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Abstract: Modern industrial machine applications often contain data collection functions through
automation systems or external sensors. Yet, while the different data collection mechanisms might be
effortless to construct, it is advised to have a well-balanced consideration of the possible data inputs
based on the machine characteristics, usage, and operational environment. Prior consideration of
the collected data parameters reduces the risk of excessive data, yet another challenge remains to
distinguish meaningful features significant for the purpose. This research illustrates a peripheral
milling machine data collection and data pre-processing approach to diagnose significant machine
parameters relevant to milling blade wear. The experiences gained from this research encourage
conducting pre-categorisation of data significant for the purpose, those being manual setup data,
programmable logic controller (PLC) automation system data, calculated parameters, and measured
parameters under this study. Further, the results from the raw data pre-processing phase performed
with Pearson Correlation Coefficient and permutation feature importance methods indicate that
the most dominant correlation to recognised wear characteristics in the case machine context is
perceived with vibration excitation monitoring. The root mean square (RMS) vibration signal is
further predicted by using the support vector regression (SVR) algorithm to test the SVR’s overall
suitability for the asset’s health index (HI) approximation. It was found that the SVR algorithm has
sufficient data parameter behaviour forecast capabilities to be used in the peripheral milling machine
prognostic process and its development. The SVR with Gaussian radial basis function (RBF) kernel
receives the highest scoring metrics; therefore, outperforming the linear and polynomial kernels
compared as part of the study.

Keywords: milling blade wear; data collection; feature extraction; Pearson correlation coefficient;
permutation feature importance; support vector regression; peripheral milling

1. Introduction

Advanced sensor systems and smart devices are widely developing and simultane-
ously enabling real-time monitoring of asset behaviour through cloud services. From the
industrial business perspective, continuous asset monitoring and online data collection
not only create condition-based maintenance (CBM) possibilities, but also enable a more
holistic understanding of machine behaviour through machine learning (ML) technologies.
This understanding can be further capacitated for researching new business opportunities,
such as the pay-per-x (PPX) business models [1], where the ownership of an asset is partly
or fully retained by the machine builder. In PPX business making, the customer payment is
at least partly connected to the output or outcome created by using the asset. Further, the
timely synchronous situational awareness of the machine’s current condition and condition
prognostics not only diversifies the original equipment manufacturer (OEM) business
offering from traditional investment business making to pay-per-outcome/output-related
business making [2], but the technological advancements may also offer enriched data of
the process or factory level bottlenecks and improvement areas for the end-user. Overall,
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the examination of various types of structured or unstructured data correlations within
the company’s assets can ultimately result in competitive advances against competitors,
increased revenue streams, and enable efficient decision-making [3].

Establishing a multidimensional data collection system, including data transfer capa-
bilities, is rather effortless in present times with embedded data system capabilities and
seamless integration of external sensors [4]. Despite the easiness of the data collection,
many small- and medium-sized companies are distrustful of their internal capabilities to
utilise the data, mainly due to a lack of knowledge in data analyst skills. Additionally, at the
time of initiating machine data exploration discussions inside the company, the diversity
of available data sources as well as machine learning tools might be cumbersome to the
companies to know where to start and how to formulate the data into knowledge useful
for their business. To overcome this challenge, a seamless collaboration between domain
knowledge holders and data analysts needs to be established to mutually understand the
machine’s operational characteristics, as well as to understand the purpose of use for the
collected data. Additionally, at the beginning of the process, more simplified data-based
machine learning models are recommended, as they include easier implementation [5].
The gradually developing work process also creates more synergies between the parties by
awarding quicker results and giving a partial understanding of the phenomena already
at the beginning of the process, although using more complex models might offer higher
predictive power [6], resulting in more accurate results.

In an industrial context, the collection of machine-related data is often used to en-
hance a machine’s performance within its operation. Data collected are rarely used as
such, but require pre-processing [7] as well as an understanding of the scale and meaning
of parameters relevant to the machine’s operational condition evaluation. In the milling
machine context, one of the key elements is to understand the milling tool blade wear
behaviour in correlation to its usage. It is essential to comprehend the data and recognize
tool wear indicators in order to differentiate linear wear to enable timely and cost-effective
blade changes. Furthermore, this data is also exploitable to improve machining precision
and part quality [8]. Data sources applicable for tool condition monitoring and remaining
useful life (RUL) approximation are generally recognised in earlier research to contain
cutting force [9-11] exploration, milling cutter torque [10] measurements, tool tempera-
ture monitoring [12,13], and acoustic emission [11,14] as machine learning model input
parameters. In addition, the collection of a vibration signal parameter is one of the most
used measurements for recognising wear [9,10,15,16] behaviour from the collected data,
especially in applications where continuous processing of real-time data is needed [17].

