, µ = 1.7629, κ = 1.9236, κ = 2.2568,
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V1
11 = diag

[
2.1118 0.0141 0.0335

]
, V1

12 = diag
[
0.3236 0.0165 0.4872

]
V1

21 = diag
[
2.1195 0.0142 0.0336

]
, V1

22 = diag
[
0.3240 0.0328 0.4886

]
V2

11 = diag
[
2.1394 0.0127 0.0353

]
, V2

12 = diag
[
0.3072 0.0246 0.4767

]
V2

21 = diag
[
2.1412 0.0139 0.0310

]
, V2

22 = diag
[
0.3184 0.0337 0.4830

]
These results fulfil the diagonal positiveness criterion on the LMI variables and enforce

the strictly positive gains

J1
1 =

4.2418 0.6499
0.0187 0.0218
0.0404 0.5885

, J1
2 =

4.2574 0.6508
0.0188 0.0435
0.0406 0.5902

,

J2
1 =

4.2973 0.6170
0.0168 0.0326
0.0426 0.5757

, J1
2 =

4.3009 0.6395
0.0184 0.0446
0.0375 0.5834

,

which are necessary to solve the following range of matrices with Metzler features, while
retaining the observers stability,

A1
e1 =

−4.5138 1.9380 0.8041
0.0393−3.9610 0.0432
0.0696 0.0580−3.4965

, A1
e2 =

−4.5304 1.9440 0.8002
0.0402−3.9610 0.0635
0.0684 0.0510−3.5082

,

A2
e1 =

−4.5733 2.0940 0.8280
0.0352−3.9510 0.0594
0.0824 0.0840−3.5137

, A2
e2 =

−4.5729 2.1020 0.7755
0.0386−3.9510 0.0754
0.0625 0.0770−3.5254

,

A1
e1 =

−4.4998 2.0160 0.9071
0.1233−3.6480 0.0502
0.1656 0.0730−3.1425

, A1
e2 =

−4.5154 2.0660 0.9022
0.1232−3.6450 0.1575
0.1714 0.0510−3.1462

,

A2
e1 =

−4.5383 2.1600 0.8280
0.1282−3.6420 0.0844
0.1404 0.0970−3.1707

, A2
e2 =

−4.5689 2.1640 0.9165
0.1386−3.6390 0.1274
0.1645 0.0810−3.1584

,

where

ρ(A1
e1) =

{
−3.4179−3.8917−4.6616

}
, ρ(A1

e2) =
{
−3.4246−3.8998−4.6751

}
,

ρ(A2
e1) =

{
−3.4134−3.9109−4.7138

}
, ρ(A2

e2) =
{
−3.4382−3.9028−4.7084

}
,

ρ(A1
e1) =

{
−2.9737−3.5217−4.7949

}
, ρ(A1

e2) =
{
−2.9344−3.5736−4.7985

}
,

ρ(A2
e1) =

{
−2.9981−3.5275−4.8255

}
, ρ(A2

e2) =
{
−2.9445−3.5470−4.8748

}
.

By comparing all solutions found by the algorithm, it is safe to say that for all i =
1, 2, σ = 1, 2 constructs a set of stable Metzler observer matrices, satisfying the desired
conditions Aσ

ei ≤ Aσ
ei and

max
i,σ

ρ(Aσ
i ) > max

i,σ
ρ(Aσ

ei) , max
i,σ

ρ(Aσ
i ) > max

i,σ
ρ(Aσ

ei) ,

which means that the dynamics of the fuzzy switching interval observer is faster than the
dynamics of the fuzzy switching system.

Moreover, it can be seen that due to the influence of negative state feedback acting
on the structures of estimators, these matrices have a tendency to become diagonally
dominant [35,36] because the confirmation of one of the characteristic features of systems
with dynamics is defined by strictly using Metzler matrices.

This generally leads to negative real eigenvalues of the estimator dynamics matrices
and ultimately to stable aperiodic trajectories of the estimated state variables.
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The proposed conditions in terms of LMIs and diagonal matrix variables for the design
of M-T-S fuzzy switched interval observers are illustrated, if strictly Metzler system matrix
interval constraints are defined and the premise variables are measurable. If the switch-
ing M-T-S fuzzy observer is built on purely Metzler system matrix interval constraints,
the structured nonnegative diagonal matrix variables V σ

ik must be used, when adapting
the principle presented in [23]. This will be manifested by the fact that the stable switched
observer’s matrices Aσ

ei, Aσ
ei will be only purely Metzler, and, in view of this, Jσ

i will be
nonnegative, but will possess the tendency to become diagonally dominant.

