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Abstract: Wireless-radio-communication-based devices are used in more and more places with the
spread of Industry 4.0. Localization plays a crucial part in many of these applications. In this paper, a
novel radiocommunication-based indoor positioning method is proposed, which applies the fusion
of fingerprints extracted with various technologies to improve the overall efficiency. The aim of the
research is to apply the differences, which occur due to that different technologies behave differently
in an indoor space. The proposed method was validated using training and test data collected in
a laboratory. Four different technologies, namely WiFi received signal strength indication (RSSI),
ultra-wideband (UWB) RSSI, UWB time of flight (TOF) and RSSI in 433 MHz frequency band and
all of their possible combinations, were tested to examine the performance of the proposed method.
Three widely used fingerprinting algorithms, the weighted k-nearest neighbor, the random forest, and
the artificial neural network were implemented to evaluate their efficiency with the proposed method.
The achieved results show that the accuracy of the localization can be improved by combining
different technologies. The combination of the two low-cost technologies, i.e., the WiFi and the
433 MHz technology, resulted in an 11% improvement compared to the more accurate technology,
i.e., the 433 MHz technology. Combining the UWB module with other technologies results in a less
significant improvement since this sensor provides lower error rates, when used alone.

Keywords: indoor positioning; fingerprinting; RSSI measurement; sensor fusion; artificial neural
network; weighted k-nearest neighbor; random forest

1. Introduction

With the spread of Industry 4.0, various wireless communication technologies play
an increasingly important role in many areas [1]. The Internet of Things (IoT) has great
potential for use in public transport, home automation, healthcare, agriculture, and even
industrial applications [1–3]. These smart things, smart devices, maintain the connection
between the user and the several sensors and actuators. In most cases, these modules can
be organized into a network so they can form a wireless sensor network (WSN) [2–6]. These
WSNs are made up of nodes that are connected to each other and communicate with each
other to exchange or transmit information. They also provide information for the user. The
node must be configured so that its energy consumption should be as low as possible. It
usually contains at least one sensor, and possibly some kind of actuator, if intervention is
also required. A node is controlled by a processing unit, which is usually a microcontroller.
In addition, it is also necessary to use a communication interface to transmit data within
the network. This is usually a transceiver, so transmitter and receiver at the same time, and
it can communicate in both directions: sending and receiving data packets [6].

The IoT’s main features include [1]:

• Wide range: the range of IoT devices is extremely wide, there are a lot of communica-
tion standards that can be used for creating the network;
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• Intelligence: by integrating software algorithms and appropriate hardware devices,
IoT devices become “smart”, communicate with each other and with the user;

• Sensing: sensors are needed to monitor the environment, changes in the environment,
and to be able to intervene;

• Complex systems: it is possible to create systems with a complex structure both in
terms of hardware and software;

• A lot of data: since many devices are used in IoT systems, a lot of data is generated by
them;

• Low power consumption: most devices are designed so that they do not consume
much energy.

Some of their most important fields of application are localization and positioning [4–11],
during which the position and the change of the position of people, robots, and other devices
need to be determined as precisely as possible. The number of available radiocommunication-
based technologies and localization methods have increased significantly due to the spread of
Industry 4.0 [11].

The most important localization system is GPS, which cannot be used indoors, due to
the line of sight (LOS) requirements between the device and the satellites. Because of the
external walls, this is not feasible in buildings, so in such cases it is extremely inaccurate.
It is possible to use this technology indoors by installing indoor GPS transceivers, which
are expensive, consume a lot of energy, and it is complicated to expand the system, while
it also has a large error compared to other technologies [11]. On the other hand, the most
important requirements for localization systems are that they are cheap, low-power and
are easily expandable [4,5].

Indoor positioning systems (IPS) can be grouped based on several criteria. Accord-
ing to the type of technology, there are technologies using electromagnetic waves, e.g.,
ultra-wideband (UWB) [12–15], Bluetooth low energy (BLE) [16–19], radio frequency identi-
fication (RFID) [20,21], WiFi [22–26], ZigBee [27,28], magnetic [29,30], sound-based [31,32],
and optical [33] methods such as camera [34], light detection and ranging (LiDar) [35],
infrared (IR) or visible light communications (VLC) technologies. In addition, the position
estimation methods using radiocommunication-based technologies can be divided into
two large groups [8,36]. One includes range-based methods, when the distance between
the receiver and the transceiver modules should be determined. For this purpose, the
received signal strength indicator (RSSI) [16] is widely used. After the measurement of
the RSSI between two units, the distance can be calculated with the help of the free space
path loss (FSPL) model. In the group of range-based methods other techniques also exist,
which use time or geometric measurement to determine the distance. These methods
can be based on various extracted parameters, such as the time of arrival (TOA) [27], an-
gle of arrival (AOA) [37], time difference of arrival (TDOA) [38] and round-trip time of
flight (RTOF) [17] measurements. There are absolute methods for calculating the position,
such as trilateration, multilateration, triangulation, fingerprinting, proximity-based and
image-processing-based methods. Relative methods can be found as well, such as the
dead reckoning. The other method contains the range-free methods, including pattern
matching/fingerprinting and hop-count-based methods. The fingerprinting method has
two phases. Firstly, a database needs to be created. Creating the database is the specific
offline stage when the measurement is taken at specific points in a room to create a radio
map. The number of maps depends on the number of anchors, i.e., the number of nodes
with fixed coordinates. The map is mostly based on an RSSI measurement. After the
radio map is created, the online stage follows. The online stage is the active localization
stage. In this case, the actual position of the device can be determined. The applicability
of range-based methods is determined by the capabilities of the modules/nodes because
these methods can only be used if the desired position is within the range of the reference
nodes or anchors. These methods require often additional hardware (i.e., AOA). When
performing time measurement with TOA, clock synchronization must be performed, which
affects the performance of the localization. The biggest advantage of range-free methods is
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that they are easier to use, but the localization accuracy is worse. To receive the coordinates,
the information obtained in this way still needs to be both transformed and processed
afterwards. Depending on the method used, several methods have been developed for this.

Localization is a fundamental problem in mobile robotics. The position and the
orientation of the robot needs to be determined as accurately as possible. The GPS can be
used outside, but other indoor technologies need to be applied. The radiocommunication-
based technologies can provide information about the absolute position, but it is required
that they improve [25]. This article analyzes how the localization error can be reduced using
multiple low-cost technology. The most commonly used sensors in mobile robotics are the
camera and the LiDar for indoor positioning [39–41]. In addition to the aforementioned
methods, sensors inertial and measurement units are widely used in mobile robotics, often
with a sensor fusion application [41–44]. Sensor fusion algorithms, such as the Kalman filter
and particle filter, require correction signals, e.g., absolute position observations, that enable
the compensation of inevitable drift in the position propagation [43,45]. However, this
compensation is ineffective if the position measurements are characterized by significant
uncertainties.

Data fusion can significantly improve the performance of the system, which can be
achieved in different ways. Centralized fusion and decentralized (distributed) fusion
are the two approaches that can be used for location fusion. Centralized fusion has the
advantage that all data are concentrated at the central unit, which has a global knowledge.
In the distributed system the data are processed by multiple nodes. It requires less data
transfer between the nodes [46]. A lot of techniques can be used to fuse different types of
data: Bayesian inference, maximum-likelihood estimation, least squares, moving average
filter, Kalman filter, particle filter, support vector machine, neural networks, and different
unsupervised learning methods (e.g., k-central clustering and expectation-maximization
algorithms) [46,47]. In [48], the distributed learning process is described. The authors
report that the data from different sources can be processed separately. Reference [49]
introduces the “in-network learning” (INL) method. In the proposed algorithm multiple
neural networks are used for the training and inference phases. The processing power is
distributed. In [50], the “in-network learning” (INL) is compared with the federated and
split learning. The learning phase and the testing phase were performed distributively. The
best results were obtained by the INL. The propagation of the signal is affected by several
factors, of which the temperature, the atmospheric pressure and the air humidity have little
influence. Absorption, reflection, diffraction, refraction, dispersion, and the interference
have a large influence on the signal propagation. The damping is dependent on the
frequency, and it increases by increasing the frequency [51]. In [52], the authors compared
three different methods, namely frequency close-in (CI), floating intercept (FI), and the
original free space path loss. The CI model showed to be frequency-dependent. Three
frequency bands were used for the investigation, the 14 GHz, 18 GHz, and 22 GHz bands.
In the different cases, the path loss exponent (PLE) took different values. In [53], 1800 MHz
and 850 MHz frequency bands were compared. For determining the path loss, multiple
models were used, namely SUI, Walfisch-Ikegami (WI), and Ericsson. The calculated
parameters were different in the different cases. This shows that different technologies
should behave differently in an indoor space. Based on the previous assumption, the goal of
this research is to utilize these differences in order to improve the positioning performance.
These units are widely spread and usually have low cost, which enables the use of multiple
technologies. The main contributions of this study can be summarized as follows:

• A novel fingerprinting-based approach is proposed, which utilizes the fusion of mea-
surements collected using different technologies, namely WiFi RSSI, ultra-wideband
RSSI, ultra-wideband time of flight and RSSI in the 433 MHz frequency band;

• The proposed method is validated using measurements collected with four different
technologies in a setup containing five access points (APs). The measurements are
divided into learning and test points;
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• The fusion-based performance using the four technologies is evaluated for all 17 dif-
ferent combinations;

• Three different widely used learning methods, namely the weighted K-nearest neigh-
bor (WKNN), the random forest (RF) and the artificial neural network (ANN) are
tested in the approach to examine which provides the best performance.

