
Citation: Yang, Y.; Wu, Y.; Li, Y.; Liu,

X. Effects of Tooth Modification in the

Involute Helical Gear Form-Grinding

Process on Loaded Transmission

Character with Consideration of

Tooth Axial Inclination Error.

Machines 2023, 11, 305. https://

doi.org/10.3390/machines11020305

Academic Editors: Kai Cheng, Mark

J. Jackson and Hamid Reza Karimi

Received: 18 January 2023

Revised: 11 February 2023

Accepted: 16 February 2023

Published: 17 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Effects of Tooth Modification in the Involute Helical Gear
Form-Grinding Process on Loaded Transmission Character with
Consideration of Tooth Axial Inclination Error
Yongming Yang 1,* , Yunlong Wu 1, Yan Li 1 and Xinrong Liu 2

1 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science,

Shanghai 201620, China
* Correspondence: jackyang@usst.edu.cn

Abstract: Due to the existence of machining and installation errors, axis parallelism error of gear pairs
occurs, which causes eccentric load and mesh in-out impact, thus weakening loaded transmission
character. To solve this problem, the axis parallelism error of gear pairs was equated with tooth
axial inclination error based on the gear-meshing principle. On this basis, we established the tooth
modification model with tooth axial inclination error as the variable according to involute helical
gear form-grinding process. Then, the degradation of loaded transmission character caused by axis
parallelism error of gear pairs was quantitatively analyzed. The gear grinding, gear measuring, and
gearbox vibration measuring were, respectively, performed on high-precision CNC horizontal gear
form-grinding machine tool L300G, Gleason 350 GMS, and JWY-II multifunctional gearbox loading
test bench. The results show that the proposed method can effectively reduce eccentric load and mesh
in-out impact and significantly improve loaded transmission character. Therefore, it can provide a
theoretical and experimental basis for the research of high-performance gear-grinding technology of
gear-grinder machines.

Keywords: axis parallelism error of gear pairs; tooth axial inclination error; tooth modification;
form-grinding process; loaded transmission character

1. Introduction

As the core mechanical transmission part, the gear is the basis of machinery [1]. However,
due to the existence of machining and installation errors, it will result in axis parallelism error
of gear pairs [2], which causes eccentric load and mesh in-out impact, and seriously weaken
loaded transmission character [3–6]. Among the fruitful research, tooth modification for form
grinding can effectively improve loaded transmission character [7–10]. Shen et al. [11] studied
the tooth modification mode for involute spur gear form grinding; Wang et al. [12] obtained a
tooth surface modified error model of involute helical gear by iteratively solving contact line
equation; Lee et al. and Shih et al. [13,14] proposed a tooth modification model with higher-order
polynomials to improve loaded transmission character.

The key to the technology of tooth modification for form grinding is the calculation
of the contact line and cross-sectional profile of the grinding wheel. Based on the gear-
meshing principle, Xia et al. [15] deduced the contact line equation between the gear
work-piece and grinding wheel and obtained a cross-sectional profile of the grinding wheel
for involute helical gear form grinding; based on weighted-sum-of-squares (WSS) method,
Guo et al. [16,17] studied the influence of gear parameters and installation parameters on
the contact line and proposed a contact line optimization model; Ding et al. [18] proposed
the optimization model of the contact line and a cross-sectional profile of the grinding
wheel by changing the installation parameters; Fang et al. [19] optimized grinding wheel
posture and path by minimizing the error square sum of the modified tooth surface and
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proposed a contact line optimization model; based on neural networks, Wang et al. [20]
realized contact line optimization for involute helical gear form grinding.

The influence of tooth modification for form grinding on loaded transmission char-
acter has been studied. Abroad, Seol et al. [21] studied the relationship among tooth
axial modification amount, tooth surface contact pattern, and gearbox transmission error
and developed a dynamic load calculation program of the involute helical gearbox with
tooth axial modification; Zhang et al. [22] studied the influence of tooth modification and
tooth contact deformation on gearbox transmission error; Du et al. [23] proposed a tooth
axial modification method with tooth contact deformation; Imrek et al. [24] studied the
relationship between tooth axial modification and tooth surface contact stress. At home,
influence of tooth modification for form grinding on loaded transmission character is also
studied [25,26], and Song et al. [27]’s tooth modification is the common method.

The above studies are of great significance for improving loaded transmission character.
However, there is a lack of relevant research with consideration of the reduction of “tooth
profile distortion” and “tooth axial twist” in the involute helical gear form-grinding process
and tooth modification, including tooth axial modification and tooth profile modification,
to solve the axis parallelism error problem of gear pairs. A novel approach based on
the gear-meshing principle is proposed, which equates the axis parallelism error of gear
pairs with tooth axial inclination error. On this basis, we established the tooth modification
model with tooth axial inclination error as the variable according to the involute helical gear
form-grinding process. Then, the gear grinding, gear measuring, and gearbox vibration
measuring were, respectively, performed on the high-precision CNC horizontal gear form-
grinding machine tool L300G, Gleason 350 GMS, and JWY-II multifunctional gearbox
loading test bench. The objective of this paper is to quantitatively analyze the degradation
of loaded transmission character caused by the axis parallelism error of gear pairs.