Different regression algorithms are commonly used in prediction-making by evaluat-
ing the correlation between dependent and independent variables. A data-driven random
forest (RF) algorithm is used for wear prediction in comparison with artificial neural net-
works (ANN), and support vector regression (SVR) with kernel comparison of Gaussian
radial basis function (RBF) and sigmoid kernel [18]. While the result from RF is found to
have a good fit in prediction making, the time needed for training is greater than with the
other algorithms, and RF model applicability to real-time applications is not supported by
the research results. Another study illustrated machine health degradation monitoring from
a vibrational raw signal by a generalised multiclass support vector machine (GenSVM) [19].
The method achieved superior results for the model in comparison to the standard support
vector machine (SVM) algorithm, least squares support vector machines (LSSVM), k-nearest
neighbour (KNN), back propagation neural network (BPNN), and adaptive network-based
fuzzy inference system (ANFIS). The presented results give a good background for the
SVM model’s capability to be tailored and used in predicting selected dependent variables
with other data received from machine operation. However, an algorithm called support
vector regression (SVR) algorithm is considered a more versatile version of SVM due
to its extended hyperparameter settings. Benkedjouh et al. [20] used SVR for tool wear
assessment and RUL prediction by using cutting force, vibration, and acoustic emission
signals. The SVR generalisation capabilities for unseen data are recognised in [21], and
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extensive studies for SVR prediction accuracy in [18,22,23]. The relationship between the
SVR’s independent and dependent variables is depicted in detail in [21,24]. To summarise,
the SVR has an additional tuneable parameter ¢ (epsilon) to fit the hyperplane into the
case dataset. Epsilon is a hyperparameter that controls the amount of allowable error in
the model. The regularisation parameter (C) is used in the SVM tuning and it controls
the trade-off between maximising the margin and minimising the training error [25,26].
However, it is recognised that the SVR algorithm’s well-known challenge is to comply with
large datasets [27] and noisy data containing outliers [28]. This restricts the implementation
of the algorithm in real-life applications where long-term prognostication with changing
input parameters is naturally present.

This research illustrates the process of establishing a data connection from industrial
peripheral milling machine operation and extracting meaningful data characteristics corre-
lating with machine wear behaviour. In addition, the SVR algorithm is tested to receive a
contextual understanding of the machine learning methods suitable for predicting depen-
dent variable behaviour. The results of this study give valuable information for industrial
companies to start or to continue developing their data collection systems and analysis
methods suitable for their portfolio.

2. Methods: Peripheral Milling Machine Architecture and Data Acquisition

The technological viewpoint of this study is to recognise and implement PPX-enabling
technologies and methods for industrial companies. In this research, the case machine was a
peripheral milling machine operating in the marine industry. The milling process prepared
welding contacts for support beams used in vessel structural construction. Operational
environmental conditions for the milling process were controlled: the machine operated
indoors under normal operating conditions at an approximate temperature of 20 degrees
Celsius, with no exposure to external stresses such as temperature variations or excessive
impurities. Hence, the data collected and analysed in this study rely upon the manufactur-
ing process schedules and process parameters determined by the end user. Due to this, the
milling process remained uncontrolled during the whole duration of the data collection,
resulting in uncertainty challenges in comparison with supervised research conditions in a
laboratory environment. However, a remote data connection was established, thus granting
comprehensive access to the collected data.