The remainder of the paper is organized as follows. In Section 2, related work is pre-
sented in addition to the methods and techniques used. Section 3 contains the presentation
of the measurement system. The tested algorithms are presented in Section 4. Section 5
contains the achieved results. Finally, Section 6 contains the conclusion and future work
plans.

2. Related Works

In related works, several localization methods and wireless communication technolo-
gies can be found. Most studies apply RFID [21], WiFi [22–26], BLE [16–18], ZigBee [27,28]
or UWB [12,13] technologies in communication-based indoor localization systems, but
there are devices that operate on different frequencies and use another modulation. Most
of the works applied only one technology. Numerous RSSI [22–24] and time-based [13]
indoor localization methods were tested. In these cases, the position can be estimated
using fingerprinting or trilateration. Several methods are available for fingerprinting-based
positioning. The methods that are widely used include support vector machine (SVM) [54],
RF [18], KNN [26], WKNN [24], and ANN [28].

The emitted radio wave loses its strength as it propagates in free space. The amount of
loss depends on the distance. The name of this model is the FSPL model. Signal propagation
is affected by several factors. These include temperature, reflection, obstacles, and humidity.
This is described by the Friis outdoor transmission equation [55]:

Prec(d) =
Ptx·Gt·Gr·λ2

(4·π)2·d2·L
, (1)

where Prec(d) represents the power of the signal at distance d, Ptx is the power of the
transmitter, Gt and Gr are the gain factors for the transmitter and the receiver antennas, λ
is the wavelength, d is the distance between the transmitter and the receiver, and L denotes
the factor for circuit losses.

2.1. WiFi

WiFi includes the most popular wireless local area network (WLAN) standards, which
follows the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards. The
range of the routers can be up to 100 m. Most of the technologies operate in the 2.4 GHz
and the 5 GHz bands. The used modulation is the direct sequence spread spectrum (DSSS)
or the orthogonal frequency division multiplexing (OFDM).

In [22], a MLNN network was used with multiple hidden layers. ESP8266 modules
were used as APs. Several types of measurements were performed in the 12 m × 12 m
room. First, the ESPs were placed in a matrix form every 6 m, then every 4 m and 3 m. The
resolutions used during the measurements were 2 m, 1 m, and 0.5 m. A mobile phone was
used to measure the RSSI values at the designated points. There were 300 data for teaching
and 100 data for testing at each point. The highest accuracy was achieved with 25 AP, the
value of the mean absolute error (MAE) was 0.46 m. Simulations were performed too,
where the generated data achieved an accuracy of 0.23 m with 25 APs in a 10 m × 10 m
area.

The authors of [23] used a recurrent neural network (RNN). The special feature of
this network is that the previous outputs influence the current output, so a memory is
needed. Six APs were used, RSSI was measured at 365 points and the network was tested
at 175 points. WiFi RSSI was measured with a phone placed on a mobile robot, both in
the 2.4 GHz band and in the 5 GHz band. The MAE value of the best achieved result is
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0.75 m, which was obtained with two hidden layers and 100–100 neurons. In 80% of cases,
the developed method produced an error of less than 1 m.

Previous work [24] reports a comparison of three different methods. The ANN, RF
and WKNN performance were compared to each other. WiFi technology was chosen to
make five heatmaps for five Aps. The room where the measurement was taken had an
enclosing dimension of 3.6 m × 6.6 m. The heatmaps’ resolution was 20 cm. A total of
10 RSSI measurements per points were performed, resulting to 50 values per point. For
the error reduction, the 10 values were averaged. The accuracy of the localization was
determined for two cases. In the first case the whole room was examined, in the second
only LOS points were examined. The best results were produced by the neural network
in both cases. It was followed by the WKNN and the RF method. The best result was
0.4816 m with the ANN. The ANN outperformed both the WKNN and the RF algorithms
and provided significantly better performance.

The authors of [25] applied an SLFN network with the extreme learning machine (ELM)
algorithm instead of traditional backpropagation (BP) methods. The advantage of this is
that the teaching phase is faster and the chance of being stuck in a local minimum is lower.
During the testing, robust principal component analysis (RPCA) was used for filtering the
data. The environment where the proposed method was tested was an industrial robotics
lab, with enclosure dimensions of 32 m and 16 m. The APs were placed at a height of 1.2 m.
A total of 500 samples per anchor were taken at 107 points at every 1.2 m. The accuracy of
the results was calculated using 30 test points and given as root mean square error (RMSE).
The data collection took several months, which were pre-processed for teaching. With
the proposed method, the RMSE value was 2.3054 m, while with the other methods they
obtained a larger error.

The authors of [26] created an RSSI fingerprint database with a resolution of 5 m in a
30 m × 30 m room. The position was given by KNN and its weighted version, the WKNN
method. In the case of KNN, the error was 1.5047 m, while in the case of WKNN it was
0.8323 m.

2.2. Radio Frequency Identification Technology

Radio frequency identification is a wireless radio-wave-based technology. There are
two types of RFID systems, namely the passive and active systems. The passive systems’
big advantage is that they can operate without a power supply. They can operate only
in small distances (1–2 m). In the active RFID systems, the tags have a battery. Their
operating distance can reach 100 m. They can use several frequency bands, i.e., low
frequency (LF), high frequency (HF) and ultra-high frequency (UHF); these versions can be
distinguished [20].

The authors of [21] conducted an experiment with passive RFID tags. The tags were
placed on the floor in a 13× 19 matrix. The sensing surface of the tags was 43 mm× 43 mm.
A robot was built to perform the localization. Multiple different scenarios were examined.
The robot’s speed was changed between the measurements. The worst performance was
when the robot moved quickly. In this case, four tags were not recognized. This means that
the accuracy of the system was 90 mm.

2.3. Ultra-Wideband Technology

With UWB modules, localization can be performed with the help of the IEEE 802.15.4a.
It operates on high frequencies, between 3.1 GHz and 10.6 GHz. The bandwidth of the
channels is over 500 MHz. The most common ranging methods are the RSSI, TOA, AOA
and TDOA measurement [15].

The authors of [12] measured the RSSI value in a 2 m× 2 m area using UWB technology
in every 5 cm. The position was determined by least squares (LS) and with its improved
version, sub-sampling least squares (SSLS). The obtained RMSE values are: 0.542 m and
0.330 m.
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In [13], an UWB-based localization system was presented. Four anchor modules were
used at different heights in a 5.3 m × 11.5 m room. The error was estimated with five test
points. The time was measured, while the signal propagated between the transmitter and
the receiver multiple times. It is the so-called symmetrical double-sided two-way ranging
technique. The position was estimated with trilateration. The error was determined with
Euclidean distance. Two scenarios were examined. In the first, all the points were LOS,
while in the second, a person randomly moved in the area. The achieved accuracy was
11 cm with 2 cm precision.

2.4. Bluetooth and Bluetooth Low-Energy Technologies

Bluetooth (IEEE 802.15.1) is a short-range wireless communication standard. The first
version was developed in 1994, since then it has developed a lot. It uses the same frequency
band (2.4 GHz) as the WiFi so they can interfere. Its lower consumption version, the BLE,
appeared in 2010. Its main advantage is the fast connection establishment between the
modules [19].

In [16], BLE devices were used for indoor localization. The measurement was per-
formed in a 9 m × 6 m office. The distance-RSSI function was determined using particle
swarm optimization (PSO) and back-propagation neural network (BPNN). The position
was given by the least squares method. The RMSE was 0.7018 m.

