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Abstract: The separate control method of flippers and the movement of the mass center makes
the active articulated tracked robot unable to realize higher-level motion and difficult to adapt to
rough and complex obstacle terrain. In this paper, a new design method of distributed autonomous
obstacle traversal controller for the novel six-track robot is proposed. The controller establishes
a unified control framework that includes all degrees of freedom of the robot so that the center
of mass tracking error and flipper motion tracking error can converge simultaneously to achieve
obstacle traversal independently of specific terrain or tasks. First, the forward kinematics model
and differential kinematics model of tracked robot are established to generate 3D motion, including
flipper angular velocity and body traction velocity. Then, the differential drive robot model is
extended into the differential kinematic model to eliminate the slip effect during obstacle traversal.
Finally, the feedback control law of the control system and the optimal solution for the singular
position of the robot structure are established. In addition, several simulation experiments and
physical prototype experiments in different obstacle terrains are executed. In the virtual simulation
experiment, the average trajectory error of the flipper is about 0.029 m. In the physical prototype
experiment, compared to the manual remote controller and the prior art controller, the average error
norm of the center of mass is reduced by 40.7% and 13.5%, respectively; the maximum slip norm is
reduced by 34.6% and 19.9%, respectively; and the obstacle crossing time is reduced by 21.3% and
9.3%, respectively, and they validate the accuracy and effectiveness of the designed controller.

Keywords: tracked robot; rough terrain; active flippers; differential kinematic model; adaptive
robust controller

1. Introduction

Currently, tracked robots are increasingly used in firefighting and rescue, post-disaster
rescue [1,2], planetary exploration [3–6], and in biochemical contamination scenarios, where
the terrain conditions are usually complex and unpredictable. Compared to wheeled and
legged robots, tracked robots are more suitable for this type of terrain because the larger
contact area of the tracks with the terrain allows for better load and traction capacity.
Moreover, this terrain requires robots with a high degree of mobility to overcome obsta-
cles, a capability that depends on the robot’s mechanical design. Therefore, researchers
have made many improvements to the mechanical structure of robots, typically adding
appropriate degrees of freedom at the legs [7], wheels [8], or track joints [9,10]. However, a
tracked robot with a high degree of freedom presents higher operation requirements for the
remote operator, while the increase in cognitive load inhibits the operator from performing
higher-level tasks. In particular, manual operation becomes extremely difficult when the
teleoperator is traversing rough terrain with limited visual feedback that blurs and flickers.

In order to improve the autonomous ability and terrain adaptability of tracked robots,
researchers have extensively studied the issues of stability [11], self-reconfiguration [12–14],
track-terrain interaction [15,16], and control [17–19].
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Nagatani, Okada, et al. [20] focused on active flipper control of the tracked robot Kenaf
and its second-generation Quince, leading to the development of a shared autonomy system,
which consists of a remotely controllable main track controller and a fully autonomous
sub-track controller. The autonomous system allows unskilled operators to traverse rough
terrain by remotely controlling the main track. However, the developed shared autonomous
system was not based on the forward and differential kinematic models, whereas the
separate control of the main track and the sub-tracks enhances the influence of the main
track speed on the obstacle traversal by the sub-tracks. Chen et al. [21,22] proposed a
composite motion mode for a tracked robot octopus with four arms and four flippers.
The presented control system is able to accurately estimate terrain information based
on joint angle and torque data, which are used to implement control of flippers, tracks,
and arms. The combined crawling and walking motion mode provides higher terrain
adaptability in complex unstructured terrain scenarios. Suzuki et al. [23,24] developed a
robotic system that can autonomously climb and descend stairs. The three-dimensional (3D)
scanning device installed on the Meisei Rescue Mk-4 robot is used for obstacle detection
and flipper configuration based on the type of the detected obstacle, while the IMU is
used for trajectory tracking control. However, the terrain environment in rescue scenarios
is often unpredictable and complex, while the simple flipper configuration cannot meet
the requirements of real rescue tasks. Colas et al. [25] proposed an autonomous stair
climbing method, based on path planning, in which the body and flipper paths are planned
separately, making the control of the flipper independent of the center of mass controller. In
addition, the flipper configuration does not consider the influence of the terrain on the slip,
which introduces posture estimation inaccuracy, causing the flipper to execute an incorrect
adjustment. Kojima et al. [26] proposed an autonomous spiral stair-climbing method,
using the reaction force from side walls by installing passive wheels at collision points and
automatically controlling the main track and sub-tracks. Geometric models are used to
confirm the trajectory convergence of the tracked robot during stair climbing; however, the
scheme is performed based on a known terrain environment in which collision forces and
slips may have an impact on the flipper configuration. Zhang et al. [27] proposed an online
method for adjusting the center of mass position of a tracked robot to enhance rollover
stability by changing the configuration of the robot arm. The experiment proves that this
method increases the stability of the tracked robot when traversing uneven terrain, but it
does not consider the effects of collision and slipping between the flipper and the terrain.
In fact, the wrong flipper configuration will lead to the inability of the tracked robot to
traverse complex terrain as well as affect its stability.

However, most tracked robots with active flippers are usually used in low-speed,
small-load rescue scenarios without considering the multiple terrains requirement of adapt-
ability. The research work involves specific tasks or specific terrain, such as stairclimbing in
urban ruin scenarios or typical obstacle traversal in wilderness rescue missions [28–30]. In
addition, the flipper control scheme of tracked robots is usually configured according to
the terrain and is independent of the center of mass controller. The lack of a unified control
framework that can include all the degrees of freedom of the tracked robot while consider-
ing crawler–terrain interaction and the adaptability of the flipper makes the tracking errors
of the centroid controller and the flipper controller fail to converge synchronously, whereas
the flipper cannot generate higher-level movements.

Therefore, the main contributions of the paper include:

(1) A new six-track robot, with wheeled, legged, and tracked advantages, is developed. It
is capable of high-speed driving; it has large load and high mobility; and it can adapt
to flat, soft, and obstacle-ridden terrain.

(2) A new distributed autonomous obstacle traversal controller for the six-track robot is
designed. The concepts of robotic forward and differential kinematics are applied to the
six-track robot and a unified control framework, including all joint degrees of freedom, is
established. The controller also integrates a slip-steering model, thus taking into account
both the slip effects between the track and the terrain and the adaptation of the flippers.
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(3) The feedback control law of the control system is derived based on the differential kine-
matic model, which enables the controller to control each flipper individually, achieving
obstacle traversal independently of specific terrain and tasks. The optimal solution
for the singular position of the six-track robot structure is also derived. Finally, the
robustness and effectiveness of the controller are verified via simulation and experiment.

The rest of this paper is organized as follows: Section 2 establishes the forward
kinematic model of the six-track robot. The differential kinematic models for the single
leg and system of the six-track robot are given in Sections 3 and 4, respectively. Section 5
introduces a unified adaptive controller, while a virtual scenario experiment and a physical
prototype experiment are designed in Section 6 to verify the performance of the proposed
controller. Finally, the main conclusions are summarized in Section 7.