2.1. Operation and the Architecture of the Milling Machine

An internal automation system steered the peripheral milling machine controls and
adjustments. A PLC system collected data from connected inputs [29] such as sensor data
or operator commands [30], which were further combined in a collectable data format. In
addition to the milled profile data, operation-related parameters were collected by the PLC,
including the main powerline components, and milling position-related data. Figure 1
illustrates the main components of the milling machine in power direction sequence a—d,
being an alternating current electric motor, a gear unit (with a 7.88:1 gear ratio), a shaft,
and a spindle with the cutting blades, respectively. The L-shape profile is illustratively
positioned against the spindle in Figure le, having material supply to down-feed milling
from the x-axis direction. The force direction from the AC motor to the spindle and the
spindle rotation direction is depicted by arrows in the figure. Other structural components
such as conveyer line components or servomotors are not separately annotated due to their
recognised irrelevance in researching blade wear under normal operation. The data flow
from the machine PLC to the internet data collection interface was created through Azure
Cosmos MongoDB application programming interface (API).
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Figure 1. The peripheral milling process’s main physical components are (a) AC electric motor,

(b) gearbox, (c) shaft, (d) spindle, and (e) milling position (x-axis direction feed). The data flow to the
internet-connected data collection system is connected through the integrated PLC system and Azure
Cosmos MongoDB API.

2.2. Data Acquisition

The data flow from the PLC was built through the Azure Cosmos MongoDB APL The
API interface enabled online data access to the collected data by a third party [31]. The
data transfer function was enabled through a Spyder scientific programming environment,
which also enabled Python programming language utilisation including data feature
dimensionality reduction and statistical regression models [32-34]. The raw data collected
included 5,141,641 data rows, each containing data from 39 parameters.

The data acquisition setup was established to contain collectable data from four cate-
gories: manual setup data, PLC automation system, calculated parameters, and measured
parameters, with the number of collected parameters 7, 8, 18, and 6, respectively. The
manufacturing sequence and data acquisition flow began with manual setup data input
specified by the machine operator as illustrated in Figure 2. This manual input engaged
predetermined machine configurations in the PLC automation system and activated the
milling process. Some of the collected parameters were calculated based on the previous
input, and the remainder by other measurements connected to the PLC.

‘ Calculated parameters

Manual setup data » PLC automation system

’ Measured parameters

Figure 2. Data creation and acquisition flow.

The physical dimensions of the milled profiles varied depending on their use in the
manufacturing process. The milled profile thickness varied between 5 and 30 mm, profile
length in the range of 6000 to 23,800 mm, and profile height between 70 and 200 mm. The
process operated in a semiautomatic manner, where the machine operator controlled the
feed into the milling machine. Often, a certain type of profile was manufactured in larger
batches instead of milling individual profiles. The manual setup data input was mandatory
to specify the profile’s physical dimensions (height, length, and thickness), as well as the
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‘Profile Type’ between I-beam or L-beam type presented in Table 1. The ‘Milling part ID’
refers to the individualised numbering of the profiles for quality tracking. To minimise
unnecessary production downtime, two separate spindle tools were used and numbered
in the production. Whilst spindle 1 was in operation, the cutting blades were changed to
spindle 2 and vice versa. An individual spindle contained four rows of cutting blades: two
rows had a 90°, and two rows 86° contact angle to the milled material, each row containing
18 cutting blades. The operator selected the spindle “Tool number” and ‘Spindle position’
(blade row in use) that were currently in use.

Table 1. Collected data from manual setup data and PLC automation control.

Manual Setup Data PLC Automation Control

Milling Part ID Cutting Speed Set Point [220-240 rpm]
Profile Height [70-200 mm] Feed Rate Set Point [5000-8000 mm /min]
Profile Length [6000-23,800 mm)] Feed Motor Torque Set Point [% of nominal]
Profile Thickness [5-30 mm] Frame Position Set Point [0 ... 3]

Profile Type [I or L] Machine Active [T/F]

Spindle Position [0 ... 3] Mill Depth Set Point [1.5-3.03 mm)]

Tool Number [1 or 2] Milling Status [T /F]

Time Stamp [yyyy-mm-dd-hh-mm-ss]

Once the manual setup data was fed through the machine’s user interface, the PLC
automation system selected the predetermined milling settings based on the given input
and started indexing the process with a “Time stamp’. After receiving permission from the
operator to start the process, the machine automatically collected the required profiles from
the material depository and began production with the pre-set values for cutting speed,
feed rate, mill depth, and frame position. The Boolean data (true/false) of the machine in
active state and milling status were also recorded.