The authors of [17] measured RSSI values and round-trip time (RTT) using BLE
modules. CC2650 modules and nRF52840 modules were used. Distances were calculated
from the data obtained in this way, and then the position of the central module was
determined. Two techniques were used simultaneously. The tests were carried out in a
15 m × 50 m room, where the position of a moving node was determined. With RSSI, the
RMSE value was 5.69 m, while with the two techniques, the RMSE reduced to 2.78 m. The
position was obtained from the distances. The average error was 2.34 m.

The reference [18] contains a random forest indoor localization technique. A total of
30 BLE beacons were used in the experiment. They achieved better results with random
forest classifier than with the naïve Bayes. The random forest was 30% more accurate than
naïve Bayes.

2.5. ZigBee and IEEE 802.15.4

The open ZigBee communication standard was developed by the ZigBee Alliance.
It is based on the IEEE 802.15.4 standard. This standard is cost-effective, has low power
consumption and is bidirectional. The network topology can be mesh, tree, or star. In the
topology next to the repeaters and end devices are the coordinators to control the network.
Its biggest advantage is that it can manage up to 65,000 devices.

Reference [27] investigated the fusion of RSSI and TOA techniques with CC2431
modules. A Kalman filter was used to estimate the distance. Several algorithms were
investigated. These included averaging, neural networks, and weighting. The error value
was 1.99 m with RSSI, 1.15 m with TOA, 0.82 m with averaging, 0.72 m with weighting,
and 0.32 m with neural network.

In [28], an MLP ANN was proposed for localization. The type of communication
was based on IEEE 802.15.4. The measurements were taken in a laboratory with enclosing
dimensions of 6 m × 15 m. Five anchors were placed in the room and 500 values were
measured every 60 cm at each point (100 measurements/AP), in a total of 240 points.
The performance of the network was tested with different numbers of neurons and with
different transfer functions (purelin, tansig, radial base, and resilient BP). The best achieved
accuracy was 0.3 m.

2.6. Comparison of Different Technologies

Among the main technologies, UWB TOA provides the highest accuracy during
localization, according to the references [56,57]. The biggest advantage of this system is that
it works in a different frequency band than other technologies, which can often interfere
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with each other. The disadvantage of UWB is that it has higher costs than other technologies.
The accuracy, advantages, and disadvantages of the technologies are listed in Table 1.

Table 1. Characteristics of main technologies.

Technology Typical Accuracy Advantages Disadvantages

WiFi m Low cost
Big range Interference with other technologies

RFID dm–m Low cost Localization can be inaccurate

BLE m Low power consumption Covers smaller area as WiFi
Interference with other technologies

UWB cm–m Not affected by interference Higher cost

3. Experimental Setup

For preparing the measurement system, a large size laboratory room was chosen.
Due to the equipment, many points were NLOS in this environment. In this room, RSSI-
based fingerprints and one-time-based fingerprint were created using different wireless
technologies that operate at different frequencies. The technologies chosen were WiFi,
UWB, and technologies using a 433 MHz industrial, scientific, and medical (ISM) frequency
bands.

3.1. Received Signal Strength Indication

The RSSI value of the incoming signal can be determined by the receiver after the
signal has arrived. By transforming Equation (1), a logarithmic model can be determined,
which describes how much energy is lost as a function of distance in Equation (2). PL(d0) is
the path loss taken at the reference point, and N is the environmental factor. In most cases,
the RSSI value is given in dBm, which means that it is compared to the 1 mW Equation (3).
Using Equation (4), the distance can be expressed, which can be seen in Equation (5).

PL(d)[dB] = PL(d0)[dB] + 10·N·log10(
d
d0

) (2)

(dBm) = 10·log
P(mW)

1 mW
(3)

RSSI = −(10·N· log(d) + A) (4)

d = 10−(
RSSI+A

10∗N ) (5)

3.2. Measurement System

The data collection was performed in the Robotics Laboratory of the Faculty of En-
gineering, University of Szeged, which can be seen in Figure 1. The dimensions of the
laboratory are 12 m× 8 m, which includes a separate storage room where no measurements
were taken. The lab was rearranged for the duration of the measurements. The tables
and chairs found here were taken out, and a larger field table was moved to increase the
usable area for measurements. It is also important to mention that there are several larger
devices and machines left in the room, which can affect the propagation and reflection of
the signals. These devices are marked in red and orange colors in Figure 1. In addition, two
sides of the room have almost full-length windows. After the rearrangement, the points
required for fingerprinting were marked with insulating tape, by drawing lines parallel
and perpendicular to the windows every 20 cm. The designated intersection points were
the measurement points where RSSI and TOF values were measured during fingerprinting.
There were a total of 1408 measurement points.
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Figure 1. The laboratory room where the measurements were taken: (a) The laboratory; (b) Schematic
illustration.

The anchors, i.e., modules with fixed coordinates, were tried to be near the corners of
the room. The coordinates of the anchors in cm are as follows:

• AP1 (80, 140);
• AP2 (640, 140);
• AP3 (240, 1000);
• AP4 (520, 1000);
• AP5 (240, 400).

The anchors were equipped with several modules. The WiFi technology was controlled
by an ESP32 NodeMCU module. For the UWB technology, an ESP32UWB board was used,
which is manufactured by Makerfabs and equipped with the DW1000 UWB module. It was
used only in 4 out of the 5 anchors because of the limitation of the technology. AP5 did
not contain this technology, which is marked with blue color in Figure 1. In the 433 MHz
frequency band, the Texas Instrument’s CC1101 module was used. In four cases, the power
supply of the modules was provided by the main electric network through an adapter,
while in one case it was provided by a power bank.

Due to the high number of measurement points, the measurements were carried out by
a mobile robot, which followed a total of 36 straight trajectories. The mobile robot had two
ESP32 modules, one of which controlled the motors, and the other was responsible for the
measurements. In addition, the CC1101 module and the ESP32UWB were also installed on
it. Infra-red (IR) sensors were used for line following. The robot stopped at the intersections
and made 10 measurements with all technologies. Altogether, 180 measurement values
were collected per point (40 for UWB RSSI, 40 for UWB TOF, 50 WiFi RSSI, and 50 CC RSSI).
The data were transmitted to a laptop using message queue telemetry transport (MQTT)
communication.

In another 20 randomly chosen points, data were collected for testing the performance
of the localization algorithm. Some of the points were in the NLOS position and some of
them were under the tables.

3.3. WiFi Received Signal Strength Indication

Among the four types of investigated technologies, WiFi was one those used to record
the fingerprint in the room. The ESP32 on the mobile robot functioned as an AP. The ESP32
is a system on a chip (SoC), developed by the Espressif Systems. Xtensa LX6 contains a
240 MHz dual core microcontroller. It supports IEEE 802.11b/g/n data transfer protocols
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and Bluetooth 4.2. It supports both “Station” and “SoftAP” modes, which can be used
simultaneously. It can communicate with I2C, SPI, and UART. The anchors worked in
station mode. When the robot reached an intersection, it sent a signal to the stations, which
measured RSSI every 100 ms a total of 10 times.

The RSSI values were between −88.6 dBm and −35.4 dBm. Figure 2 shows the
heatmap for the 5 anchors. The heatmaps were created by averaging the 10 measured
values to decrease the effect of noise. Dedicated parts where measurements could not be
taken due to obstacles such as location of the storage room, columns, anchors, linear drive,
and other machines, are marked with white color on the maps. The places with stronger
signal, i.e., with a higher RSSI value, are marked with red color, while the places with
weaker signal are marked with blue color.
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3.4. CC Received Signal Strength Indication

The CC1101 radio frequency transceiver was developed by Texas Instruments. It can
also use several frequency bands: 315 MHz, 433 MHz, 868 MHz, and 915 MHz. It can
use several frequency modulation methods: 2-FSK, 4-FSK, GFSK, MSK, OOK, and ASK.
Its consumption is extremely favorable, very low. It uses SPI—serial peripheral interface
communication protocol. The receiver can filter the data packets by monitoring the address
and monitoring the length of the message and CRC. At the end of the data package, the
package manager on the customer side can add 2 additional status bits, which contain the
CRC status, the LQI—link quality indicator—and the RSSI value. It can provide the RSSI
value with a resolution of 0.5 dBm.