2. Forward Kinematic Model of the Six-Track Robot

In this section, a forward kinematic model of the six-track robot, describing the
mapping of the position between the end points of the tracks and the robot body, is
developed. The six-track robot can be modelled in a simplified approach as a floating
base and six three-degree-of-freedom series kinematic chains, namely a floating base (0),
left front (1), right front (2), left center (3), right center (4), left rear (5), and right rear (6).
Each kinematic chain contains one passive joint and two active joints. The left kinematic
chain is formed by connecting the left track (link(i, 2), i ∈ (1, 3, 5)) to the left cantilever
(link(i, 1), i ∈ (1, 3, 5)) through an active rotating joint (θi,2, i ∈ (1, 3, 5)). Similarly, the
right kinematic chain is formed by connecting the right track (link(i, 2), i ∈ (2, 4, 6)) to the
right cantilever (link(i, 1), i ∈ (2, 4, 6)) through an active rotating joint (θi,2, i ∈ (2, 4, 6)). It
should be noted that the left and right cantilevers are connected to the robot body (link 0)
through the passive rotating joints (θi,1, i ∈ (1, 2, 3, 4, 5, 6)). The mechanical structure and
the kinematic chain numbering of the six-track robot are shown in Figure 1.
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The world coordinates system {CG} is fixed on the ground, and the body coordinates
system {CB} and base link coordinates system {C0} are fixed on the center-of-mass of the
robot body. The cantilever coordinates system

{iC1
}

, the track coordinates system
{iC2

}
,

and the wing–wheel coordinates system
{iC3

}
, which are fixed on the rotating joints, are

also established. The Zi,j axis is set as the rotation axis of the joint (i, j), while the Xi,j axis
is perpendicular to the Zi,j−1 and Zi,j axes, with a direction from the Zi,j−1 axis to the Zi,j
axis, where i ∈ (1, 2, 3, 4, 5, 6), j ∈ (1, 2). The jth rotation joint of the ith leg kinematic chain
are denoted as shown in Figure 2. The nominal parameters of the six-track robot are given
in Table 1. The Denavit–Hartenberg (D-H) parameters of the kinematic chain are given
in Table 2.
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Table 1. Nominal parameters of six-track robot.

Parameter Description

δ Flipper angle offset
T Track length
W Cantilever distance
D Cantilever–track distance
R Track wheel radius
r Wing wheel radius
L Cantilever length

Table 2. D-H parameters of the six-track robot, where i ∈ (1, 2, 3, 4, 5, 6), j ∈ (1, 2).

Link θi,j di,j ai,j αi,j

i, 1 θi,1
(
−1i+1

)
D L 0

i, 2 θi,2 + δ 0 T/2 0

i,1T2 and i,1T3 denote the transformation matrices of the track coordinates system{iC2
}

and the wing–wheel coordinates system
{iC3

}
, with respect to the cantilever coordi-

nates system
{iC1

}
, respectively. The coordinates transformation between the kinematic

chains can be calculated using the D-H parameter. The homogeneous transformation matrix
of the track coordinates system

{iC2
}

, with respect to the cantilever coordinates system{iC1
}

, in the ith leg kinematic chain can be expressed as:

i,1T2(θi,1) =

[i,1R2(θi,1)
i,1P2(θi,1)

0T 1

]
=


c1 −s1 0 Lc1
s1 c1 0 Ls1
0 0 1 D
0 0 0 1

 (1)
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L is the vertical distance between the cantilever coordinates system and the track
coordinates system about the Z axis that is the length of the cantilever. D is the offset
distance between the cantilever coordinates system and the track coordinates system. The
homogeneous transformation matrix of the wing–wheel coordinates system

{iC3
}

with
respect to the track coordinates system

{iC2
}

can be expressed as:

i,2T3(θi,2 + δ) =

[
i,2R3(θi,2 + δ) i,2P3(θi,2 + δ)

0T 1

]
=


c2 −s2 0 T

2 c2

s2 c2 0 T
2 s2

0 0 1 0
0 0 0 1

 (2)

where T is the distance between the centers of the two wing wheels of the track and δ is

the flipper angle offset. Let
=
θi = (θi,1, θi,2 + δ)T be the joint configuration vector of the ith

leg kinematic chain, while the homogeneous transformation matrix of the wing–wheel
coordinates system with respect to the base link coordinates system {C0} can be expressed
by Equations (1) and (2).

i,0T3

(
=
θ i

)
= i,0P1 +

i,1T2(θi,1)
i,2T3(θi,2 + δ) =


c1c2 − s1s2 −c1s2 − c2s1 0 T

2 c1c2 − T
2 s1s2 + Lc1 + xi

c1s2 + c2s1 c1c2 − s1s2 0 T
2 s1c2 +

T
2 c1s2 + Ls1 + yi

0 0 1 D + zi
0 0 0 1

 (3)

where i,0P1 = (xi, yi, zi) is the position of the cantilever coordinates system with respect
to the body coordinates system of the ith leg kinematic chain. The symbols s1, c1, s2,
and c2 denote sinθi,1, cosθi,1, sin(θi,2 + δ), and cos(θi,2 + δ), respectively. All joint angles
are considered positive in the counterclockwise direction. The choice of the base link
coordinates system forces the coordinates system {C0} to be rotated clockwise by π/2 with
respect to the body coordinates system {CB}, as shown in Figure 2. The constant rotation
matrix BR0 is used to transform the base link coordinates system into the body coordinates
system. Then, the homogeneous transformation matrix of the wing–wheel coordinates
system under the body coordinates system {CB} can be expressed by:

i,BT3

(
=
θ i

)
=

[
BR0

BP0

0T 1

]
i,0T3

(
=
θ i

)

BR0 =

1 0 0
0 0 −1
0 1 0

 BP0 =

0
0
0

 (4)

Let i,3Pe be the position vector of the track end point with respect to the wing–wheel
coordinates system

{iC3
}

, whereas the posture relationship of the track end point with
respect to the body coordinates system {CB} can be expressed by a function containing
the joint angle variables θi,1 and θi,2, whose forward kinematic equations are given by the
following homogeneous matrix:[i,BPe

1

]
= i,BT3

(
=
θ i

)[i,3Pe
1

]
(5)

The mapping between the vector i,3Pe and the vector i,BPe is defined in Equation (5),
allowing us to build the relationship between the linear velocity of the track end point and
both the angular velocity of the active joint

.
θi,2 and the passive joint

.
θi,1.
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3. Differential Kinematic Model for the Single Leg of the Six-Track Robot

In this section, the Jacobi matrix for the kinematic chain of Leg 1 (i.e., the left front
leg) of the six-track robot will be calculated in detail, while the kinematic chains of the
remaining legs are calculated in the same way as Leg 1. The vectors among the left front
legs of the tracked robot are illustrated in Figure 3. 1,0P1 and 1,0P3 denote the position
vectors of the coordinates system

{1C1
}

and coordinates system
{1C3

}
origin, relative to

the coordinates system {C0}, whereas the left superscript indicates the kinetic chain of Leg
1. 1,1P2 denotes the position vector of the origin of the coordinates system

{1C2
}

relative
to the coordinates system

{1C1
}

, while 1,2P3 denotes the position vector of the origin of
the coordinates system

{1C3
}

relative to the coordinates system
{1C2

}
. The geometric

relationship can be obtained as:

1,0P3 = 1,0P1 +
1,0R1(0)

1,1P2 +
1,0R1(0)

1,1R2(θ1,1)
1,2P3 (6)
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Figure 3. Single-leg differential kinematics of six-track robot.