Various parameters were mathematically formed and collected to the central database
located in local data storage, which was further connected online for remote data collection.
The cutting speed ratio and feed rate ratio in Table 2 were calculated to monitor the
difference between set and measured values. The ‘Number of tool rows used’ parameter
was recorded to indicate possible simultaneous usage of blades with higher thickness
(>19.1 mm) profiles, which was deemed usable when observing cumulative wear behaviour
in the blades. The four tool rows were numbered from 0 to 3 (as indicated in Table 1, spindle
position) to gain cumulated usage data on individual tool rows. The parameters milled
meters and total milling time were calculated by utilising profile length, length of cut, feed
rate, and spindle speed [35] input, the latter being calculated from the cutting speed. The
row-specific Boolean type of true/false (T /F) information was further recorded to assist in
the visual inspection of the data. The cumulative minimum, maximum, and average milled
meters were obtained to gain an understanding of the differences between milling cycles
and to work as a preliminary index parameter for the wear behaviour observation.

The measured operational parameters were mainly received through the machine’s
embedded systems. The cutting speed, feed rate, AC motor torque, and time constraints
(milling operations starting and ending time) were received directly through the automation
system computer statistics. The collection of vibration signals was established through an
external analogue vibration sensor attached in the radial direction relative to the spindle
cutting blades. The raw vibration signal collection enabled vibration velocity root mean
square (RMS) calculations from the time domain signal. The transformation of the raw data
signal to velocity RMS values were preconfigured to the PLC system, leaving exploitation
of the raw signal inaccessible for research purposes. Therefore, only the pre-decimated
value of the vibration velocity RMS (mm/s) given by the PLC system was exploited in
this research.
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Table 2. Calculated and measured data from the manufacturing process.

Calculated Parameters Measured Parameters

Cutting Speed Ratio [0 ... 1] Cutting Speed [rpm]

Feed Rate Ratio [0 ... 1] Feed Rate [mm /min]

Num. Of Tool Rows Used [1 or 2] Milling End Time [yyyy-mm-dd-hh-mm-ss]
ToolRows0.MilledMeters [m] Milling Start Time [yyyy-mm-dd-hh-mm-ss]
ToolRows0.MilledTime [s] Spindle Motor Torque [% of nominal]
ToolRows0.Used [T/F] Vibration [mm/s RMS]

ToolRows1.MilledMeters [m]
ToolRows1.MilledTime [s]
ToolRows1.Used [T/F]
ToolRows2.MilledMeters [m]
ToolRows2.MilledTime [s]
ToolRows2.Used [T/F]
ToolRows3.MilledMeters [m]
ToolRows3.MilledTime [s]
ToolRows3.Used [T/F]
ToolRowsUsed.MaxMilledMeters [m]
ToolRowsUsed.AvgMilledMeters [m]
ToolRowsUsed.MinMilledMeters [m]

3. Data Pre-Processing and Feature Reduction Process

Multidimensional data collection enables versatile and wide-ranging investigation
of data features and their correlation with each other. Often, the connection of different
features meaningful for the purpose can be manually diagnosed by expert opinion or basic
statistical analyst skills. However, data pre-processing tools such as Pearson Correlation
Coefficient (PCC) and Permutation Feature Importance (PFI) become essential in the data
pre-processing phase, especially when the amount of data becomes immense for manual
analysis. PCC and PFI tools used in this research operated in an unsupervised manner
to recognise the correlation of different data features that were relative to the milling tool
blade wear. Additionally, the feature reduction process had an obvious positive influence
on training and testing times for many of the regression algorithms [23].

3.1. Pearson Correlation Coefficient (PCC)

Pearson Correlation Coefficient (PCC) is a commonly used feature correlation indi-
cation tool that measures the linear correlation between the parameters [10]. The PCC
assessment was performed on the complete dataset with the features presented in Tables 1
and 2. These features illustrated all the data originally collected from the operator input and
machine operation. Pearson correlation formula is exhibited in Equation (1), as presented
in [10,36].

I v B1C (V) "

VEL (-2 VL -7
where 1 is the identification number of a single data point, x; is the first individual data
point, and ¥ denotes the corresponding arithmetic mean of the first sample. Following,
the y; and ¥ are the corresponding samples of the comparable variable, in this case, the
cumulative average value of milled meters. The linear correlation between x and y ranges
between +1 and —1, where the (—) negative result indicates a negative correlation and (+)
presents a positive correlation between the data points [37]. High feature correlation value
varies significantly, some earlier research recognised high correlation values variating from
0.8 [19] to >0.98 [37].