In this case, the RSSI values were in the range of −62.1 dBm and −18.2 dBm. The
heatmaps shown in Figure 3 were prepared in a similar way as in the case of Figure 2. Blue
values mean a weaker signal, while red values mean a stronger one. In some cases large
homogeneous blue areas can be seen, which means a weaker signal, or that there was no big
change in the RSSI value.
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3.5. Ultra-Wideband Received Signal Strength Indication

The third type of heatmap was created using the ESP32UWB modules created by
Makerfabs. These boards have DW1000 UWB modules in addition to an ESP32. The two
devices can communicate using SPI. Modules can function as both anchors and tags. They
support 4 RF frequency bands from 3.5 GHz to 6.5 GHz. The tags can communicate with
several anchors and measure distances. Both anchors and members can specify the RSSI to
two decimal places. In this case, the robot was the member to which the four anchors were
connected. This module also measured RSSI and time (distance).

In this case, the RSSI values were in the range of −92.66 dBm −79.259 dBm, which is
quite small compared to the other 2 methods. The heatmaps can be seen in Figure 4. Blue
values mean a weaker signal, while red values mean stronger signal strength.
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3.6. Ultra-Wideband Time of Flight

In addition to measuring RSSI, the ESP32UWB modules can also measure time. From
the measurement of time, the distance between the modules can be determined using the
propagation speed of the signal. The DW1000 module allows the use of both TOF and
TDOA. In this case, the module measured the TOF.

The TOF values were between 0.0138 and 18.9860 m during the experiment. Figure 5
shows the related maps. The closer the anchor is, the bluer the figure is, and the farther
away it is, the redder is. In the few places shown in the figures, there is a homogeneous red
area, which is an error that was filtered out during the training of the network.
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4. Proposed Fingerprinting-Based Method

It can be noticed from the heatmaps that the data are different at the four types of
technologies. One carries extra information compared to the other, which can be used
to increase the accuracy of localization. The position can be determined with different
fingerprinting-based methods. These methods are WKNN, RF, and ANN. These work
from a database, i.e., from the fingerprinting. The proposed localization method can be
seen in Figure 6. The localization algorithm uses RSSI and TOF values to determine (X; Y)
coordinates. The RSSI and TOF values can be used at the same time or separately.
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4.1. Tested Fingerprinting Algorithms

The tested methods included one of the simplest fingerprinting-based algorithms, the
WKNN, the RF method, and the ANN.

4.1.1. Weighted K-Nearest Neighbor

The WKNN algorithm is an improved version of the KNN algorithm that uses weight-
ing. This is one of the simplest fingerprinting localization techniques. The simplest version
is when K = 1, and the vector of the input and measured values are compared with the
vectors belonging to individual points in the database, and then the most similar one is
selected. By increasing K, the most similar K position is selected, and then the estimated
position is obtained by averaging the coordinates. At WKNN, the weighted average is
based on similarity. The algorithm is detailed in [58].

In the first step the Euclidean distance (ED) is determined

EDi,j =

√
∑M

m=1

(
FPm

i − FPm
j

)2
, (6)

where M is the number of anchors, FPm
i and FPm

j are the vectors belonging to the anchor
m in the ith point and the fingerprinting vector from the database’s jth point, respectively.
The fingerprint vectors were normalized to a range between 0 and 1, since the proposed
method applies measurements of different technologies, which provide measurements in
different ranges.
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The next step is to determine the smallest distance

dr,u = min
{

EDi,j
}

, (7)

where EDi,j is the distance between u measurement point and r reference point.
The following step is to calculate wk weights as

wk =
1

d2
r,u

(k = 1, . . . , K), (8)

The calculated coordinates are given as

x̂ =
∑K

k=1(wk·xk)

∑K
k=1 wk

, (9)

ŷ =
∑K

k=1(wk·yk)

∑K
k=1 wk

, (10)

where x̂ and ŷ represent the calculated x and y coordinates; xk and yk are the K most similar
points’ coordinates.

The similarity can be investigated using RSSI or TOF. In Equation (7), TOF or RSSI
values can be placed or the combination of different technologies can be placed. Using
Equation (7), the similarity between the points was determined. In the next step, the
positions were put in ascending order according to similarity. Then, the first K points
were selected. The weighted average of these points’ X and Y coordinates were taken.
Equation (9) was used to determine the weights.

4.1.2. Random Forest

The random forest algorithm is a classification and regression procedure. It contains
large number of decision trees with different structures. The decision making is performed
with the help of the trees. The output can be created by averaging the trees’ outputs or by
a majority vote. One of its advantages is that it generates decision trees randomly. This
is achieved using the so-called bootstrap aggregation (i.e., bagging). Bagging means that
the training set is modified randomly at each tree. Its disadvantages include the fact that
the algorithm is slow and often complex because of the generation of the large number of
decision trees. Another disadvantage is that the model can overlearn.

Firstly, the decision trees should be created. During the creation, the bagging was
applied. The inputs, i.e., the RSSI and TOF values, must be arranged in a specific structure,
and then the algorithm generalizes multi-level decision trees with the help of the corre-
sponding outputs. The performance of the method was tested with several numbers of
decision trees. In the phase of testing, the output X and Y coordinates were given with the
weighted sum of the outputs of the trees.

4.1.3. Artificial Neural Networks

There have been many studies on RSSI-based localization with neural networks re-
cently. Many types of networks have been tried and mixed with other techniques. Among
the most common is the multi-layer perceptron (MLP) [28], e.g., the single hidden layer feed-
forward neural network (SLFN) [25] (a neural network containing one hidden layer, spread-
ing forward), but also the perceptron containing more hidden layers and the RNN [23] are
also typical.

ANN imitates the functioning of the human brain. The basic unit of these is the
neuron, which is connected within the network and operates according to some logic
that the external observers do not necessarily know. One of the most common types of
neural network is the MLP. It is a feedforward neural network, which means that the signal
propagates in one direction, the outputs are not connected to each other, the input layer



Machines 2023, 11, 302 15 of 24

only forwards the signal, and there can be any number of hidden layers (often only one is
used). They can be built from three types of layers, which are the input layer, hidden layer,
and output layer. The individual layers are arranged vertically, parallel to each other. In
the hidden layer, the weighted sum and linear combination of the excitations appear at the
input point of the neurons:

s(l)i = ∑j∈pred(i) y(l−1)
j ·w(l−1)

ji + b(l−1)
i , (11)

where pred(i) neurons preceding the ith unit, s(l)i is the linear combination of inputs, lth

layer, ith neuron, y(l−1)
j is the output of the jth neuron of the (l − 1)st layer, w(l−1)

ji is the
weight between the jth neuron of the (l − 1)st layer and the ith neuron of the lth layer, and
b(l−1)

i is the bias value belonging to the ith neuron of the lth layer, which is used to ensure
that the network gives an output even if the input is 0.

The task of the neuron is to process its input with the help of its activation function.
The most widely used activation functions are the sigmoid and the linear functions. The
networks are mostly trained offline, where the weights between the neurons are modified
based on inputs with corresponding target values in the output layer until an exit condition
is reached. Several methods can be used when training the network. Among the more
widespread is backpropagation.

In this case, the data arriving at the input layer of the neural network are the RSSI
and/or TOF values that can be measured at the given position. There are several neurons in
the hidden layer. The neural network was examined with several numbers of neurons. The
activation function of these neurons is tangent sigmoid. The output layer has two members
that are responsible for providing the X and Y coordinates.

5. Results

In the evaluation process, several cases were examined with all three localization
methods. All possible combination of the applied four technologies were tested. This
covered a total of 15 cases. There were four cases when the four types of technologies were
examined separately, in six cases, two technologies; in four, cases three technologies, and in
one, case four technologies were combined. The tested combinations are the following:

1. CC RSSI;
2. WIFI RSSI;
3. UWB RSSI;
4. UWB TOF;
5. CC RSSI + UWB TOF;
6. CC RSSI + UWB RSSI;
7. CC RSSI + WIFI RSSI;
8. UWB RSSI + WIFI RSSI;
9. UWB RSSI + UWB TOF;
10. UWB TOF + WIFI RSSI;
11. CC RSSI + UWB TOF + WIFI RSSI;
12. CC RSSI + UWB TOF + UWB RSSI;
13. CC RSSI + UWB RSSI + WIFI RSSI;
14. WIFI RSSI + UWB TOF + UWB RSSI;
15. UWB RSSI + CC RSSI + UWB TOF + WIFI RSSI.

The three tested methods were examined with several parameters, which can be
seen in Table 2. When applying the WKNN algorithm, the positioning was performed by
changing the value of K between 1 and 10 for the test points. Applying the RF method, the
number of trees was changed, i.e., it was 2/5/10/50/100/150/200 during the testing. The
decision trees’ type was regression, and the predictor was selected with curvature. When
the localization was performed with ANN, the number of neurons was between 1 and
100. The training set was divided into two smaller groups. The first one was the training
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set, which included 70% of the data. The other group contained 30% of the data, which
was used for validation. The training function during the training was the Levenberg–
Marquardt method. The maximum number of iterations was set to 5000, the performance
goal was set to 0, and the performance of the network was calculated with mean squared
error (MSE).