The position between the coordinates system
{1C1

}
and the coordinates system {C0}

is fixed without rotational transformation. 1,0P1 and 1,0R1(0) are constant matrices. Thus,
1,0R1(0) ∈ SO(3) is expressed as:

1,0R1(0) =

1 0 0
0 1 0
0 0 1

 (7)

Equation (6) is differentiated with respect to time and the constant matrix term is zero.
Next, the expression of the linear velocity of Linkage 2 is established by:

1,0 .
P3 = 1,0R1(0)

1,1 .
P2 +

1,0R1(0)
1,1 .

R2(θ1,1)
1,2P3 +

1,0R1(0)
1,1R2(θ1,1)

1,2 .
P3 (8)

where 1,1
.
P2 is the linear velocity of the origin of the coordinates system

{1C2
}

, with respect
to the coordinates system

{1C1
}

, expressed in the coordinates system
{1C1

}
. Since Joint 1

is a rotational joint, 1,1
.
P2 can be calculated by:

1,1 .
P2 = 1,1ω2 × 1,1P2 (9)

where 1,1ω2 is the angular velocity of the origin of the coordinates system
{1C2

}
, relative

to the coordinates system
{1C1

}
, expressed in the coordinates system

{1C1
}

. Since 1,1ω2
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and 1,1P2 are not easily observable in the coordinates system
{1C1

}
, Equation (9) is defined

in the coordinates system {C0} as follows:

1,1 .
P2 = 1,1R0

(
1ω0

1,2 × 1P0
1,2

)
(10)

where 1ω0
1,2 is the angular velocity of the origin of the coordinates system

{1C2
}

, with re-
spect to the coordinates system

{1C1
}

, expressed in the coordinates system {C0}. Similarly,
the second term on the right-hand side of Equation (8) is described as:

1,0R1(0)
1,1 .

R2(θ1,1)
1,2P3 = 1ω0

1,2 ×
(

1,0P3 − 1,0P2

)
(11)

Since Joint 2 is a rotational joint, the third term on the right-hand side of Equation (8)
can be expressed as:

1,0R1(0)
1,1R2(θ1,1)

1,2 .
P3 = 1ω0

2,3 ×
(

1,0P3 − 1,0P2

)
(12)

Using Equations (9)–(12) in Equation (8), the following relation is derived:

1,0 .
P3 = 1ω0

1,2 ×
(

1,0P3 − 1,0P1

)
+ 1ω0

2,3 ×
(

1,0P3 − 1,0P2

)
(13)

where
1ω0

1,2 =
.
θ1,1

1Ẑ1

1ω0
2,3 =

.
θ1,2

1Ẑ2 (14)

where 1Ẑ1 and 1Ẑ2 are the rotation axes of the coordinates system
{1C1

}
and the coordinates

system
{1C2

}
in the kinematic chain of Leg 1, respectively. Linkage 1 and Linkage 2 rotate at

angular velocities of
.
θ1,1 and

.
θ1,2, respectively. Eventually, Equation (8) can be expressed as:

1,0 .
P3 =

[
1Ẑ1 ×

(
1,0P3 − 1,0P1

)
1Ẑ2 ×

(
1,0P3 − 1,0P2

)][ .
θ1,1.
θ1,2

]
(15)

Since the position vector of the track end point with respect to the coordinates system{1C3
}

is constant, the Jacobi matrix J1

(
=
θ1

)
of the linear velocity of the track end point in

the body coordinates system {CB} is computed as follows:

1,B .
Pe =

BR0
1,0 .

P3 = BR0

[
1Ẑ1 ×

(
1,0P3 − 1,0P1

)
1Ẑ2 ×

(
1,0P3 − 1,0P2

)][ .
θ1,1.
θ1,2

]
(16)

Considering the forward kinematic model as developed in Section 2, the terms of the
Jacobi matrix in Equation (16) can be expressed as:

1Ẑ1 = 1,0R1(0)

0
0
1

, 1Ẑ2 = 1,0R1(0)
1,1R2(θ1,1)

0
0
1


[1,0P1

1

]
=


x1
y1
z1
1

,
[1,0P2

1

]
= 1,0T2(θ1,1)


0
0
0
1

,
[1,0P3

1

]
= 1,0T3

(
=
θ1

)
0
0
0
1

 (17)
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Ultimately, the track end point linear velocity in the Leg 1 kinematic chain of the
six-track robot can be expressed in the body coordinates system as:

1,B .
Pe = J1

(
=
θ1

) .
=
θ1 (18)

where J1

(
=
θ1

)
is the Jacobi matrix of the kinetic chain of Leg 1, while the terms on the

right-hand side of the equation are as follows:

J1

(
=
θ1

)
=

− T
2 s1c2 − T

2 c1s2 − Ls1 − T
2 s1c2 − T

2 c1s2
0 0

T
2 c1c2 − T

2 s1s2 + Lc1
T
2 c1c2 − T

2 s1s2


=
θ1 =

[
θ1,1

θ1,2 + δ

]
,

.
=
θ1 =

[ .
θ1,1.
θ1,2

]
(19)

The calculation process of the remaining kinematic chains is similar to Leg 1. The
linear velocity of each robot track end point i,B

.
Pe can be expressed as:

i,B .
Pe = Ji

(
=
θi

) .
=
θi

=
θi =

[
θi,1

θi,2 + δ

]
,

.
=
θi =

[ .
θi,1.
θi,2

]
(20)

where Ji

(
=
θi

)
is the (3 × 2) geometric Jacobi matrix of the ith leg kinematic chain, which

establishes the mapping relationship between the linear velocity of the track end point i,B
.
Pe

and the joint angular velocities
.
θi,1 and

.
θi,2.

4. Differential Kinematic Model for the Six-Track Robot System

In this section, the differential kinematic model of the six-track robot is introduced.
Since the tracked robot has six identical serial kinematic chains, only the detailed geometric
Jacobi matrix calculation process for the Leg 1 kinematic chain (left front leg kinematic
chain) is provided.