2. Tooth Modification Model Based on Tooth Axial Inclination Error
2.1. Axis Parallelism Error of Gear Pairs

As shown in Figure 1a, when the measured axis line 1 deviates from the theoretical
axis line 2, GB/Z 18620.3-2008 (Cylindrical gears—Code of inspection practice—Part 3:
Recommendations relative to gear blanks, shaft center distance and parallelism of axes)
stipulates that the axis parallelism error of gear pairs within bearing holes span L in
horizontal plane (H) is ∆ f∑ δ, and the axis parallelism error of gear pairs within bearing
holes span L in vertical plane (V) is ∆ f∑ β. In Figure 1a, based on the gear-meshing
principle, the axis parallelism error of gear pairs within tooth width b can be equated
with the tooth axial inclination error λ. As shown in Figure 1a,b, points A, B, and C can
be projected into coordinate system XOY to obtain points O3, O1, and O2. Based on the
geometric relationship and gear-meshing principle, the axis parallelism error of gear pairs
within tooth width b can be equated with the tooth axial inclination error λ2 along the
theoretical meshing line and tooth axial inclination error λ1 perpendicular to the theoretical
meshing line. If gear pairs have a tooth axial inclination error λ2, it will cause eccentric
load; if gear pairs have a tooth axial inclination error λ1, it will cause mesh in-out impact.
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Figure 1. Axis parallelism error model: (a) gear pairs with axis parallelism error; (b) projection of
points A, B, and C in the coordinate system XOY.

In Figure 1b, the axis parallelism error at point O3(A) can be recorded as ∆ f∑ δ and
∆ f∑ β. The axis parallelism error at point O1(B) can be recorded as ∆ f∑ δ1 and ∆ f∑ β1,
which are expressed in Equations (1) and (2); the axis parallelism error at point O2(C) can
be recorded as ∆ f∑ δ2 and ∆ f∑ β2, which are expressed in Equations (3) and (4).

∆ f∑ δ1 =
OC + b

L
∆ f∑ δ (1)

∆ f∑ β1 =
OC + b

L
∆ f∑ β (2)

∆ f∑ δ2 =
OC
L

∆ f∑ δ (3)

∆ f∑ β2 =
OC
L

∆ f∑ β (4)

where L is the bearing holes span; b is the tooth width.
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In Figure 1b, the angle between the theoretical center distance and actual center
distance βi is expressed as Equation (5).

βi = arcsin
∆ f∑ βi

ai
(5)

where i = 1, 2 correspond, respectively, to points O1(B) and O2(C); ai is the actual center
distance of gear pairs, expressed as Equation (6).

ai =

√
∆ f 2

∑ βi +
(∣∣∆ f∑ δi

∣∣+ a
)2 (6)

where i = 1, 2 correspond, respectively, to points O1(B) and O2(C); a is the theoretical
center distance shown in Figure 1a.

Based on the gear-meshing principle, the relationship of the center distance and
meshing angle of gear pairs can be expressed as Equation (7).

α′i = arccos
a· cos α

ai
= arccos

a· cos α√
∆ f 2

∑ βi +
(∣∣∆ f∑ δi

∣∣+ a
)2

(7)

where i = 1, 2 correspond, respectively, to points O1(B) and O2(C); α is the theoretical
meshing angle of gear pairs, α′i is the actual meshing angle of gear pairs.

In Figure 1b, according to geometric relationship, the tooth axial inclination error λ2
can be expressed as Equation (8).

λ2 = |sin(∠2 + β2 −∠1− β1) + cos(∠1 + β1)∆δ− sin(∠1 + β1)∆β| (8)

where

∠1 = 90◦ − α′1;∠2 = 90◦ − α′2; ∆δ = ∆ f∑ δ2 − ∆ f∑ δ1; ∆β = ∆ f∑ β1 − ∆ f∑ β2

The tooth axial inclination error λ1 can be expressed as Equation (9).

λ1 =
√

λ2 − λ2
2 =

√[(
∆ f∑ δ2 − ∆ f∑ δ1

)2
+
(
∆ f∑ β1 − ∆ f∑ β2

)2
]
− λ2

2 (9)

2.2. Tooth Modification Model Based on Tooth Axial Inclination Error

Research shows that tooth modification can effectively improve loaded transmission
character, where the tooth axial modification can decrease eccentric load, and tooth profile
modification can reduce mesh in-out impact. The tooth axial modification method includes
spiral angle modification, crowned modification, and curve surface modification. The
tooth axial fully crowned modification is especially suitable for solving the eccentric load
problem. The tooth profile modification method includes tip relief, root relief, tooth angle
correction, and curve surface modification. The tooth profile tip relief and root relief are
especially suitable for solving the mesh in-out impact problem.