Table 2. Applied parameters for the three methods.

Localization Algorithm Parameters Value

WKNN Value of K 1–10

RF
Number of trees 2/5/10/50/100/150/200

Type of decision tree regression
Predictor selection curvature

ANN

Number of neurons 1–100
Training set ratio 0.7

Validation set ratio 0.3
Training function Levenberg–Marquardt

Maximum number of iterations 5000
Performance function MSE

Performance goal 0

The MAE and the standard deviation (STD) were used as performance metrics, which
can be calculated using Equations (10) and (11), respectively. The error was given by 20 test
points that were randomly selected.

MAE =
1
N ∑N

i=1

√
(x̂i − xi)

2 + (ŷi − yi)
2, (12)

STD =

√
1

N − 1 ∑N
i=1|Ai −MAE|2, (13)

Ai =

√
(x̂i − xi)

2 + (ŷi − yi)
2, (14)

where x̂i and ŷi are the estimated positions of the ith point, xi and yi are the real positions,
N is the number of points and Ai represents the observations in the point i, i.e., the error of
point i in Equation (12).

5.1. Results Using Weighted K-Nearest Neighbor

The RSSI and distance range for some technologies, which affects the weights in
WKNN, as can be seen in Section 3. For this reason, all types of data were separately
normalized between 0 and 1. The best results for the 15 different cases with the WKNN
algorithm are summarized in Table 3. The best result was given by the UWB TOF + WIFI
RSSI case, when the localization accuracy was 84.78 cm. The case of UWB TOF + WIFI RSSI
gave a better result with 1 cm, compared to UWB TOF. It can be observed that the best
result is obtained when K = 4 for UWB TOF + WIFI RSSI. For WKNN, the fusion of UWB
RSSI + WIFI RSSI provides better results than the original two technologies, i.e., WIFI RSSI
and UWB RSSI. In the case of using UWB RSSI, a WIFI RSSI, the localization accuracy was
134.23 cm, which is a 21 cm, or 14% improvement compared to UWB RSSI.

The effect of increasing value K can be seen in Figure 7. It is noticeable that increasing
this value provides better results. In 11 cases the best results were given when the value of
K was 7 or higher.
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Table 3. Obtained results using WKNN.

Technology MAE ± STD Value of “K”

CC RSSI 203.09 ± 178.14 cm 7
UWB TOF 85.77 ± 81.38 cm 10
WIFI RSSI 160.18 ± 141.40 cm 8
UWB RSSI 155.34 ± 88.26 cm 9

CC RSSI + UWB TOF 143.32 ± 123.57 cm 6
CC RSSI + WIFI RSSI 195.63 ± 185.26 cm 7
CC RSSI + UWB RSSI 174.36 ± 140.70 cm 8

UWB RSSI + WIFI RSSI 134.23 ± 94.40 cm 1
UWB RSSI + UWB TOF 93.19 ± 74.49 cm 9
UWB TOF + WIFI RSSI 84.78 ± 72.19 cm 4

CC RSSI + UWB TOF + WIFI RSSI 127.37 ± 113.12 cm 10
CC RSSI + UWB TOF + UWB RSSI 126.02 ± 107.55 cm 7
CC RSSI + UWB RSSI + WIFI RSSI 155.95 ± 132.63 cm 5

WIFI RSSI + UWB TOF + UWB RSSI 95.03 ± 69.85 cm 9
UWB RSSI + CC RSSI + UWB TOF + WIFI RSSI 119.09 ± 100.22 cm 7
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5.2. Results Using Random Forest

The random forest algorithm was evaluated with different numbers of trees for all
defined combinations. The results are summarized in Table 4. Using each technology
separately, th e UWB TOF gave the best results. In this case, the MAE was 86.07 cm when
testing with the 20 test data, and 33.70 cm when testing with the training data. In the case
that only WIFI RSSI, CC RSSI, and UWB RSSI were used, this error increases by almost
twice as much in each case. Examining two technologies provides better almost in every
case than when applying only one technology. The improvement in the case of the fusion
of CC RSSI and WIFI RSSI is 8 cm, i.e., 5% improvement compared to WIFI RSSI when
using test data, and 8 cm, i.e., 11% improvement when testing with training data. For CC
RSSI and UWB RSSI, the improvement is 23 cm, i.e., 14% improvement compared to UWB
RSSI when using test data. The accuracy improved further in two cases, compared to cases
with two technologies. These cases are: CC RSSI + WIFI RSSI + UWB RSSI, when the MAE
value was 134.48 cm. The best overall result was provided by WIFI RSSI + UWB TOF +
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UWB RSSI, when the MAE was 79.84 cm. It is 7 cm or about 8% improvement compared to
UWB TOF in the case of testing with the 20 points. The best overall result was given in the
case of applying training data, when CC RSSI was combined with UWB TOF and UWB
RSSI. In this case, the MAE was 30.50 cm.

Table 4. Achieved results using RF.

Technology MAE ± STD (Training Data) Number of Trees MAE ± STD (Test Data)

CC RSSI 73.33 ± 65.99 cm 200 181.21 ± 101.16 cm
UWB TOF 33.70 ± 28.88 cm 100 86.07 ± 79.54 cm
WIFI RSSI 129.40 ± 81.77 cm 50 159.24 ± 116.33 cm
UWB RSSI 89.93 ± 58.61 cm 200 167.63 ± 107.12 cm

CC RSSI + UWB TOF 32.16 ± 26.14 cm 10 93.87 ± 69.87 cm
CC RSSI + WIFI RSSI 65.42 ± 53.43 cm 200 151.20 ± 117.65 cm
CC RSSI + UWB RSSI 60.01 ± 46.85 cm 10 144.73 ± 92.62 cm

UWB RSSI + WIFI RSSI 78.60 ± 51.12 cm 50 143.91 ± 98.75 cm
UWB RSSI + UWB TOF 31.04 ± 25.87 cm 200 87.44 ± 79.60 cm
UWB TOF + WIFI RSSI 35.37 ± 28.36 cm 100 84.57 ± 69.21 cm

CC RSSI + UWB TOF + WIFI RSSI 29.03 ± 23.33 cm 50 102.2 ± 79.30 cm
CC RSSI + UWB TOF + UWB RSSI 30.50 ± 26.05 cm 10 93.71 ± 67.02 cm
CC RSSI + UWB RSSI + WIFI RSSI 54.48 ± 38.47 cm 50 134.48 ± 93.38 cm

WIFI RSSI + UWB TOF + UWB RSSI 48.03 ± 40.94 cm 2 79.84 ± 60.65 cm
UWB RSSI + CC RSSI + UWB TOF + WIFI RSSI 32.04 ± 24.95 cm 10 97.18 ± 69.96 cm

The effect of increasing the number of trees in the algorithm can be seen in Figure 8.
It is noticeable that the more trees it contains the more accurate it is. In 4–4 cases the best
result was obtained with 50 and 200 trees when the evaluation was performed on the
training data.
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5.3. Results Using Artificial Neural Network

While examining the neural network, several different cases were tested. The number
of neurons in the hidden layer was varied between 1 and 100. For each number of neurons,
the evaluation was performed five times for both the test points and training data. The best
training result was considered.

The results of evaluating the test data are summarized in Table 5. It is noticeable
that when only 1–1 technology was used the best result was provided by UWB TOF with
80.08 cm. The combination of two technologies resulted in improvement in some cases.
Combining WIFI RSSI and CC RSSI the MAE was 9 cm smaller than when only CC RSSI
was used. In the cases of combining three technologies, the UWB RSSI + WIFI RSSI + CC
RSSI provided better results. Overall, the best result was provided with the fusion of UWB
TOF and WIFI RSSI, when the error was 72.41 cm. This is a significant improvement over
the UWB TOF error of 80.08 cm. It means 9.5% improvement.

The results of the testing on the training data are included in Table 5. When only one
technology was used, UWB TOF provided the best results, with 41.69 cm, while the worst
result was provided by WIFI RSSI, when the MAE value was 174.04 cm. The localization
accuracy improved in almost all cases, except for UWB TOF + WIFI RSSI and WIFI RSSI +
UWB TOF + UWB RSSI. The combination of two technologies resulted in improvement
almost in every cases. By combining the two low-cost technologies (the CC RSSI and the
WIFI RSSI) the improvement was about 9 cm, which means 9% improvement. The best
result was obtained by using UWB TOF, CC RSSI, and UWB RSSI together, when the value
of the localization error was 30.23 cm. This is a significant improvement of 10 cm compared
to the UWB TOF error. It means a 24% improvement compared to the UWB TOF.