In this research, the PCC was iterated to scale down the number of features from
the original 39 features to 13, where the features indicating a clear categorical negative
correlation were removed. The numeric results of the finally selected 13 features and their
correlations are combined in a heatmap format, as presented in Figure 3.

r
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Figure 3. Pearson correlation heatmap illustrating the numeric and visual correlation between the
scaled-down parameters.

As a result, the PCC scores for high correlation remained lower, as presented in the
earlier research. Despite the iterative feature reduction, the data remained rather high
in dimensionality (13 features), which likely resulted in lower scoring in comparison
with less complex correlation maps where more obvious connection features might exist.
The top three features correlating with the ‘Vibration” are: ‘SpindleMotorTorque” (0.44),
‘ProfileHeight” (0.28), and ‘“ToolRowsUsed.AvgMilledMeters’ (0.23). The highest value,
‘SpindleMotorTorque’, is evident due to physical consequences in increasing/decreasing
torque affecting the vibration amplitudes in the cutting phenomenon. The correlation in
the ‘ProfileHeight” and other cutting material size properties also remain positive (+) due
to similar justification, where the material physical features affect operational cutting forces
and vibration amplitudes. The highest correlation to the cumulative usage of the milling
blades (‘“ToolRowsUsed.AvgMilledMeters’) is with the ‘Vibration” parameter highlighted in
the figure, with a correlation value of 0.23.

3.2. Permutation Feature Importance (PFI)

The number of originally collected parameters were scaled down by using the PCC in
the previous section. In the permutation feature importance (PFI) phase, the length of the
dataset was reduced to include two (2) full milling cycles (one containing approximately
2000 m of cumulative milling meters) to optimise the time needed for training the algorithm.
The permutation feature importance method was conducted to address the order of the
important factors in comparison to cumulative cutting meters (selected dependent variable).
The PFI describes the connection between input features and the dependent variable and
estimates how much each feature affects the performance of the model [38]. The variable
selection was performed based on results indicated by the PCC analysis. The dependent
variable was then compared with the other operational data collected from the actual
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machine operation to emphasise the feature significance in the calculation. The conditions
for the permutation feature importance algorithm are depicted in Figure 4.

PFI Conditions

ToolRowsUsed.Avg

MilledMeters
IF
[

v L
<1800 meters >1800 meters
Return Return
‘Operational’ ‘Blade change’

Figure 4. Given conditions to the PFI algorithm.

The categorisation limits of blade conditions were stated as follows: ‘Operational” if
the datapoint cumulative milling meter was less than 1800 m and ‘Blade change’ when
the value exceeded 1800 m. The hypothesis of the linear blade condition was set based on
expert opinion. The hypothesis of the estimated operational endurance of the cutting blades
was considered without any anomalistic states. Hence, the health index (HI) categorisation
was adjusted to the model as ‘Blade change”: 0, and ‘Operational”: 1, where the algorithm
condition was forced to categorise the data between the states described above. Instead of a
data shuffling method, the data column of “ToolRowsUsed. AvgMilledMeters’ was dropped
out to receive the features the model considered most reliable.

The area under the receiver operating characteristics (ROC) [39] curve (AUC) is broadly
used to evaluate the performance for classification and diagnostic rules [40]. AUC is herein
used to measure the performance of the classification between the given HI classes. The
AUC result interpretation comparing the operational performance of regression models
is depicted in [41]. A value of 1.0 is an immaculate test result, whereas results of <0.5 are
insufficient and the model’s positive and negative objectives need to be redefined. Values
of 0.9-0.99 are excellent test results, whereas 0.8-0.89 can be considered good, 0.7-0.79 as
fair results, and 0.51-0.69 as poor test results [41]. In this study, the final AUC result of
0.923 was received with a random state = 10 setting. The results of the permutation feature
importance are visualised in Figure 5.

Given the conditions determined in Figure 4, the permutation feature importance
results in Figure 5 indicate that the “Vibration’ feature had the most significant correlation to
‘Operational’ and ‘Blade change’ conditions. Similarly with the PCC results, the PFI scoring
levels remain low, yet illustrating the main feature of ‘Vibration” being the dominant of the
features in correlation to cumulative milling distance performed by the peripheral milling
machine. The feature ‘MillDepth’ existed as a second important feature due to the variating
milling recipes driven during the two datasets.
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Permutation Feature Importance

Vibration

MillDepth
ProfileHeight
SpindleMotorTorque
ProfileLength

ProfileThickness

Feature

CuttingSpeed
FeedRate
ProfileType

FeedRateSetPoint

CuttingSpeedSetPoint

SpindlePosition

0.600 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Importance

Figure 5. Permutation feature importance results.