Let 1,BPe be the position vector of the track end point of the Leg 1 kinematic chain
in the body coordinates system {CB}, while the position vector 1,GPe of the track end
point in the world coordinates system {CG} can be obtained by the following coordinates
transformation (as shown in Figure 4):

1,GPe =
GPB + GRB

1,BPe (21)

where GRB denotes the rotation matrix of the body coordinates system {CB} with respect
to the world coordinates system {CG}. GPB denotes the position vector of the body coor-
dinates system origin {CB} in the world coordinates system {CG}, while differentiating
Equation (21) with respect to time yields:

1,G .
Pe =

G .
PB + G .

RB
1,BPe +

GRB
1,B .

Pe (22)

where, G
.
PB represents the linear velocity vector of the body coordinates system {CB}, with

respect to the world coordinates system {CG}, whereas 1,B
.
Pe represents the linear velocity

vector of the track end point of leg 1 kinematic chain, with respect to the body coordinates
system {CB}, which is a function of joint angular velocities

.
θ1,1 and

.
θ1,2 (see Equation (18)).
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Due to the fact that GΩB is the angular velocity vector of the coordinates system {CB}
with respect to the coordinates system {CG}, the second term on the right-hand side of
Equation (22) can be expressed as:

G .
RB

1,BPe = [GΩB]×
GRB

1,BPe (23)

where [GΩB]× is the antisymmetric matrix about the angular velocity vector GΩB. Ac-
cording to the formula of antisymmetric matrix and vector product, Equation (23) can be
expressed as:

[GΩB]×
1PG

B,e = −
[

1,GPe − GPB

]
× GΩB (24)

where 1PG
B,e represents the position vector of the track end point in the Leg 1 kinematic chain,

with respect to the body coordinates system {CB}, expressed in the world coordinates
system {CG} so that Equation (22) can be expressed as:

1,G .
Pe =

G .
PB −

[
1,GPe − GPB

]
×

GΩB + GRB
1,B .

Pe (25)

GΩB and [GΩB]× are given as:

GΩB =
[
Ωx Ωy Ωz

]T

[GΩB]× =

 0 −Ωz Ωy
Ωz 0 −Ωx
−Ωy Ωx 0

 (26)

Equation (25) constructs the mapping relationship between the track end point line
velocity 1,G

.
Pe expressed in the world coordinates system and the body line velocity G

.
PB,

the body angular velocity GΩB, and the track end point line velocity 1,B
.
Pe expressed in the

body coordinates system. 1,B
.
Pe is calculated in detail in Section 3 as a function of the angles

θi,1 and θi,2 and the angular velocities
.
θi,1 and

.
θi,1, given by:

1,B .
Pe = J1

(
=
θ1

) .
=
θ1 (27)
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Based on the above derivation, the complete system of differential kinematic equations
of the six-track robot can be expressed as:

G .
Pe = J̆

(
=
θs

) .
=
θs (28)

Among them,
G .

Pe =
[

1,G .
Pe

2,G .
Pe

3,G .
Pe

4,G .
Pe

5,G .
Pe

6,G .
Pe

]T

J̆
(
=
θs

)
=



I3×3 −
[GRB, 1,BPe

]
×

GRBJ1

(
=
θ1

)
03×2 03×2 03×2 03×2 03×2

I3×3 −
[GRB, 2,BPe

]
× 03×2

GRBJ2

(
=
θ2

)
03×2 03×2 03×2 03×2

I3×3 −
[GRB, 3,BPe

]
× 03×2 03×2

GRBJ3

(
=
θ3

)
03×2 03×2 03×2

I3×3 −
[GRB, 4,BPe

]
× 03×2 03×2 03×2

GRBJ4

(
=
θ4

)
03×2 03×2

I3×3 −
[GRB, 5,BPe

]
× 03×2 03×2 03×2 03×2

GRBJ5

(
=
θ5

)
03×2

I3×3 −
[GRB, 6,BPe

]
× 03×2 03×2 03×2 03×2 03×2

GRBJ6

(
=
θ6

)


.
=
θs =

[
G

.
PB

GΩB

.
θ1,1

.
θ1,2

.
θ2,1

.
θ2,2

.
θ3,1

.
θ3,2

.
θ4,1

.
θ4,2

.
θ5,1

.
θ5,2

.
θ6,1

.
θ6,2

]T
(29)

The six-track robot is approximated as a differential drive robot, and the functional
relationship between the control quantity which contains the left and right wheel speed Vl ,
Vr with the body linear velocity G

.
PB and the body angular velocity GΩB is established:

.
X = VccosϕB

.
Y = Vc sin ϕB

GΩB =

 0
0
.
ϕB

, Vc =
vr + vl

2
,

.
ϕB =

vr − vl
L

(30)

This model does not consider the slipping of the tracked robot on uneven terrain,
whereas to prevent overdriving of the tracks during obstacle traversal, the model with
slippage parameters proposed by [31] is used:

Vc =
vr(1− ρr) + vl(1− ρl)

2

.
ϕB =

vr(1− ρr)− vl(1− ρl)

2
(31)

where
ρl
ρr

= −sgn(vr.vl)

∣∣∣∣vr

vl

∣∣∣∣n (32)

where n is a parameter concerning the track size, track tread, and track–ground contact
properties and sgn is a symbolic function. Consequently, the body linear velocity G

.
PB and

the body angular velocity GΩB can be expressed as:

G .
PB = F(ϕB, ρr, ρl)

[
vr
vl

]
=


(1−ρr)

2 cB
(1−ρl)

2 cB
(1−ρr)

2 sB
(1−ρl)

2 sB

0 0

[vr
vl

]
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GΩB = G(ρr, ρl)

[
vr
vl

]
=

 0 0
0 0

1−ρr
2 − 1−ρl

2

[vr
vl

]
(33)

According to Equations (28) and (33), the final complete differential kinematic model
of the six-track robot is given by:

G .
Pe = J

(
=
θs

)
u (34)

Among them,
G .

Pe =
[

1,G .
Pe

2,G .
Pe

3,G .
Pe

4,G .
Pe

5,G .
Pe

6,G .
Pe

]T

J
(
=
θs

)
=



F(ϕB, ρr , ρl)−
[1,GPe − GPB

]
×G(ρr , ρl)

GRBJ1

(
=
θ1

)
03×2 03×2 03×2 03×2 03×2

F(ϕB, ρr , ρl)−
[2,GPe − GPB

]
×G(ρr , ρl) 03×2

GRBJ2

(
=
θ2

)
03×2 03×2 03×2 03×2

F(ϕB, ρr , ρl)−
[3,GPe − GPB

]
×G(ρr , ρl) 03×2 03×2

GRBJ3

(
=
θ3

)
03×2 03×2 03×2

F(ϕB, ρr , ρl)−
[4,GPe − GPB

]
×G(ρr , ρl) 03×2 03×2 03×2

GRBJ4

(
=
θ4

)
03×2 03×2

F(ϕB, ρr , ρl)−
[5,GPe − GPB

]
×G(ρr , ρl) 03×2 03×2 03×2 03×2

GRBJ5

(
=
θ5

)
03×2

F(ϕB, ρr , ρl)−
[6,GPe − GPB

]
×G(ρr , ρl) 03×2 03×2 03×2 03×2 03×2

GRBJ6

(
=
θ6

)


u =

[
vr vl

.
θ1,1

.
θ1,2

.
θ2,1

.
θ2,2

.
θ3,1

.
θ3,2

.
θ4,1

.
θ4,2

.
θ5,1

.
θ5,2

.
θ6,1

.
θ6,2

]T
(35)

The differential kinematic model in Equation (34) defines the mapping relationship
between the linear velocity G

.
Pe of the six-track robot end points and the control quantity u,

which is used to implement the controller design of the tracked robot.