By increasing the number of neurons in the hidden layer, the accuracy of the neural
network improved. This improvement can be seen in Figure 9. This figure contains the
results of all cases. It is noticeable that the WIFI RSSI, the UWB RSSI, and the CC RSSI
provided the worst results. The fusion of these technologies provided significantly better
results.



Machines 2023, 11, 302 20 of 24

Table 5. Results for ANN testing with the 20 test points.

Technology MAE ± STD (Test Data) Number of Neurons MAE ± STD (Training Data)

CC RSSI 175.12 ± 127.68 cm 97 98.83 ± 85.83 cm
UWB TOF 84.41 ± 60.95 cm 96 41.69 ± 31.12 cm
WIFI RSSI 159.87 ± 115.15 cm 88 174.04 ± 106.96 cm
UWB RSSI 161.63 ± 102.12 cm 60 125.8 ± 75.15 cm

CC RSSI + UWB TOF 125.66 ± 95.35 cm 100 34.09 ± 27.26 cm
CC RSSI + WIFI RSSI 144.16 ± 99.54 cm 86 90.03 ± 66.20 cm
CC RSSI + UWB RSSI 174.38 ± 119.63 cm 84 70.78 ± 52.08 cm

UWB RSSI + WIFI RSSI 148.30 ± 85.59 cm 82 106.20 ± 67.09 cm
UWB RSSI + UWB TOF 80.93 ± 62.77 cm 93 37.89 ± 27.51 cm
UWB TOF + WIFI RSSI 85.08 ± 62.54 cm 89 44.53 ± 31.87 cm

CC RSSI + UWB TOF + WIFI RSSI 131.50 ± 98.55 cm 91 36.87 ± 28.24 cm
CC RSSI + UWB TOF + UWB RSSI 117.24 ± 86.45 cm 95 30.23 ± 23.32 cm
CC RSSI + UWB RSSI + WIFI RSSI 133.24 ± 82.65 cm 99 63.77 ± 48.43 cm

WIFI RSSI + UWB TOF + UWB RSSI 167.00 ± 118.35 cm 66 38.86 ± 28.55 cm
UWB RSSI + CC RSSI + UWB TOF + WIFI RSSI 132.21 ± 87.94 cm 78 31.68 ± 25.30 cm
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5.4. Comparison of Different Cases

In all cases, the neural network provided the best results when the evaluation was
performed with the test data. The best overall results were provided by the RF and ANN
when the evaluation was performed with the training data. The best results were obtained
with the fusion of CC RSSI, UWB RSSI, and UWB TOF, when the localization error was
30.23 cm. The fusion of different technologies can significantly improve the accuracy of the
localization. When using only the UWB module with the two technologies (UWB RSSI and
UWB TOF), the error reduced to 31.04 cm from 33.70 cm. It is an 8% improvement compared
to UWB TOF. Using the two other technologies, the best achieved result was produced by
RF, when the MAE was 65.42 cm. This is almost an 11% improvement compared to CC RSSI
and almost 50% compared to WIFI RSSI. The best result achieved by fusing the three RSSIs
was also given by RF. At that time, the MAE was 54.48 cm, which is a 26% improvement
over CC RSSI, a 17% improvement over UWB RSSI, and a 58% improvement over WIFI
RSSI.

The cumulative distribution function (CDF) of errors for the best results in the case of
training data can be seen in Figure 10. The errors larger than 600 cm were around 600 cm
for the better visibility. The diagram shows that the error values are smaller in the cases
when multiple technologies were used for localization.

Machines 2023, 11, x FOR PEER REVIEW 23 of 26 
 

 

fusing the three RSSIs was also given by RF. At that time, the MAE was 54.48 cm, which 

is a 26% improvement over CC RSSI, a 17% improvement over UWB RSSI, and a 58% 

improvement over WIFI RSSI. 

The cumulative distribution function (CDF) of errors for the best results in the case 

of training data can be seen in Figure 10. The errors larger than 600 cm were around 600 

cm for the better visibility. The diagram shows that the error values are smaller in the 

cases when multiple technologies were used for localization. 

 

Figure 10. CDF of errors for all cases using training data. 

6. Conclusion 

In this paper, fingerprints were recorded with sensors using different frequency 

bands. The evaluation was carried out using several fingerprinting techniques. Among 

them were the WKNN, ANN, and RF algorithms. The algorithms were tested with several 

parameters. For the evaluation, 20 test points were used that were not included in the 

fingerprint. These test points were taken randomly. There are more under the tables and 

in places where not all points are LOS. 

From the results it can be concluded that the RF and ANN outperform WKNN meth-

ods. Of the 15 examined combinations, when validated with the test points, the ANN pro-

vided the best results in every case. The best achieved result was provided by the fusion 

of UWB TOF, CC RSSI, and UWB RSSI, when the MAE value was 30.23 cm, which is a 

significant improvement of nearly 10% compared to the most accurate UWB TOF. With 

the fusion of the two low-cost technologies, CC RSSI and WIFI RSSI, the achieved im-

provement is 8 cm, i.e., 10 %, compared to the more accurate CC RSSI. It can be noticed 

from these that the individual technologies complement each other and, with the selection 

of a suitable method (e.g., neural network or random forest), are suitable for improving 

localization. 

Based on the presented results in [59], the performance of the proposed method could 

be further improved by increasing the number of anchors. The use of a node selection 

algorithm and an optimization-based method that can determine the density and the po-

sition of the anchors would also be reasonable. Based on the achieved results, adding 

Figure 10. CDF of errors for all cases using training data.

6. Conclusions

In this paper, fingerprints were recorded with sensors using different frequency bands.
The evaluation was carried out using several fingerprinting techniques. Among them were
the WKNN, ANN, and RF algorithms. The algorithms were tested with several parameters.
For the evaluation, 20 test points were used that were not included in the fingerprint. These
test points were taken randomly. There are more under the tables and in places where not
all points are LOS.

From the results it can be concluded that the RF and ANN outperform WKNN meth-
ods. Of the 15 examined combinations, when validated with the test points, the ANN
provided the best results in every case. The best achieved result was provided by the fusion
of UWB TOF, CC RSSI, and UWB RSSI, when the MAE value was 30.23 cm, which is a
significant improvement of nearly 10% compared to the most accurate UWB TOF. With the
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fusion of the two low-cost technologies, CC RSSI and WIFI RSSI, the achieved improvement
is 8 cm, i.e., 10%, compared to the more accurate CC RSSI. It can be noticed from these that
the individual technologies complement each other and, with the selection of a suitable
method (e.g., neural network or random forest), are suitable for improving localization.

Based on the presented results in [59], the performance of the proposed method could
be further improved by increasing the number of anchors. The use of a node selection
algorithm and an optimization-based method that can determine the density and the
position of the anchors would also be reasonable. Based on the achieved results, adding
further wireless technologies could further decrease the error rates. Future goals also
include the fusion of other sensor types into the proposed method, which carry additional
information.

Author Contributions: Conceptualization, D.C. and P.S.; methodology, D.C.; software, D.C., Á.O.
and P.S.; validation, D.C.; formal analysis, D.C., Á.O. and P.S.; investigation, D.C., Á.O. and P.S.;
resources, D.C., Á.O. and P.S.; data curation, D.C.; writing—original draft preparation, D.C.; writing—
review and editing, Á.O. and P.S.; visualization, D.C. and P.S.; supervision, Á.O. and P.S.; project
administration, Á.O. and P.S.; funding acquisition, Á.O. and P.S. All authors have read and agreed to
the published version of the manuscript.

Funding: The work was supported by the National Research, Development, and Innovation Fund of
Hungary through project no. 142790 under the FK_22 funding scheme.

Data Availability Statement: The data presented in this study are openly available at: https://
github.com/csikdominik/RSSI-fingerprint-database (accessed on 17 January 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Asghari, P.; Rahmani, A.M.; Javadi, H.H.S. Internet of Things Applications: A Systematic Review. Comput. Netw. 2019, 148,

241–261. [CrossRef]
2. Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.-W. Applications of Wireless Sensor

Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022, 22,
2087. [CrossRef] [PubMed]

3. Mao, G.; Fidan, B.; Anderson, B.D.O. Wireless Sensor Network Localization Techniques. Comput. Netw. 2007, 51, 2529–2553.
[CrossRef]

4. Mesmoudi, A.; Feham, M.; Labraoui, N. Wireless Sensor Networks Localization Algorithms: A Comprehensive Survey. IJCNC
2013, 5, 45–64. [CrossRef]

5. Senouci, M.R.; Mellouk, A. Wireless Sensor Networks. In Deploying Wireless Sensor Networks; Elsevier: Amsterdam, The
Netherlands, 2016; pp. 1–19.