To conclude, the feature correlation methods of PCC and PFI gave a robust base for
selecting the ‘Vibration” feature to be dominant concerning the recognised linear wear
behaviour occurring over accumulating milling time. The pipeline from the start point
with the original dataset to the dominant feature selection is illustrated in Figure 6. The
knowledge received from this process can be transferred back to the data collection setup,
such as by increasing the number of vibration measurement sensors in different physical
directions and/or frequency ranges to enable more comprehensive data and to receive a
better understanding of the operation versus wear behaviour phenomenon.

}

Knowledge transfer

Data collection PCC PFI

L__f—:rﬁ—"s' 1.SpindleMotorTorque

e | bl

[T M| | s T viration s
13.CuttingESpeed

l 13 features |

1 feature >

Figure 6. Feature reduction pipeline with PCC and PFI methods resulting in added wear
behaviour knowledge.

4. Supervised Wear Feature Analysis with Support Vector Regression

In this work, the two SVR hyperparameters (¢ and C) were adjusted to find the best
fit for the model. The value of ¢ determined the width of the tube around the estimated
function (hyperplane). The parameter C was a regularisation parameter to control the
importance of the data points left outside the support vector boundaries and penalised
data points containing errors greater than ¢ by a positive constant [26]. Points that fell
inside this tube were justified as correct predictions and were not penalised by the SVR
algorithm. The “Vibration” parameter signal was used in the signal prediction as depicted
in the earlier-presented dimensionality reduction results.

4.1. Kernel Classifier Selection

Obtaining appropriate hyperparameter settings is a common challenge in SVR imple-
mentation. However, defining an appropriate kernel function and hyperparameter settings
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is necessary to receive higher accuracy in the results [26]. The most used kernels include
polynomial (POLY), Gaussian radial basis function (RBF), and sigmoid kernels, according
to research made by [18]. In this research, the POLY and RBF kernels were adopted due
to their better capability to accommodate nonlinear data. Additionally, the linear kernel
was tested to prove the hypothesis of being less efficient on multidimensional data [42],
resulting in a less accurate fit to the dependent variable data.

The hyperplane fitting is visually illustrated in Figure 7. The illustration presents one
(1) peripheral milling machine operational cycle, where the operational milling distance
was 2003.43 m. Upper (+) and lower (—) epsilon boundaries are illustrated with a dashed
rectangle on top of the SVR-related hyperplanes in Figure 7, where the hyperplane fitting
is performed with ¢ = 0.1, C = 100. The SVR hyperplane fitting towards the milling cycle
data was also tested with several other manually selected hyperparameters; however, the
e =0.1, C = 100 selection resulted in the most accurate hyperplane fitting.

€=0.1, C=100
3000
2500
E
%] 2000
=
LY
]
E 1500
=}
%]
= 1000 Linear Regression
> Support Vector Regression RBF
500 Support Vector Regression POLY
""" +epsilon
----- —epsilon
0 )
""" +epsilon
""" —epsilon
=500
1 2 3 4 5 6 7 8

Vibration RMS [mm/s]

Figure 7. Two-dimensional representation of hyperplane behaviour with epsilon and C-values ¢ = 0.1,
C = 100.

The linear regression is presented in a green trend line in Figure 7 and Support Vector
Regression with RBF is presented in the red trend line. The polynomial kernel POLY
presented in the blue trend line showed no clear visual changes once the tuning parameters
were changed. However, the quantitative error scoring of the training and test scores
displayed in a squared correlation coefficient (R?), illustrated in Table 3, demonstrated
more clearly the model’s ability to perform training and testing for the data compared
with the visualised format in Figure 7. Quantitative comparison between multiple ¢ and C
values resulted in the highest R? train and score values with the ¢ = 0.1, C = 100 settings;
therefore, the model scoring comparison between linear, polynomial, and RBF kernels were
performed with the illustrated parameters for the SVR regression.

Table 3. Model error scoring comparison with € = 0.1, C = 100.