5. Autonomous Obstacle Traversal Controller for the Six-Track Robot

In this section, we will introduce the design method of autonomous obstacle traversal
controller. The controller framework is shown in Figure 5, which mainly contains the control
volume generation module, the inverse kinematic model module, and the feedback system.
The control volume generation module overcomes the effect of suspension deformation on
controller performance by separating the passive joints from the active joints. The inverse
kinematic model module gives the method of calculation of the right pseudo-inverse of
the Jacobi matrix and the singular position. The feedback system mainly consists of the
positioning system, line displacement sensor feedback system, and motor feedback system.
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5.1. Calculation of Control Volume

Let P(t) be the desired trajectory of the end point of the track that the robot needs
to follow, and GPe(t) be the actual position of the end point of the track in the world
coordinates system {CG}, which can be expressed as:

GPe(t) =
[

1,GPe(t)
2,GPe(t)

3,GPe(t)
4,GPe(t)

5,GPe(t)
6,GPe(t)

]T
(36)

The end point tracking error of the robot tracks can be expressed by the
following equation:

ep(t) = P(t)− GPe(t) (37)

The controller generates the control input u(t), according to the control error ep(t), to
enable the tracked robot to follow the desired trajectory. In order to make the tracking error
converge quickly and steadily, the feedback control rate of the tracked robot is designed as
follows. Since the joint angle θi,1 in the established forward kinematic model is a passive
rotational joint (as in Figure 1) which cannot be controlled during the obstacle traversal
process, the differential kinematic equation in Equation (34) is rewritten in the form of the
active joint separated from the passive joint, expressed as:

G .
Pe(t) = J̃

(
=
θs(t)

)
~
u(t) + D

(
=
θs(t)

)
¯
u(t)

~
u(t) =



vr(t)
vr(t).

θ1,2(t).
θ2,2(t).
θ3,2(t).
θ4,2(t).
θ5,2(t).
θ6,2(t)


,
¯
u(t) =



.
θ1,1(t).
θ2,1(t).
θ3,1(t).
θ4,1(t).
θ5,1(t).
θ6,1(t)


(38)

Among them,

~
J
(
=
θs(t)

)
= [Js1 Js2 Js4 Js6 Js8 Js10 Js12 Js14] ∈ R6×8

D
(
=
θs(t)

)
= [Js3 Js5 Js7 Js9 Js11 Js13] ∈ R6×6 (39)

where Jsi is the column vector of the Jacobi matrix J
(
=
θs

)
at moment t. Equation (38)

shows that this controller can directly calculate the control input
~
u(t) containing only the

active joints according to the desired track end point line speed, so the effect of the passive
joints is independent of the control rate. Thus, differentiating Equation (37) with respect to
time yields:

.
ep(t) =

.
P(t)−

~
J
(
=
θs(t)

)
~
u(t)−D

(
=
θs(t)

)
¯
u(t) (40)

In order to make the control error ep(t), as established in Equation (37), converge
asymptotically and steadily to zero, it is linearized as follows:

.
ep(t)−Kep(t) = 0 (41)

where K is the gain matrix, which is a positive definite matrix, when the system can be
asymptotically stable. According to the error differential model, described in Equation (38),
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as well as the linear system in Equation (41), the active joint control input
~
u(t) can be

obtained using the following equation:

~
u(t) = J̃

†
(
=
θs(t)

)(
.
P(t)−D

(
=
θs(t)

)
¯
u(t) + Kep(t)

)
(42)

where J̃
†
(
=
θs(t)

)
is the right pseudo-inverse matrix of the Jacobi matrix J̃

(
=
θs(t)

)
at time

t. The convergence rate of the system error depends on gain matrix K ∈ R18×18. The
larger the eigenvalue of the gain matrix, the faster the convergence rate of the system
error. Therefore, the active joint control input

~
u(t), calculated in Equation (42), leads to the

following operational positional space dynamics:

.
ep(t) =

.
P(t)−D

(
=
θs(t)

)
¯
u(t)− J̃

(
=
θs(t)

)
J̃

†
(
=
θs(t)

)(
.
P(t)−D

(
=
θs(t)

)
¯
u(t) + Kep(t)

)
(43)

where J̃
(
=
θs(t)

)
J̃

†
(
=
θs(t)

)
= I is a unit matrix. It can be easily proven that the computed

control inputs can ensure stable convergence of the system. Ultimately, the six flipper ends
of the tracked robot can follow the specified desired trajectory. The control input

~
u(t) is

computed by Equation (42), making the system error converge asymptotically, whereas the
asymptotic stability of the system under this control input is demonstrated by the virtual
simulation experiments in Section 6.

5.2. Kinematic Singularities

The inversion of the Jacobian can represent a serious inconvenience not only at a
singularity but also in the neighborhood of a singularity. This situation is characterized
by the loss of some spatial freedom of operation of the robot, implying that low desired
velocities in corresponding directions will lead to extremely high joint velocities. This
behavior is particularly problematic for inverse kinematics algorithms, as introduced in
Section 5.1. Therefore, the singularity avoidance treatment of Jacobi matrices must be
performed. An alternative solution, overcoming the problem of inverting differential
kinematics in the neighborhood of a singularity, is provided by the so-called damped
least squares (DLS) inverse, for which a velocity damping term is introduced, making a
compromise between tracking accuracy and joint speed, i.e., satisfying:

J̃
>
= J̃

T
(

J̃̃J
T
+ η2I

)−1
(44)

where η is a damping factor that renders the inversion better conditioned from a numerical
viewpoint. In order to find the solution

~
u(t), Equation (38) is rewritten as the following

linear equation:
G .

Pe(t)−D
(
=
θs(t)

)
¯
u(t) = J̃

(
=
θs(t)

)
~
u(t) (45)

It can be shown that such a solution can be obtained by reformulating the problem in
terms of the cost functional minimization:

g
(~

u(t)
)
=

1
2
‖G .