6. Chen, Y.; Li, X.; Ding, Y.; Xu, J.; Liu, Z. An Improved DV-Hop Localization Algorithm for Wireless Sensor Networks. In
Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June
2018.

7. Paul, A.; Sato, T. Localization in Wireless Sensor Networks: A Survey on Algorithms, Measurement Techniques, Applications and
Challenges. J. Sens. Actuator Netw. 2017, 6, 24. [CrossRef]

8. Cheng, L.; Wu, C.; Zhang, Y.; Wu, H.; Li, M.; Maple, C. A Survey of Localization in Wireless Sensor Network. Int. J. Distrib. Sens.
Netw. 2012, 8, 962523. [CrossRef]

9. Han, G.; Jiang, J.; Zhang, C.; Duong, T.Q.; Guizani, M.; Karagiannidis, G.K. A Survey on Mobile Anchor Node Assisted
Localization in Wireless Sensor Networks. IEEE Commun. Surv. Tutorials 2016, 18, 2220–2243. [CrossRef]

10. Coluccia, A.; Fascista, A. A Review of Advanced Localization Techniques for Crowdsensing Wireless Sensor Networks. Sensors
2019, 19, 988. [CrossRef]

11. Xu, R.; Chen, W.; Xu, Y.; Ji, S. A New Indoor Positioning System Architecture Using GPS Signals. Sensors 2015, 15, 10074–10087.
[CrossRef]

12. Wang, S.; Waadt, A.; Burnic, A.; Xu, D.; Kocks, C.; Bruck, G.H.; Jung, P. System Implementation Study on RSSI Based Positioning
in UWB Networks. In Proceedings of the 2010 7th International Symposium on Wireless Communication Systems, York, UK,
19–22 September 2010; pp. 36–40.

13. Silva, B.; Pang, Z.; Akerberg, J.; Neander, J.; Hancke, G. Experimental Study of UWB-Based High Precision Localization for
Industrial Applications. In Proceedings of the 2014 IEEE International Conference on Ultra-WideBand (ICUWB), Paris, France,
1–3 September 2014; pp. 280–285.

https://github.com/csikdominik/RSSI-fingerprint-database
https://github.com/csikdominik/RSSI-fingerprint-database
http://doi.org/10.1016/j.comnet.2018.12.008
http://doi.org/10.3390/s22062087
http://www.ncbi.nlm.nih.gov/pubmed/35336261
http://doi.org/10.1016/j.comnet.2006.11.018
http://doi.org/10.5121/ijcnc.2013.5603
http://doi.org/10.3390/jsan6040024
http://doi.org/10.1155/2012/962523
http://doi.org/10.1109/COMST.2016.2544751
http://doi.org/10.3390/s19050988
http://doi.org/10.3390/s150510074


Machines 2023, 11, 302 23 of 24

14. Alarifi, A.; Al-Salman, A.; Alsaleh, M.; Alnafessah, A.; Al-Hadhrami, S.; Al-Ammar, M.; Al-Khalifa, H. Ultra Wideband Indoor
Positioning Technologies: Analysis and Recent Advances. Sensors 2016, 16, 707. [CrossRef]

15. Mazhar, F.; Khan, M.G.; Sällberg, B. Precise Indoor Positioning Using UWB: A Review of Methods, Algorithms and Implementa-
tions. Wirel. Pers. Commun. 2017, 97, 4467–4491. [CrossRef]

16. Li, G.; Geng, E.; Ye, Z.; Xu, Y.; Lin, J.; Pang, Y. Indoor Positioning Algorithm Based on the Improved RSSI Distance Model. Sensors
2018, 18, 2820. [CrossRef]

17. Giovanelli, D.; Farella, E.; Fontanelli, D.; Macii, D. Bluetooth-Based Indoor Positioning Through ToF and RSSI Data Fusion. In
Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27
September 2018; pp. 1–8.

18. Campana, F.; Pinargote, A.; Dominguez, F.; Pelaez, E. Towards an Indoor Navigation System Using Bluetooth Low Energy
Beacons. In Proceedings of the 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Ecuador, 16–20 October
2017; pp. 1–6.

19. Mackensen, E.; Lai, M.; Wendt, T.M. Bluetooth Low Energy (BLE) Based Wireless Sensors. In Proceedings of the 2012 IEEE
Sensors, Taipei, Taiwan, 28–31 October 2012; pp. 1–4.

20. Zhou, J.; Shi, J. RFID Localization Algorithms and Applications—A Review. J. Intell. Manuf. 2009, 20, 695–707. [CrossRef]
21. Tesoriero, R.; Tebar, R.; Gallud, J.A.; Lozano, M.D.; Penichet, V.M.R. Improving Location Awareness in Indoor Spaces Using RFID

Technology. Expert Syst. Appl. 2010, 37, 894–898. [CrossRef]
22. Dai, H.; Ying, W.; Xu, J. Multi-layer neural network for received signal strength-based indoor localization. IET Commun. 2016, 10,

717–723. [CrossRef]
23. Hoang, M.T.; Yuen, B.; Dong, X.; Lu, T.; Westendorp, R.; Reddy, K. Recurrent Neural Networks for Accurate RSSI Indoor

Localization. IEEE Internet Things J. 2019, 6, 10639–10651. [CrossRef]
24. Csik, D.; Odry, A.; Sarcevic, P. Comparison of RSSI-Based Fingerprinting Methods for Indoor Localization. In Proceedings of the

IEEE International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia, 15–17 September 2022.
25. Cui, W.; Liu, Q.; Zhang, L.; Wang, H.; Lu, X.; Li, J. A Robust Mobile Robot Indoor Positioning System Based on Wi-Fi. Int. J. Adv.

Robot. Syst. 2020, 17, 172988141989666. [CrossRef]
26. Poulose, A.; Han, D.S. Performance Analysis of Fingerprint Matching Algorithms for Indoor Localization. In Proceedings of the

2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21
February 2020; pp. 661–665.

27. Dong, Z.; Wu, Y.; Sun, D. Data Fusion of the Real Time Positioning System Based on RSSI and TOF. In Proceedings of the 2013 5th
International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2013; pp.
503–506.

28. Gogolak, L.; Pletl, S.; Kukolj, D. Indoor Fingerprint Localization in WSN Environment Based on Neural Network. In Proceedings
of the 2011 IEEE 9th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 8–10 September 2011; pp.
293–296.

29. Xie, H.; Gu, T.; Tao, X.; Ye, H.; Lv, J. MaLoc: A Practical Magnetic Fingerprinting Approach to Indoor Localization Using
Smartphones. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Seattle,
WA, USA, 13 September 2014; pp. 243–253.

30. Ouyang, G.; Abed-Meraim, K. A Survey of Magnetic-Field-Based Indoor Localization. Electronics 2022, 11, 864. [CrossRef]
31. Hoeflinger, F.; Saphala, A.; Schott, D.J.; Reindl, L.M.; Schindelhauer, C. Passive Indoor-Localization Using Echoes of Ultrasound

Signals. In Proceedings of the 2019 International Conference on Advanced Information Technologies (ICAIT), Yangon, Myanmar,
6–7 November 2019; pp. 60–65.