As shown in Figure 2a, due to the existence of the axis parallelism error of gear pairs
(tooth axial inclination error), the working tooth surfaces will press into each other, which
is shown as the green, dotted triangle area during loaded transmission. Song et al. [27]
believed that the total elastic deformation of working tooth surface in tooth pitch direction
can be taken as the tooth axial fully crowned modification amount, which will decrease
eccentric load and improve loaded transmission character. Thus, the model of tooth axial
fully crowned modification with tooth axial inclination error λ2 as the variable is established
to solve the eccentric load problem. The equivalent tooth axial inclination angle of the tooth
axial inclination error λ2 is equal to γd; the total elastic deformation in tooth pitch direction
is OH, the tooth axial fully crowned modification amount is Cc1, and Cc1 is equal to OH.
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Then, the curve OH2 can be drawn as the tooth axial fully crowned modification curve, and
Cc1 can be expressed as Equation (10).

Cc1 = OH = bbltan(γd) =
bbl
b

λ2 (10)

where bbl is the total elastic deformation in the tooth axial direction, and bbl = HE; if
1 ≥ bbl

b ≥ 0.5, let bbl
b = 0.5; if 0.5 > bbl

b > 0, let bbl
b = 0.25; b is the tooth width.
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The tooth axial fully crowned modification curve equation can be expressed as
Equation (11).

X(Z, λ2) = −
4Ccl
b2 Z2 +

4Ccl + λ2

b
Z (11)

As shown in Figure 2b, Sun et al. [28] believed that tooth profile modification will reduce
mesh in-out impact and improve loaded transmission character, so the model of tooth profile
tip relief and root relief with tooth axial inclination error λ1 as the variable is established to
solve the mesh in-out impact problem. The modification amount of both tooth profile tip
relief and root relief is λ1, and the pressure angle of corresponding point for tooth profile tip
relief and root relief is θg; then, the tooth profile tip relief and root relief curve equation can be
expressed as Equation (12) [29].

S
(
θg, λ1

)
=



(θg−θgamax)λ1

(θgamax−θgamin)
2 , θgamin < θg ≤ θgamax

0, θg f min ≤ θg ≤ θgamin

(θg−θg f max)λ1

(θg f max−θg f min)
2 , θg f max ≤ θg < θg f min

(12)
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where θgamin is the pressure angle of the starting position for tip relief; θgamax is the pressure
angle of the ending position for tip relief; θg f min is the pressure angle of the starting position
for root relief; θg f max is the pressure angle of the ending position for root relief.

3. Involute Helical Gear Form Grinding with Tooth Modification
3.1. Tooth Surface Equation of Involute helical Gear with Tooth Modification

As shown in Figure 3, the intersection point Og of the involute helical gear tooth
surface middle section and gear axis line is set as the origin of the coordinate system(
OgXgYgZg

)
. Axis Yg passes through tooth surface node point M, and axis Zg coincides

with gear axis line; then, the tooth surface equation of involute helical gear with tooth
modification can be expressed as Equations (13)–(18) [30,31].

Rg
(
θg, ϕg

)
=
(
Xg
(
θg, ϕg

)
, Yg
(
θg, ϕg

)
, Zg

(
θg, ϕg

))
(13)

Xg
(
θg, ϕg

)
= −qsg

(
θg, ϕg

)
cos
(
αt + θg + ϕg

)
+ rbg sin

(
αt + θg + ϕg

)
Yg
(
θg, ϕg

)
= qsg

(
θg, ϕg

)
sin
(
αt + θg + ϕg

)
+ rbg cos

(
αt + θg + ϕg

)
Zg
(
θg, ϕg

)
= Pg ϕg/2π

(14)

qsg
(
θg, ϕg

)
= q0g + rbgθg + S

(
θg
)
+ X

(
ϕg
)

(15)

q0g = rbg tan αt (16)

S
(
θg
)
= S

(
θg, λ1

)
(17)

X
(

ϕg
)
= X

(
ϕg, λ2

)
= X

(
Zg, λ2

)
(18)

where θg is the pressure angle of corresponding point for tooth profile tip relief and root
relief; αt is the gear end face pitch circle pressure angle; ϕg is the rotation angle of gear end
face section, and −πb

Pg
≤ ϕg ≤ πb

Pg
, b is the tooth width, and Pg is the helix parameter pitch

of involute gear helical surface; rbg is the radius of gear base circle; S
(
θg
)

is the tooth profile
tip relief and root relief curve equation; X

(
ϕg
)

is the tooth axial fully crowned modification
curve equation
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Figure 3. Model of involute helical gear tooth surface with tooth modification.

3.2. Involute Helical Gear Form-Grinding Process with Tooth Modification

As shown in Figure 4, in order to accurately control the relative motion of the involute
helical gear and grinding wheel for the form-grinding process with tooth modification,
the coordinate system Sg

(
OgXgYgZg

)
needs to be established on an involute helical gear

where the Zg-axis coincides with the gear axis line; the coordinate system Sw(OwXwYwZw)
needs to be established on a grinding wheel where the Zw-axis coincides with the grinding
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wheel axis line. In Figure 4, A is the shortest distance between the Zg-axis and Zw-axis
along Xw-direction, which is called center distance; Σ is the angle between the Zg-axis and
Zw-axis, which is called the grinding wheel mounting angle. The coordinate transformation
relationship of points between the involute helical gear coordinate system Sg and grinding
wheel coordinate system Sw can be expressed as Equation (19).