Pe(t)−D
(
=
θs(t)

)
¯
u(t)− J̃

(
=
θs(t)

)
~
u(t)‖

2
+

1
2

η2‖~
u(t)‖

2
(46)

The introduction of the first term allows a finite inversion error to be tolerated, with
the advantage of norm-bounded velocities. The factor η establishes the relative weight
between the two objectives, while there are techniques for selecting optimal values for
the damping factor. However, this approach compromises the accuracy in all directions
at the end of the robot. Specifically, low values of η can lead to the accurate solution of
J̃
>

, but the robustness is reduced around singular values, whereas high values of η lead
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to a reduction in tracking accuracy. This indicates that it is difficult to meet the robot
performance requirements while η remains constant throughout the operating position
space. It is common practice to dynamically adjust η by choosing a threshold that can
represent the singular region. The results show that the damping factor can be adaptively
adjusted according to the following equation:

η2 =


0, σ̂n ≥ ε(

1−
(

σ̂n

ε

)2
)

λ2
m, other

(47)

where σ̂n is the estimate of the minimum singular value, ε is the set threshold for determin-
ing whether the robot is singular or not, and λm is the maximum damping value of the
singular region. For more details on the dynamic adjustment of the damping factor η, a
detailed analysis can be found in [32].

6. Experiments
6.1. Virtual Simulation Experiments

Two scenarios are designed in the virtual simulation experiment: (1) S-curve terrain sce-
nario, designed to verify the performance of the autonomous obstacle traversal controller in
field rescue missions, including the same tracking capabilities as the 2D trajectory tracking
controller and generation of appropriate joint commands, ensuring that the six-track robot
can approach obstacles correctly and successfully navigate through complex environments;
(2) single-sided step obstacle scenario, designed to verify the independent control capability
of each flipper during the execution of the task. In the simulation experiments, the terrain
and robot models are built in the virtual robot simulation platform CoppeliaSim [33], which
has an open dynamics engine to realistically simulate the interaction between the robot and
the environment.

6.1.1. S-Curve Scenario Experiment Phrasing

The S-curved scenario contains a step obstacle 0.35 m high, 6 m long, and 8 m wide as
well as a slope obstacle 6 m long and 4 m wide with a slope of 30◦. The collision-free desired
trajectory of the six-track robot in the virtual simulation platform is planned manually. On
flat terrain, the planned desired path is located at a specific distance above the ground
determined by the physical size of the tracks in order to restore the state of the six-track
robot moving at high speed on wheels. On slopes and step terrain, the planned desired path
is located on the obstacle surface. The robot is placed at an initial position 2 m offset from
the planned path with an initial heading angle of 30 degrees. The controller will generate
appropriate control commands, in order to guide the robot to appropriately approach the
sloping terrain and obstacle terrain.

The performance of the controller is evaluated by analyzing the system asymptotic
stability and trajectory tracking accuracy, while the track is configured so that there is no
relative sliding against the terrain; that is, the slip parameter in Equation (31) is zero. The
actual trajectories of the tracked robot center of mass and the six flipper end points are
illustrated in Figure 6 using different colors. Figure 7a–c show the trajectory error norm of
front, middle, and rear flipper end points, respectively, and Figure 7d shows the center of
mass trajectory error norm. The initial large norm error is due to the robot being placed
at the initial position 2 m offset from the planned path, while the convergence speed of
the trajectory error norm depends on the eigenvalues of the gain matrix K. When the gain
matrix K ∈ R18×18 in Equation (42) is K = diag{λ1, . . . , λ18}, where λk = 0.4, k ∈ 1, . . . , 18,
the convergence rate of the trajectory error norm of the six flippers is about 0.998, and the
asymptotic stability of the system is reflected.
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Subfigure (a) indicates the error norms of the front flipper. Subfigure (b) indicates the error norms of
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the error norm of the center of mass. A indicates that the increase of error norm is due to the robot in
a raised pose at the climbing end stage. B indicates that the increase of error norm is due to the rapid
drop of the robot under the effect of gravity.

The tracking accuracy of the controller is evaluated according to the following criteria:
(1) the trajectory error norm ‖ePi‖ of the six flippers and (2) the trajectory error norm ‖ePB‖
of the robot’s center of mass. It is noted that within the timeframe ∆t = [85, 95], the front
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flipper error norm ‖eP1‖ and error norm ‖eP2‖ increase rapidly from 0.02 m to 0.1 m, while
the rest of the flipper error norm is stable at about 0.02 m. This situation occurs because
the robot is in a raised pose at the climbing end stage, as shown at point A in Figure 5.
By following the desired path, it exceeds the working space of the front flipper, so the
desired trajectory cannot be tracked effectively, while the influence of this attitude on the
middle and rear tracks is smaller. Similarly, within the timeframe ∆t = [135, 145], the error
norm ‖eP1‖ and error norm ‖eP2‖ of the front flipper increases from 0.013 m to 0.19 m,
respectively, which is caused by the rapid drop of the robot under the effect of gravity after
the robot passes through the flat slope, as shown at point B of Figure 5. It is worth noting
that the effect of this drop on the error norm of the rear flipper was greater than that of the
middle flipper, which is consistent with what is generally known. During the timeframe
∆t = [120, 130], the robot is in the stage of traversing the step obstacle, while the error norm
‖eP1‖ and error norm ‖eP2‖ vary slightly between 0.02 m and 0.05 m, respectively, which is
mainly caused by the abrupt raising of the track main wheel.

On the horizontal terrain, the six-track robot can move at high speed using the wheel,
while the tracking error of the flipper trajectory is constant at 0.02 m, which shows high
tracking accuracy. Furthermore, under the effect of gravity, the collision causes a small
deviation of the robot’s center of mass, as shown in Figure 7d. However, the controller can
generate the appropriate control commands to rapidly stabilize the center of mass trajectory
error norm and avoid the trajectory deviation and heading oscillation. The experiment
proves that the autonomous obstacle traversal controller enables synchronous and stable
convergence of flipper error and track traction within a unified control framework while it
maintains a high tracking accuracy.

6.1.2. Single-Sided Step Scenario Experiment

A single-sided step scenario consists of four steps, with each step having a height of
0.2 m, a length of 2 m, and a width of 2 m. The robot was placed at an initial position of
5 m from the step, which ensured that the robot could only pass the step on the left side,
while the right side always walked on the ground, as it was meant to provide sufficient
friction and prevent the robot from tipping over.

The actual trajectories of the six flippers and the center of mass of the tracked robot are
shown in Figure 8, whereas the trajectory error norm of the six flippers during the task is
reported in Figure 9a–c. The trajectory error norm of the robot center of mass is illustrated
in Figure 9d.
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Figure 9. Tracking accuracy analysis in single-sided step scenario. Subfigure (a) indicates the error
norms of the front flipper. Subfigure (b) indicates the error norms of the middle flipper. Subfigure
(c) indicates the error norms of the rear flipper. Subfigure (d) indicates the error norm of the center
of mass.