Unfortunately, such a choice description of the diagonal structured matrix variables
may no longer be trivial and unambiguous.

6. Concluding Remarks

The main goals in this article are the creation of LMI-based structures for the interval state
observer design in coincidence with the Metzler parametric constraints of positive systems,
T-S fuzzy models of nonlinear switching systems, the Lipschitz form of a state-dependent
nonlinearities, the interval system matrix representations, and bounded system disturbances.

It is proven that the diagonal stabilisation principle is implementable by a common set
of LMIs in the construction of strictly positive interval observer gains, guaranteeing Metzler
and Hurwitz system matrices of switched interval observers based on the M-T-S switched
fuzzy models, as well as boundedness and positiveness of the estimated system states.

The existence of a common quadratic Lyapunov function for all linear modes assures
the quadratic stability of the switched system [37]. Because quadratic stability is a spe-
cial class of exponential stability, which implies asymptotic stability for linear systems,
the existence of a common quadratic Lyapunov function can be expressed in terms of LMIs.
The disadvantage is that such existence is only sufficient for the asymptotic stability of
switched linear systems and the results are rather conservative. If every subsystem is
stable, there can be found positive definite symmetric matrices that solve the Lyapunov
equation for each mode, which are patchable together under the switch to construct a
global Lyapunov function [38], but the switched quadratic Lyapunov function method also
gives only sufficient conditions. Because the parametric bounds and the principle of diago-
nal stabilization make the conditions for the synthesis of positive systems only sufficient,
the proposed design conditions are formed for a given class of switched observers with
respect to a common quadratic Lyapunov function. Computing real dwell time for the
Hurwitz stability of the switched linear systems [39], the dynamics of a switched interval
observer mode can be also reforced interactively by using the D-stability approach (see
for example [40]).

The presented approach seems to be a suitable common algorithmic chosen to realize
the design task having the complexity of the interval M-T-S fuzzy switching positive
observer, being naturally parameterized for the positive M-T-S switched fuzzy models.
Considering the similarity within the kindred class of LMI algorithms, the computational
complexity is easily interpretable for the presented particular case. The proposed algorithm
structures are informal and easily creatable, which is why it can be the most common
structure chosen. As a special case, the LMI-based design condition structures of the
present paper gives the possibility to reflect the existence of such interval observers when
the M-T-S fuzzy system is not subject to a Lipschitz nonlinearity.

The method can be used as a basis for immediate future work toward the solution of
the positive stochastic switched systems and in principle, when using a suitable Lyapunov–
Krasovskii functional, the presented methodology can be adapted for certain classes of
M-T-S fuzzy systems with time delays. Because the model parameters are related to positive
switching dynamics, therefore they propose a basis regarding the fractional M-T-S fuzzy
switched systems.

The Metzler system matrix parametric constraints give rise to substantially complex
design methods, when applied to positive systems with interval-defined model parameters.
Utilization of the interval observers for interconnected schemes with relation to distributed
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interval estimation and distributed feedback control [41,42] has to reflect, moreover, that
their application for continuous linear large-scale systems is limited due to the system’s
complexity. These problems are still open in these applications, because it is difficult to
ensure that the system state will be enclosed by cooperative estimated upper and lower
bounds of the observed system state [43]. The same must be taken into account in interval
estimation strategies for antidisturbance control of drones [44]. The scientific activities of
the authors will be focused on these areas in the long term.
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Abbreviations
The following abbreviations are used in this manuscript:

LMI Linear Matrix Inequality
MIMO Multiple-Input Multiple-Output
SeDuMi Self Dual Minimization
M-T-S Metzler-Takagi-Sugeno fuzzy model

Notations
The following basic notations are used in this manuscript:

q(t), u(t), y(t), d(t), ϑ(t) state, input, output, disturbance and premise variables vectors
Aσ

i , Bσ
i , Cσ, D switched system matrix parameters

Aσ
ei, Jσ switched observer system matrices, switched observer gains

P, Vσ
ik, κ matrix variables of LMIs

f (s), In, γ Liptschitz function, identity matrix, scalar tuning parameter
All other notations are defined in the given context fluently.
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