Xw = −Xg + A
Yw = −Yg cos Σ− Zg sin Σ
Zw = −Yg sin Σ + Zg cos Σ

(19)
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The existing form-grinding methods are mainly divided into single-sided grinding
and double-sided grinding [32]. In single-sided grinding, the left and right tooth surfaces
in the tooth groove are ground separately; in double-sided grinding, the left and right tooth
surfaces in the tooth groove are ground at the same time. During involute helical gear
form grinding, the involute helical gear surface and grinding wheel surface are in tangent
contact along a spatial curve, which is called the three-dimensional contact line, as shown
in Figure 4. The three-dimensional contact line can be projected as a two-dimensional cross-
sectional profile of the grinding wheel, and the contact line for single-sided grinding is
half that for double-sided grinding, but its curve shape is consistent. In Figure 4, the curve
shape of the three-dimensional contact line in the tooth groove is mainly determined by the
parameters A and Σ, which need to meet the following two contact conditions: (1) tangent
contact is required between the involute helical gear surface and grinding wheel surface so
as to complete form grinding; (2) there will be no interference between the involute helical
gear surface and grinding wheel surface so as to avoid damage of the grinding wheel or
over-grinding of involute helical gear. The coordinates of the contact point between the
involute helical gear surface and grinding wheel surface is Ng

(
XgN , YgN , ZgN

)
, and if the

involute helical gear surface is in tangent contact with the grinding wheel surface, it needs
to meet the contact condition equation expressed as Equation (20).

f (A, Σ) = ZgNnX + AnY cot Σ +
(

A− XgN + Pg cot Σ
)
nZ = 0 (20)

where nX , nY, and nZ are the directional components of the normal vector of point Ng.
The Equation (20) is coupled to Equations (13)–(18) and transferred to the grinding

wheel coordinate system Sw(OwXwYwZw), and the Equation (21) can be expressed as below.
f (A, Σ) = 0

XwN = XgN − A
YwN = YgN cos Σ + ZgN sin Σ

ZwN = −YgN sin Σ + ZgN cos Σ

(21)
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Since the cross-sectional profile of a grinding wheel is a curve intercepted by the
Yg = 0 plane, the two-dimensional cross-sectional profile of the grinding wheel equation
can be expressed as Equation (22).

f (A, Σ) = 0
ZwN = −YgN sin Σ + ZgN cos Σ

R =
√

XwN2 + YwN2 =
√(

XgN − A
)2

+
(
YgN cos Σ + ZgN sin Σ

)2
(22)

The curvature interference method is taken to check the interference between the invo-
lute helical gear surface and grinding wheel surface. The point Ng of the involute helical
gear coordinate system can be converted as point Nw of the grinding wheel coordinate
system by Equation (19), and the grinding radius of the grinding wheel surface at point
Ng(Nw) can be expressed as Equation (23).

RN =
√

X2
wN + Y2

wN (23)

The curvature radius of the involute helical gear surface at point Ng(Nw) can be
expressed as Equation (24).

ρN =

[
1 +

(
dXwN
dYwN

) 3
2
/

(
d2XwN

dY2
wN

)]
(24)

RN < |ρN | (25)

When using the external contact method to grind the involute helical gear, as long as
the grinding radius of the grinding wheel surface at point Ng(Nw) is less than the absolute
value of the curvature radius of the involute helical gear surface at point Ng(Nw), it is
assumed that no curvature interference occurs at point Ng(Nw). Due to the constraints of
the above two contact conditions, the grinding wheel mounting angle Σ must be taken
within a certain range, which limits the cross-sectional profile of the grinding wheel. The
corresponding design and calculation of the cross-sectional profile of the grinding wheel is
the common tooth profile modification method. After obtaining a cross-sectional profile of
a grinding wheel for tooth profile modification, in order to accurately control the relative
motion of the involute helical gear and grinding wheel, besides the conventional spiral mo-
tion for tooth profile modification, the additional motion for tooth axial modifications that
can be applied to single-sided grinding are gear angle compensation ∆θ, axial movement of
grinding wheel ∆ZW , and center distance change ∆A; the additional motion for tooth axial
modification that can be applied to double-sided grinding is center distance change ∆A.

The corresponding design and calculation of parameter A along the involute helical
gear tooth axial direction is the common tooth axial modification method. With a cross-
sectional profile of the grinding wheel for tooth profile modification, the changing rate of A
along the involute helical gear tooth axial direction is ∆A(ξ). When grinding, as long as the
∆A(ξ) meets condition equation expressed as Equation (26), the tooth axial modification
can be realized.

∆A(ξ) = δ(|ξ| − |Z0|) cos βbg/b sin αn = Ccl cos βbg/b sin αn (26)

where: ξ is the axial motion parameter of the grinding wheel along the gear axis; Z0 is
the axis Zg coordinate of the starting point for tooth axial fully crowned modification;
δ(|ξ| − |Z0|) = Ccl is the tooth axial fully crowned modification amount; βbg is the helix
angle of base circle; b is the tooth width; αn is the normal pressure angle of the gear.