According to the conclusion, the left trajectory error norm of the tracked robot is
always larger than the right trajectory error norm, which is caused by the undulation of the
left terrain. Among them, the trajectory error of the flipper increases slightly at t = 28 s,
which is mainly caused by the main wheel climbing. Around the timestamps t = 40 s
and t = 68 s, the increase of the robot body roll angle causes the increase of the center of
mass trajectory error norm, which can recover quickly under the action of the controller,
while the error norm of the flipper increases to about 0.04 m. During the traversal of
the second step, the further increase of the robot’s roll angle causes an increase in the
mass trajectory error norm to 0.034 m, while the flipper trajectory error norm increases
to 0.063 m. During the obstacle traversal, the average trajectory error of the flipper was
0.029 m, the time of the obstacle crossing was 68 s, and the maximum roll angle of the robot
was 21◦. The experiment proves that the designed controller can independently control
the six flippers according to the planned trajectory and realize high-precision autonomous
obstacle traversal.

6.2. Physical Prototype Experiment

In order to obtain the performance of the autonomous obstacle traversal controller
in comparison to the manual remote control and the existing controller under uniform
index, traversal of circular experimental fields with short steps, trenches, and slopes is
performed. In the case of the circular experimental fields in the RVIZ (Figure 10), the
environmental data are acquired by an on-board 32-line LiDAR and replicated using SLAM
technology. In the process of obstacle traversal in the field terrain, the suspension is
deformed to different degrees due to uneven force, and the influence of this deformation on
the designed controller is mainly reflected in the passive joint angle and angular velocity, so
it is necessary to establish the mapping relationship between the suspension deformation
displacement and the passive joint. We measure the deformation of the suspension in real
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time through the line displacement sensor, which is installed at the position parallel to the
suspension, and the mapping between the suspension displacement and the angular and
angular velocities of the passive joints is completed through geometric relations. Then,
the passive joint is separated from the active joint in the control algorithm so that the
influence of the suspension deformation on the robot motion and control performance can
be eliminated.
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Figure 10. Circular experimental fields with short step, trench, and slope terrain. The blue line is the
planned path that the tracked robot must follow.

The position information of the complete baseline path is obtained via GPS fixed-point
sampling and generated via interpolation, which will be used as the desired path for the
manual remote control and the prior art obstacle traversal controller. In addition, this path
position information is combined with a forward kinematic model of the tracked robot,
while the terrain parameters of the circular experimental field acquired by the LIDAR are
also considered in order to generate the desired path that can be tracked by the autonomous
obstacle traversal controller. The prior art obstacle traversal controller was described in [34],
in which the center of mass controller and the flipper position controller are independent
of each other. The hardware of the six-tracked robot includes remote control, a wireless
transceiver module, an industrial computer, a drive motor, a gait motor, a battery, a line
displacement sensor, LIDAR and GPS/IMU, etc. The remote control can send different
mode commands, and the control algorithm is deployed in the Ubuntu system of the
industrial computer. The hardware block diagram is shown in Figure 11.

Snapshots of the six-track robot traversing the trench terrain of the circular experi-
mental field are shown in Figure 12, while the flipper error norm and the center of mass
error norm are illustrated in Figure 13. The width of the trench terrain is 0.8 m, the length
is 3 m, and the height is 0.4 m. The tracked robot has a load of 500 kg and crosses the
trench at 0.16 m/s. Observations showed that during the trench traversal, there were
two relatively significant increases of the flipper error norm. The first one occurs in the
timeframe ∆t = [14, 16], the front flipper error norm increases from 0.04 m to 0.11 m as the
front flipper nears the other end of the trench, and the robot broke its equilibrium under the
influence of gravity, as shown in Figure 12c. The second increase occurs in the timeframe
∆t = [20, 22], when there is a slight increase in error norm of the front flipper and rear
flipper, which occurs when the robot’s rear flipper is removed from the trench, as shown in
Figure 12e. However, these two cases have less influence on the middle flipper error norm,
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which is consistent with what is known. Additionally, in the whole trench traversal, the
center of mass error norm is stable at about 0.04 m.
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Figure 13. Trajectory error norm of tracked robot through trench terrain. Subfigure (a) indicates
the error norms of the front flipper. Subfigure (b) indicates the error norms of the middle flipper.
Subfigure (c) indicates the error norms of the rear flipper. Subfigure (d) indicates the error norm of
the center of mass.

Snapshots of the six-track robot traversing the short step terrain are shown in Figure 14,
whereas the flipper error norm and the center of mass error norm are shown in Figure 15.
The width of the short step terrain is 4 m, the length is 1.2 m, and the height is 0.4 m.
The slope of the terrain is 30◦, and its length is 5 m. The different forces on the front and
rear suspensions caused by the pose change and the track deformation, lead to a large
jitter of the flipper error norm. During the time spans ∆t = [2, 4] and ∆t = [14, 16], the
error norms of the front flipper and middle flipper increase slightly due to the main track
being over the obstacle, whereas the rear flipper remains almost unaffected. The rapid
increase in the flipper error norm within the time frames ∆t = [7, 9] and ∆t = [10, 14] is
due to the robot body being in a raised state (as in Figure 14c) and the front flipper being
in a supported state after falling (as in Figure 14d), leading the desired trajectory out of
the flipper working space. It is worth noting that during the horizontal plane terrain, the
six-track robot can move at high speed using its wheels; during the slope-climbing phase, as
shown in Figure 16, the controller significantly reduces the robot’s driving speed to reduce
the tracking error of the flippers, reflecting the advantage of simultaneous convergence of
all tracking errors under a unified control framework.
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Figure 15. Trajectory error norm of tracked robots through short step. Subfigure (a) indicates the error
norms of the front flipper. Subfigure (b) indicates the error norms of the middle flipper. Subfigure
(c) indicates the error norms of the rear flipper. Subfigure (d) indicates the error norm of the center
of mass.
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Table 3 shows the performance comparison results of the three controllers: (1) the mean
error norm of the center of mass eB(t), (2) the obstacle traversal time t, (3) the slipping
norm ∆σ, and (4) the maximum response, including the maximum linear and angular
velocities. The wide body of the six-track robot complicates its turn maneuver, especially
in the turning and obstacle traversal phases. In addition, the inclined path in the circular
experimental fields increases the adjustment process. The autonomous obstacle traversal
controller considers the slip effect between the track and the terrain, while it can follow the
trajectory with high precision, reducing the average error norm by 40.7% and 13.5%, while
the maximum slip norm is reduced by 34.6% and 19.9% compared to manual remote control
and prior art controller, respectively. Furthermore, the planned path requires the six-track
robot to move at high speed on wheels on flat terrain, while the synchronous convergence
of flipper tracking error and mass center tracking error reduces the influence of traction
speed on the obstacle traversal, thus limiting obstacle traversal time by 21.3% and 9.3%,
respectively. The performance of the autonomous obstacle traversal controller is lower, in
terms of response speed. In fact, the control rate established in Equation (42) determines
the response speed of the controller with respect to the error, while higher tracking error
leads to the increase of the response speed. The relationship between the generalized speed
of the tracked robot and the slipping norm is given in Figure 17. The influence of linear
speed on the slip rate along straight road section is mainly exhibited in the stage of rapid
speed decline of the robot, which is mainly caused by the braking force. During a turning
movement of the robot, the slip between the track and the terrain will further increase.
However, Figure 17 shows that only when the angular velocity reaches 0.25 rad/s will
the slip be affected, which proves the effectiveness of introducing slip compensation into
the controller.