32. Moutinho, J.N.; Araújo, R.E.; Freitas, D. Indoor Localization with Audible Sound—Towards Practical Implementation. Pervasive
Mob. Comput. 2016, 29, 1–16. [CrossRef]

33. Rahman, A.B.M.M.; Li, T.; Wang, Y. Recent Advances in Indoor Localization via Visible Lights: A Survey. Sensors 2020, 20, 1382.
[CrossRef]

34. Morar, A.; Moldoveanu, A.; Mocanu, I.; Moldoveanu, F.; Radoi, I.E.; Asavei, V.; Gradinaru, A.; Butean, A. A Comprehensive
Survey of Indoor Localization Methods Based on Computer Vision. Sensors 2020, 20, 2641. [CrossRef]

35. Wang, Y.-T.; Peng, C.-C.; Ravankar, A.; Ravankar, A. A Single LiDAR-Based Feature Fusion Indoor Localization Algorithm.
Sensors 2018, 18, 1294. [CrossRef]

36. de Sá, A.O.; Nedjah, N.; de Macedo Mourelle, L. Distributed Efficient Localization in Swarm Robotic Systems Using Swarm
Intelligence Algorithms. Neurocomputing 2016, 172, 322–336. [CrossRef]

37. Al-Sadoon, M.A.G.; Asif, R.; Al-Yasir, Y.I.A.; Abd-Alhameed, R.A.; Excell, P.S. AOA Localization for Vehicle-Tracking Systems
Using a Dual-Band Sensor Array. IEEE Trans. Antennas Propagat. 2020, 68, 6330–6345. [CrossRef]

38. Cao, S.; Chen, X.; Zhang, X.; Chen, X. Combined Weighted Method for TDOA-Based Localization. IEEE Trans. Instrum. Meas.
2020, 69, 1962–1971. [CrossRef]

39. Gao, M.; Yu, M.; Guo, H.; Xu, Y. Mobile Robot Indoor Positioning Based on a Combination of Visual and Inertial Sensors. Sensors
2019, 19, 1773. [CrossRef]

40. Chen, Y.; Chen, W.; Zhu, L.; Su, Z.; Zhou, X.; Guan, Y.; Liu, G. A Study of Sensor-Fusion Mechanism for Mobile Robot Global
Localization. Robotica 2019, 37, 1835–1849. [CrossRef]

http://doi.org/10.3390/s16050707
http://doi.org/10.1007/s11277-017-4734-x
http://doi.org/10.3390/s18092820
http://doi.org/10.1007/s10845-008-0158-5
http://doi.org/10.1016/j.eswa.2009.05.062
http://doi.org/10.1049/iet-com.2015.0469
http://doi.org/10.1109/JIOT.2019.2940368
http://doi.org/10.1177/1729881419896660
http://doi.org/10.3390/electronics11060864
http://doi.org/10.1016/j.pmcj.2015.10.016
http://doi.org/10.3390/s20051382
http://doi.org/10.3390/s20092641
http://doi.org/10.3390/s18041294
http://doi.org/10.1016/j.neucom.2015.03.099
http://doi.org/10.1109/TAP.2020.2981676
http://doi.org/10.1109/TIM.2019.2921439
http://doi.org/10.3390/s19081773
http://doi.org/10.1017/S0263574719000298


Machines 2023, 11, 302 24 of 24

41. Jiang, P.; Chen, L.; Guo, H.; Yu, M.; Xiong, J. Novel Indoor Positioning Algorithm Based on Lidar/Inertial Measurement Unit
Integrated System. Int. J. Adv. Robot. Syst. 2021, 18, 172988142199992. [CrossRef]

42. Hashim, H.A. Exponentially stable observer-based controller for VTOL-UAVs without velocity measurements. Int. J. Control 2022.
[CrossRef]

43. Li, C.; Wang, S.; Zhuang, Y.; Yan, F. Deep Sensor Fusion Between 2D Laser Scanner and IMU for Mobile Robot Localization. IEEE
Sens. J. 2021, 21, 8501–8509. [CrossRef]

44. Hashim, H.A.; Eltoukhy, A.E.E. Landmark and IMU Data Fusion: Systematic Convergence Geometric Nonlinear Observer for
SLAM and Velocity Bias. IEEE Trans. Intell. Transport. Syst. 2022, 23, 3292–3301. [CrossRef]

45. Hashim, H.A.; Abouheaf, M.; Abido, M.A. Geometric Stochastic Filter with Guaranteed Performance for Autonomous Navigation
Based on IMU and Feature Sensor Fusion. Control Eng. Pract. 2021, 116, 104926. [CrossRef]

46. Abu-Mahfouz, A.M.; Hancke, G.P. Localised Information Fusion Techniques for Location Discovery in Wireless Sensor Networks.
Int. J. Sens. Netw. 2018, 26, 12–25. [CrossRef]

47. Meng, T.; Jing, X.; Yan, Z.; Pedrycz, W. A Survey on Machine Learning for Data Fusion. Inf. Fusion 2020, 57, 115–129. [CrossRef]
48. Aguerri, I.E.; Zaidi, A. Distributed Variational Representation Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 120–138.

[CrossRef]
49. Moldoveanu, M.; Zaidi, A. In-Network Learning for Distributed Training and Inference in Networks. In Proceedings of the 2021

IEEE Globecom Workshops (GC Wkshps), Madrid, Spain, 7–11 December 2021; pp. 1–6.
50. Moldoveanu, M.; Zaidi, A. On In-Network Learning. A Comparative Study with Federated and Split Learning. In Proceedings of

the 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy,
27–30 September 27 2021; pp. 221–225.

51. Retscher, G. Fundamental Concepts and Evolution of Wi-Fi User Localization: An Overview Based on Different Case Studies.
Sensors 2020, 20, 5121. [CrossRef]

52. Elmezughi, M.K.; Affullo, T.J.; Oyie, N.O. Performance Study of Path Loss Models at 14, 18, and 22 GHz in an Indoor Corridor
Environment for Wireless Communications. SAIEE Afr. Res. J. 2021, 112, 32–45. [CrossRef]

53. Bhupuak, W.; Tooprakai, S. Path Loss Comparison in 850 MHz and 1800 MHz Frequency Bands. In Proceedings of the 2016 13th
International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON), Chiang Mai, Thailand, 28 June–1 July 2016; pp. 1–4.

54. Chriki, A.; Touati, H.; Snoussi, H. SVM-Based Indoor Localization in Wireless Sensor Networks. In Proceedings of the 2017 13th
International Wireless Communications and Mobile Computing Conference (IWCMC), Valencia, Spain, 26–30 June 2017; pp.
1144–1149.

55. Ramesh, R.; Arunachalam, M.; Atluri, H.K.; Kumar, S.C.; Anand, S.V.R.; Arumugam, P.; Amrutur, B. LoRaWAN for Smart Cities:
Experimental Study in a Campus Deployment. In LPWAN Technologies for IoT and M2M Applications; Elsevier: Amsterdam, The
Netherlands, 2020; pp. 327–345. ISBN 978-0-12-818880-4.

56. Kunhoth, J.; Karkar, A.; Al-Maadeed, S.; Al-Ali, A. Indoor Positioning and Wayfinding Systems: A Survey. Hum. Cent. Comput.
Inf. Sci. 2020, 10, 18. [CrossRef]

57. Mautz, R. Indoor Positioning Technologies. Habilitation Thesis, Swiss Federal Institute of Technology in Zürich, Zürich,
Switzerland, 2012. [CrossRef]

58. Liu, S.; De Lacerda, R.; Fiorina, J. WKNN Indoor Wi-Fi Localization Method Using k-Means Clustering Based Radio Mapping. In
Proceedings of the 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp.
1–5.

59. Tagne Fute, E.; Nyabeye Pangop, D.-K.; Tonye, E. A New Hybrid Localization Approach in Wireless Sensor Networks Based on
Particle Swarm Optimization and Tabu Search. Appl. Intell. 2022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1177/1729881421999923
http://doi.org/10.1080/00207179.2022.2079004
http://doi.org/10.1109/JSEN.2019.2910826
http://doi.org/10.1109/TITS.2020.3035550
http://doi.org/10.1016/j.conengprac.2021.104926
http://doi.org/10.1504/IJSNET.2018.088366
http://doi.org/10.1016/j.inffus.2019.12.001
http://doi.org/10.1109/TPAMI.2019.2928806
http://doi.org/10.3390/s20185121
http://doi.org/10.23919/SAIEE.2021.9340535
http://doi.org/10.1186/s13673-020-00222-0
http://doi.org/10.3929/ETHZ-A-007313554
http://doi.org/10.1007/s10489-022-03872-y

	Introduction 
	Related Works 
	WiFi 
	Radio Frequency Identification Technology 
	Ultra-Wideband Technology 
	Bluetooth and Bluetooth Low-Energy Technologies 
	ZigBee and IEEE 802.15.4 
	Comparison of Different Technologies 

	Experimental Setup 
	Received Signal Strength Indication 
	Measurement System 
	WiFi Received Signal Strength Indication 
	CC Received Signal Strength Indication 
	Ultra-Wideband Received Signal Strength Indication 
	Ultra-Wideband Time of Flight 

	Proposed Fingerprinting-Based Method 
	Tested Fingerprinting Algorithms 
	Weighted K-Nearest Neighbor 
	Random Forest 
	Artificial Neural Networks 


	Results 
	Results Using Weighted K-Nearest Neighbor 
	Results Using Random Forest 
	Results Using Artificial Neural Network 
	Comparison of Different Cases 

	Conclusions 
	References