3.3. Calculation of Cross-Sectional Profile of Grinding Wheel

According to Equation (22), the two-dimensional cross-sectional profile of a grinding
wheel can be determined with parameters A and Σ. The parameter A is determined by
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grinding wheel radius RW and the involute helical gear base circle radius rbg as long as
the gear’s basic parameters are determined, the rbg is a constant value, and A is only
determined with RW , so the cross-sectional profile of a grinding wheel is jointly determined
by RW and Σ. During form grinding, the grinding wheel with high wear resistance is
selected, and the grinding wheel profile dressing error is set as zero; the grinding wheel
wear deformation is zero. Then, the grinding wheel radius RW is a constant value, so
Σ is the only variable that determines the two-dimensional cross-sectional profile of the
grinding wheel. Taking the involute helical gear double-sided form grinding as an example,
according to Equations (20) and (25), the Σ of double-sided form grinding for the involute
helical gear Z1 shown in Table 1 can be calculated. The value range of Σ is 64.6708◦~65.4526◦,
and the curvature interference checking result is qualified. According to Equation (22),
the two-dimensional cross-sectional profile of the grinding wheel for double-sided form
grinding of the standard involute helical gear Z1 shown in Table 1 can be calculated, and
the result is shown in Figure 5.

Table 1. Involute helical gear parameters.

Name Symbol Unit Value

Normal module mn mm 2.4
Tooth modification right-hand gear Z1 − 39

Mating left-hand gear Z2 − 50
Normal pressure angle αn deg 19.5

Spiral angle βg deg 25
Tooth width b mm 22

Addendum modification
coefficient xn − 0

Grinding wheel radius RW mm 120
Addendum coefficient ha

∗ − 1
Bottom clearance coefficient c∗ − 0.25

Material − − 20CrMnTi
Tooth surface hardness HRC − 59~63

Elasticity modulus E GPa 207
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3.4. Tooth Surface Modified Error of Involute Helical Gear with Different Tooth Modification Parameters

As shown in Figure 6, the span of the bearing holes is L = 160 mm, the diameter
of the gear shaft is 60 mm, and the fit tolerance of the gear shaft and bearing hole is
Φ60 H8/d8. According to Section 2, the tooth axial inclination error range can be calculated
as λ = ±14 µm, which can be equated to tooth axial inclination error λ2 = ±13 µm and
tooth axial inclination error λ1 = ±5.2 µm. In order to study the loaded transmission
character of a gear with tooth modification, the parameters of tooth profile tip relief, tooth
profile root relief, and tooth axial fully crowned modification of the involute helical right-
hand gear Z1 shown in Table 1 can be calculated, which will not be repeated, and results
are shown in Table 2. Tip relief and root relief are selected for tooth profile modification; the
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pressure angle of the starting position for root relief is θg f min = 19.7431◦, the pressure angle
of the ending position for root relief is θg f max = 15.7431◦, the pressure angle of the starting
position for tip relief is θgamin = 23.4655◦, and the pressure angle of the ending position
for tip relief is θgamax = 27.4655◦. Fully crowned modification is selected for tooth axial
modification; the grinding wheel mounting angle is Σ = 65.3284◦ before optimization and
Σ = 64.8947◦ after optimization, where the neural network method in Ref. [20] is adopted
to optimize Σ, which will not be repeated. Then, compared with the theoretical modified
tooth surface, the tooth surface modified error of the involute helical right-hand gear Z1
for double-sided form grinding with different modification parameters can be obtained;
results are shown in Figure 7.
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Table 2. Tooth modification parameters.

Transmission
Torque
/N·m

Grinding Wheel
Mounting Angle/◦ Modification

Tooth Profile Tip
Relief and

Root Relief/µm

Tooth Axial Fully
Crowned

Modification/µm

I 14 14
65.3284 II 5.2 6.5

I 14 14
50 64.8947 II 5.2 6.5

Note: The modification I is the existing method, and the modification II is the method of this paper; when
Σ = 64.8947◦, λ1 = 5.2 µm, and Cc1 = 0.5λ2 = 6.5 µm, \; the tooth modification II is the optimized method of
this paper.
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Figure 7. Tooth surface modified error of involute helical right-hand gear Z1 for double-sided form
grinding with different modification parameters: (a) left and right tooth surface modified error of
modification I (Σ = 65.3284◦ before optimization); (b) left and right tooth surface modified error of
modification I (Σ = 64.8947◦ after optimization); (c) left and right tooth surface modified error of
modification II (Σ = 65.3284◦ before optimization); (d) left and right tooth surface modified error of
modification II (Σ = 64.8947◦ after optimization).