Table 3. The performance comparison results of the three controllers that traversed the circular
experimental field.

Control Method Mean ‖eB(t)‖
(m)

Max ∆σ
(m)

vmax
(m/s)

ωmax
(rad/s)

Time
(s)

Manual remote control 0.194 0.228 0.824 0.723 197
Controller in the prior art 0.133 0.186 0.682 0.515 171

Autonomous obstacle
traversal controller 0.115 0.149 0.627 0.491 155
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7. Conclusions

In this paper, a new six-track robot with wheeled, legged, and tracked advantages is
developed. Compared to the tracked robot with active flippers, the six-track robot has high-
speed driving ability, large load capacity, and higher mobility, and it can better adapt to
flat, soft, and obstructed terrains. A design method for a distributed autonomous obstacle-
crossing controller based on differential kinematics is proposed. A forward kinematics
model and a differential kinematics model of the six-track robot is established, and a
unified control scheme including all degrees of freedom of the robot is provided. The
control scheme integrates the slip-steering model to account for both the track–terrain
interaction and the flipper’s terrain adaptability. In addition, feedback control rates of the
linear system and optimal solution for singular position are derived.

Virtual simulation experiments and physical prototype experiments involving various
obstacle scenarios are performed. (1) The virtual simulation experiment contains an S-curve
terrain scenario and a single-sided step terrain scenario. In the S-curve scenario experiment,
the linear system can converge rapidly and steadily under the designed feedback control
rate, while the convergence rate is about 1. At the climbing end stage, when the robot in
a raised pose, the front flippers’ error norms increase rapidly from 0.02 m to 0.1 m, while
the rest of the flippers’ error norms are stable at about 0.02 m. At the robot rapid drop
stage, under the effect of gravity, the error norm of the front flippers increased from 0.013 m
to 0.19 m. During the rest of the phase, the tracking errors of the flippers’ trajectories
are constant at 0.02 m. Therefore, the controller has a high tracking accuracy except for
the uncontrollable obstacle traversal process. In the single-sided step terrain scenario,
the maximum error norms of the flipper are 0.04 and 0.063 at the first and second stage,
respectively, and the average trajectory error of the flippers is about 0.029 m, verifying
that the controller can achieve high-precision obstacle traversal and generate appropriate
joint and speed commands as well as the independent control capability of each flipper.
(2) The physical prototype experiment contains terrain scenarios such as short step, trench,
and slope. In the whole trench traversal, the center of mass error norm was stable at
about 0.04 m. Compared to the manual remote controller and the prior art controller, the
average error norm of the center of mass is reduced by 40.7% and 13.5%, respectively; the
maximum slip norm is reduced by 34.6% and 19.9%, respectively; and the obstacle crossing
time is reduced by 21.3% and 9.3%, respectively. The results show that, the controller can
increase the terrain adaptability of the tracked robot by realizing more advanced actions so
as to achieve efficient and accurate obstacle-crossing. In addition, the controller effectively
reduces the slippage effect between the track and the terrain. It is worth noting that when
the flipper tracking error is large, the control system gives a lower traction speed command,
which enables the robot mass center trajectory tracking error and the flipper trajectory
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tracking error to converge synchronously, validating the advantages of the central controller
and the flipper controller operating in a unified framework.

In the future, research on the pose control of tracked robots will be carried out and
distributed dynamics will be established. This research will better match the movement
characteristics of the six-track robot in the field terrain and improve the robot’s mobility
and stability.
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Nomenclature

{CG} = {XG, YG, ZG} World coordinate system
{C0} = {X0, Y0, Z0} The base link coordinate system which fixed on the robot center of mass
{CB} = {XB, YB, ZB} The body coordinate system which fixed on the robot center of mass{

iCj

}
=
{

Xi,j, Yi,j, Zi,j

}
The jth coordinate system which fixed on the rotational joint of the ith

leg of the robot, with i ∈ {1, 2, 3, 4, 5, 6} and j∈ {1, 2, 3}
θi,j The jth joint angle of the ith leg of robot, with i ∈ {1, 2, 3, 4, 5, 6}

and j∈ {1, 2, 3}
θB Heading angle of robot
i,jPj+1 The position vector of the coordinate system

{
Cj+1

}
with respect to

the coordinate system
{

Cj

}
in the ith leg, with i ∈ {1, 2, 3, 4, 5, 6}

and j∈ {1, 2, 3}
GPB The position vector of the body coordinate system {CB} with respect

to world coordinate system {CG}
GΩB The angular velocity of the body coordinate system {CB} with respect

to the world coordinate system {CG}
i,jωj,j+1 The angular velocity of the coordinate system

{
iCj+1

}
relative to the

coordinate system
{

iCj

}
in the i-th leg kinematic chain, expressed in

the coordinate system
{

iCj

}
, with i ∈ {1, 2, 3, 4, 5, 6} and j∈ {1, 2, 3}

vl , vr Traction speed of the left track and traction speed of the right track
i,GPe The position vector of the flipper end point in the ith leg kinematic

chain with respect to the world coordinate system {CG}, with
i ∈ {1, 2, 3, 4, 5, 6}

i,BPe The position vector of the flipper end point in the ith leg kinematic
chain with respect to the body coordinate system {CB}, with
i ∈ {1, 2, 3, 4, 5, 6}

i,G
.
Pe The linear velocity of the flipper end point in the ith leg kinematic

chain with respect to the world coordinate system {CG}, with
i ∈ {1, 2, 3, 4, 5, 6}

i,B
.
Pe The linear velocity of flipper end point in the ith leg kinematic chain

with respect to the body coordinate system {CB}, with i ∈ {1, 2, 3, 4, 5, 6}
=
θs Configuration of joint angles for six-track robots
u Control command vector
=
θi Configuration of joint angles in the ith leg kinematic chain
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i,jRj+1

(
θi,j

)
Rotation matrix of coordinate system

{
iCj+1

}
with respect to

coordinate system
{

iCj

}
in the ith leg kinematic chain, with

i ∈ {1, 2, 3, 4, 5, 6} and j ∈ {1, 2, 3}
i,jTj+1

(
θi,j

)
Homogeneous transformation matrix of the coordinate system{

iCj+1

}
with respect to the coordinate system

{
iCj

}
in the ith leg

kinematic chain, with i ∈ {1, 2, 3, 4, 5, 6} and j ∈ {1, 2, 3}
SO(m) Special orthonormal group of real (m × m) matrices with orthonormal

columns and determinant equal to 1
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