By comparing and analyzing the left and right tooth surface modified errors of Figure 7a,
the results show that the process of the involute helical right-hand gear Z1 for double-
sided form grinding with tooth profile tip relief, tooth profile root relief, and tooth axial
fully crowned modification can be realized significantly. However, there is a slight under-
modifying at the left tooth root and a slight over-modifying at the left tooth tip, so there
is “tooth profile distortion” on the left tooth surface; by comparing and analyzing the
left tooth surface modified errors of Figure 7a,b, the results show that the “tooth profile
distortion” is not sensitive to the change of Σ, and the same law can also be found by
comparing and analyzing the left tooth surface modified errors of Figure 7c,d; then, the left
tooth surface modified errors of Figure 7a,b and Figure 7c,d are compared and analyzed,
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and the results show that the “tooth profile distortion” of modification II (Σ = 64.8947◦

after optimization) is reduced significantly, where the tooth profile modification rate is
about 98.6%, which will weaken the mesh in-out impact of the gear pairs and effectively
improve loaded transmission character. Moreover, there is a large error at the right tooth
surface, and the peak value position of tooth axial fully crowned modification is moved,
which is called “tooth axial twist”; when the involute helical right-hand gear is machined
for double-sided form grinding, where the left tooth surface in the tooth groove contacts the
grinding wheel first, but the right tooth surface in the tooth groove contacts the grinding
wheel later, the result is “tooth axial twist”, and an unavoidable principle error between
the modified gear tooth surface and standard gear tooth surface occurs; accordingly, the
right tooth surface modified errors of Figure 7a,b and Figure 7c,d were compared and
analyzed, and results show that the “tooth axial twist” of modification II (Σ = 64.8947◦

after optimization) is reduced significantly, where the tooth axial modification rate is about
95.7%, which will reduce the eccentric load of the gear pairs and effectively improve loaded
transmission character.

4. Finite Element Simulation of Involute Helical Gearbox with Tooth Modification
4.1. Influence of Tooth Modification on Tooth Surface Contact Stress

In order to obtain accurate simulation results, the involute helical gearbox (right-hand
gear Z1 and left-hand gear Z2) with tooth axial inclination error λ = 14 µm was simulated
and analyzed by using the professional software RomaxDesigner. During the finite element
simulation of the involute helical gearbox with different tooth modification parameters
(without modification, modification II and Σ = 65.3284◦ before optimization, modification
II and Σ = 64.8947◦ after optimization), the error-related bearing is zero, the error-related
oil lubricating is zero, the thermal error of the machine tool is zero, and the geometric error
of the machine tool is zero; the input shaft speed is 800 rpm, and the output shaft torque is
50 N·m. After simulation, the contact stress of the tooth surface at the reference circle of the
involute helical right-hand gear Z1 is extracted, and results are shown in Figure 8.
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Figure 8. Contact stress of tooth surface at the reference circle of involute helical right-hand gear Z1

for double-sided form grinding with different modification parameters: (a) without modification;
(b) modification II (Σ = 65.3284◦ before optimization); (c) modification II (Σ = 64.8947◦ after
optimization).

Results show that when the gear Z1 is without modification, eccentric load is obvious,
and the maximum contact stress reaches 318 MPa; when the gear Z1 is modified with
modification II (Σ = 65.3284◦ before optimization), eccentric load is weakened, and the
maximum contact stress is reduced to 206 MPa compared with unmodified gear, which
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is lower by 35.2%; when the gear Z1 is modified with modification II (Σ = 64.8947◦ after
optimization), eccentric load is significantly weakened, and the maximum contact stress is
reduced to 156 MPa compared with unmodified gear, which is lower by 50.9%.

4.2. Influence of Tooth Modification on Gearbox Transmission Error

For the involute helical gearbox with different tooth modification parameters, the influ-
ence of tooth modification on the gearbox transmission error was also simulated and analyzed
by using the professional software RomaxDesigner, where the analysis conditions and pa-
rameters are consistent with Section 4.1. After operation, the gearbox transmission error with
different tooth modification parameters is extracted, and results are shown in Figure 9.
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Figure 9. Gearbox transmission error with different modification parameters.

The results show that when gear Z1 is unmodified, the gearbox transmission error
amplitude is about 2.55 µm; when gear Z1 is modified with modification II (Σ = 65.3284◦

before optimization), the gearbox transmission error amplitude is about 2.38 µm; when gear
Z1 is modified with modification II (Σ = 64.8947◦ after optimization), the gearbox transmis-
sion error amplitude is about 2.08 µm. Compared with gear Z1 without modification, the
gearbox transmission error amplitude decreases by 6.7% in modification II (Σ = 65.3284◦

before optimization) and 18.4% in modification II (Σ = 64.8947◦ after optimization).

5. Experimental Verification
5.1. Static Accuracy Measuring Experiment of Machine Tools

Figure 10a shows the high-precision CNC horizontal gear form-grinding machine tool
L300G, Figure 10c shows the Gleason 350 GMS gear measurement center, and the JWY-II
multifunctional gearbox loading test bench will be introduced in Section 5.3. They all have
an isolated vibration foundation that meets engineering manufacturing requirements, and
the working laboratory is a controllable constant temperature chamber (temperature: 20 ◦C,
humidity: 50%). Therefore, the influence of machine tool geometric error, machine tool
vibration error, and machine tool thermal error on the experimental results was not studied.
The machine tool static accuracy measuring experiments were carried out with cylindrical
standard measuring rod and dial indicator. The circular run-out of the spindle is equal to
or less than 1 µm; the circular run-out of the measuring rod is equal to or less than 1 µm;
the parallelism of the measuring rod is equal to or less than 1 µm. The results show that the
static accuracy of L300G, Gleason 350 GMS, and JWY-II multifunctional gear loading test
bench reach micron level, which provides an accuracy guarantee for grinding experiments,
measuring experiments, and gearbox vibration measuring experiments.
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5.2. Grinding and Measuring Experiment of Involute Helical Gear with Different Tooth
Modification Parameters

In order to verify the correctness of the mathematical model described in Sections 2 and 3,
the grinding experiment of the involute helical right-hand gear Z1 for double-sided form
grinding with tooth modification was carried out by using gear grinder L300G, where the
grinding wheel with high wear resistance was selected, the grinding wheel profile dressing
error was set as zero, the grinding wheel wear deformation was set as zero, the thermal
error of the machine tool was set as zero, and the geometric error of the machine tool was
set as zero. As shown in Figure 10b, the circular run-out of involute helical gear Z1 shaft is
equal to or less than 1 µm, which will provide grinding accuracy for the grinding experiment.
The grinding experiments of gear Z1 for double-sided form grinding with different tooth
modification parameters (modification II and Σ = 65.3284◦ before optimization, modification
II and Σ = 64.8947◦ after optimization) were, respectively, carried out, and the tooth surface
measuring experiments of modified gear Z1 were carried out with Gleason 350 GMS gear
measurement center. The results are shown in Figure 11.

Machines 2023, 11, x FOR PEER REVIEW 14 of 21 
 

 

(a)

   
Figure 10. Grinding and measuring experiments: (a) high-precision CNC horizontal gear form-
grinding machine tool L300G; (b) involute helical gear double-sided form-grinding process; (c) 
Gleason 350GMS gear measurement center. 

5.2. Grinding and Measuring Experiment of Involute Helical Gear with Different Tooth 
Modification Parameters 

In order to verify the correctness of the mathematical model described in Sections 2 
and 3, the grinding experiment of the involute helical right-hand gear 𝑍  for double-sided 
form grinding with tooth modification was carried out by using gear grinder L300G, 
where the grinding wheel with high wear resistance was selected, the grinding wheel pro-
file dressing error was set as zero, the grinding wheel wear deformation was set as zero, 
the thermal error of the machine tool was set as zero, and the geometric error of the ma-
chine tool was set as zero. As shown in Figure 10b, the circular run-out of involute helical 
gear 𝑍  shaft is equal to or less than 1 μm, which will provide grinding accuracy for the 
grinding experiment. The grinding experiments of gear 𝑍  for double-sided form grind-
ing with different tooth modification parameters (modification II and 𝛴 = 65.3284° be-
fore optimization, modification II and 𝛴 = 64.8947° after optimization) were, respec-
tively, carried out, and the tooth surface measuring experiments of modified gear 𝑍  were 
carried out with Gleason 350 GMS gear measurement center. The results are shown in 
Figure 11. 
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In Figure 11, the Gleason measuring accuracies of the involute helical right-hand gear
Z1 for double-sided form grinding with modification II (Σ = 65.3284◦ before optimization)
and modification II (Σ = 64.8947◦ after optimization) are, respectively, at level 4. Compared
with modification II (Σ = 65.3284◦ before optimization), the “tooth profile distortion”
and “tooth axial twist” of modification II (Σ = 64.8947◦ after optimization) are effectively
reduced, and the offset of “tooth profile distortion” and “tooth axial twist” are lower by
31.6% and 31.7%, respectively; furthermore, tooth modification II (Σ = 64.8947◦ after
optimization) is significantly realized, and the tooth modification rates of the tooth profile
and tooth axial are about 97.6% and 94.7%, respectively, which is almost consistent with
the tooth modification parameters of Table 2.

5.3. Gearbox Vibration Measuring Experiment

The involute helical right-hand gear Z1 with different tooth modification parameters,
shown in Section 5.2, and the involute helical left-hand gear Z2, shown in Table 1, were
assembled as a gearbox (without modification, modification II and Σ = 65.3284◦ before
optimization, modification II and Σ = 64.8947◦ after optimization); then, the gearbox
vibration measuring experiment was carried out with the vibration measuring system
shown in Figure 12 and the JWY-II multifunctional gearbox loading test bench shown
in Figure 13, where the gearbox vibration measuring point is shown in Figure 14. In
Figure 13, the circular run-out of the input shaft and output shaft of the involute helical
gearbox are equal to or less than 1 µm, which will provide measuring accuracy for gearbox
vibration measuring experiment. As shown in Figures 6 and 13, the span of the two
bearing holes of the involute helical gearbox is L = 160 mm, the diameter of the gear
shaft of the involute helical gearbox is 60 mm, and the fit tolerance of the gear shaft
and bearing hole of the involute helical gearbox is Φ60 H8/d8; the error-related bearing
is zero, the error-related oil lubricating is zero, the thermal error of the machine tool
is zero, and the geometric error of the machine tool is zero; the input shaft speed is
800 rpm, the output shaft torque is 50 N·m, the sampling frequency of the three-axis
accelerometer is 1280 Hz, and the sampling time is 20 s. The three-axis accelerometer
shown in Figure 14 was taken to measure gearbox vibration, and the measured time-
domain vibration acceleration amplitude was transformed into frequency-domain vibration
acceleration amplitude through FFT transformation [33]. Then, the frequency domain
vibration acceleration amplitude of the gearbox vibration measuring point at the gear pairs
meshing frequency (1035 Hz) was extracted, and results are shown in Figures 15 and 16.
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Results show that, compared to the gearbox without modification, the vibration accelera-
tion amplitudes of the gearbox vibration measuring point with modification II (Σ = 65.3284◦

before optimization) and modification II (Σ = 64.8947◦ after optimization) are significantly re-
duced in X-direction and Z-direction, and the vibration acceleration amplitudes are increased
in Y-direction, but the increment is less than the reduction of X-direction and Z-direction;
furthermore, the vector sum of the vibration acceleration amplitudes of the gearbox vibration
measuring point with modification II (Σ = 65.3284◦ before optimization) and modification II
(Σ = 64.8947◦ after optimization) are lower than that of gearbox without modification, and
the reduction rates are 46.0% and 63.7%, respectively.

After the gearbox vibration measuring experiment, the tooth surface contact pattern
of the involute helical gearbox with different modification parameters was extracted, and
results are shown in Figure 17. Results show that there is obvious eccentric load on the
tooth surface of the gearbox without modification; there is a slight eccentric load on the
tooth surface of the gearbox with modification II (Σ = 65.3284◦ before optimization);
there is almost no eccentric load on the tooth surface of the gearbox with modification II
(Σ = 64.8947◦ after optimization).
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Figure 15. Frequency domain vibration acceleration amplitude of gearbox vibration measuring point
at gear pairs meshing frequency (1035 Hz): (a) X-direction at gearbox vibration measuring point
without modification; (b) Y-direction at gearbox vibration measuring point without modification;
(c) Z-direction at gearbox vibration measuring point without modification; (d) X-direction at
gearbox vibration measuring point with modification II (Σ = 65.3284◦ before optimization);
(e) Y-direction at gearbox vibration measuring point with modification II (Σ = 65.3284◦ be-
fore optimization); (f) Z-direction at gearbox vibration measuring point with modification
II (Σ = 65.3284◦ before optimization); (g) X-direction at gearbox vibration measuring point with
modification II (Σ = 64.8947◦ after optimization); (h) Y-direction at gearbox vibration measuring
point with modification II (Σ = 64.8947◦ after optimization); (i) Z-direction at gearbox vibration
measuring point with modification II (Σ = 64.8947◦ after optimization).
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Figure 16. Frequency domain vibration acceleration amplitude of gearbox vibration measuring
point at gear pairs meshing frequency (1035Hz): (a) gearbox without modification; (b) gearbox with
modification II (Σ = 65.3284◦ before optimization); (c) gearbox with modification II (Σ = 64.8947◦

after optimization).
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6. Conclusions

This paper proposes a method to quantitatively analyze the degradation of loaded
transmission character caused by the axis parallelism error of gear pairs. Specifically, the
axis parallelism error of gear pairs was equated with the tooth axial inclination error based
on the gear-meshing principle, and we established the tooth modification model with tooth
axial inclination error as the variable according to the involute helical gear form-grinding
process. Some specific conclusions are as follows:
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(1) Compared with the existing method, the method proposed in this paper can effec-
tively reduce “tooth profile distortion” and “tooth axial twist” of the involute helical
gear form-grinding process, thus improving loaded transmission character. In par-
ticular, the tooth surface modified error data show that “tooth profile distortion”
of modification II (Σ = 64.8947◦ after optimization) is reduced significantly, where
the tooth profile modification rate is about 98.6%; and the “tooth axial twist” of
modification II (Σ = 64.8947◦ after optimization) is reduced significantly, where the
tooth axial modification rate is about 95.7%;

(2) According to the grinding and measuring experiment, the Gleason measuring accu-
racy is level 4. Compared with modification II (Σ = 65.3284 ◦ before optimization), the
“tooth profile distortion” and “tooth axial twist” of modification II (Σ = 64.8947 ◦ after
optimization) are effectively reduced, and the offset of the “tooth profile distortion”
and “tooth axial twist” are, respectively, lower by 31.6% and 31.7%. Moreover, the
tooth modification of modification II (Σ = 64.8947 ◦ after optimization) is significantly
realized, and the tooth modification rates of the tooth profile and tooth axial are about
97.6% and 94.7%, respectively;

(3) According to the gearbox vibration measuring experiment, loaded transmission char-
acter is improved significantly. Compared to the gearbox without modification, the
reduction rate of the vector sum of the gearbox vibration amplitude of modification II
(Σ = 65.3284 ◦ before optimization) is 46.0%, and the reduction rate of the vector
sum of the gearbox vibration amplitude of modification II (Σ = 64.8947 ◦ after op-
timization) is 63.7%. Furthermore, there is an obvious eccentric load on the tooth
surface of the gearbox without modification; there is almost no eccentric load on the
tooth surface of the gearbox with modification II (Σ = 64.8947 ◦ after optimization).
Therefore, this paper can provide a theoretical and experimental basis for the research
of high-performance gear-grinding technology of gear-grinding machines.
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