Error Scoring Metric Linear SVR POLY SVR RBF

Train score R? 0.649464505 0.819797848 0.856560515
Test score R? 0.646896683 0.803223516 0.846645929
Train mean absolute error (MAE) 0.080181311 0.056275051 0.049610738
Train MSE [%] 0.010790393 0.006013242 0.004686307

The scores in Table 3 demonstrate the inability of the linear kernel to fit the data
properly, given the model R? scoring both in the training and test phases between 0.646
and 0.649. The R? scoring improved significantly with the SVR POLY (0.803-0.819) and
received the highest score with SVR RBF (0.846-0.856). The mean absolute error (MAE) and
mean squared error (MSE) [%] given by the RBF kernel were also at acceptable levels, being
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0.0496 and 0.0046, respectively. The details of the model error scoring functions R? and
MSE are depicted in [25], and MAE in [43]. Overall, the SVR regression with RBF kernel
selection outperformed the linear and polynomial equivalents in all the scoring metrics.

The 2D illustration and quantified values of the hyperplane fit based on the error
scoring justify the SVR RBF being the most effective kernel for the purpose. To visualise
the hyperplane fit in a higher dimensional format, an additional feature was added to
establish a 3D figure. Some earlier research discovered that the wear symptoms in milling
are visible by examining machine power consumption and related torque values [44,45].
The measured torque presents the cutting force affecting the cutting tool edges while in
contact with the milled material due to its rotating motion [35]. Additionally, the results
relative to the milling progress from both the PCC (dominant relative feature) and PFI (#4
dominancy) indicate torque parameters” high correlation to vibration and the cumulative
value of milled meters. Therefore, the torque effect is visualised as the third component
in Figure 8.
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Figure 8. Three-dimensional scatter plot with SVR RBF hyperplane from two different
viewpoints (a,b).

The dataset was normalised with the MinMaxScaler function to rescale the targeted
parameters ‘Vibration’, and ‘SpindleMotorTorque’ to “Vibration (scaled)’, and ‘Spindle-
MotorTorque (scaled)’” by using the scale of zero ... one, respectively. The feature scaling
operation normalised the value ranges of independent variables [46], allowing comparing
feature values that normally operate on different value scales. Figure 8a illustrates a better
viewpoint for the cumulative effect on “Vibration (scaled)’, and Figure 8b for the ‘Spindle-
MotorTorque (scaled). The visual observation of the feature space in Figure 8a illustrates the
clear connection between the cumulative milling meters and increased vibration behaviour.
The operational milling recipe changes during the milling cycle falsified the curvature of the
hyperplane to point downwards towards the end of the milling cycle. Figure 8b illustrates
that the torque dimension was moderately spreading towards the end of the milling cycle
(milled meters). This observation supports the PCC and PFI results, indicating that the
parameter affects the correlation between torque value and the cumulative milling process.

4.2. Vibration Analysis with the SVR (RBF)

In this section, the SVR is utilised to predict the vibration signal based on the selected
inputs. The kernel parameters used (RBF; ¢ = 0.1, C = 100) were justified in the earlier
sections of this research. The presented pseudocode in Figure 9 was initiated to describe the
main principles of the SVR algorithm. The main steps in the code are numbered between
one and five, starting from the dataset import function, with the eight most important



Machines 2023, 11, 395

12 of 16

features selected from the PFI phase. After importing the complete dataset, the selected
features were extracted from the raw data in step two and set as algorithm training features
in step three. Then, the pseudocode description stated to split the given data into train and
test splits and to rescale all the feature input values between zero and one, as determined in
step four. The SVR algorithm predicted the dependent variable by identifying a hyperplane
in a high-dimensional feature space that had the maximum margin of separation from
the data classes [23]. The hyperplane was chosen such that it passed through as many
data points as possible, and the distance between the hyperplane and the closest data
points, called support vectors, was minimised [27]. In SVR, the correlation between the
independent and dependent variables is described by a deterministic function in [21,24,27]:

y=f(x)=w'¢(x)+b @)

where the transposed parameter weight vector w and bias b are unknown coefficients. w
is a weight vector in R” that controls the importance of each feature in the model. The
phi ¢(x) represents a dot product function from input space to feature space [24]. y is the
predicted output value for input x. The used Gaussian radial basis function (RBF) kernel
enables nonlinear regression fit to the data. In the last stage (No. five) of the pseudocode,
the dependent variable ‘Vibration” is removed and exposed to the test part of the dataset to
compare the regression model fit compared with the real vibration trend behaviour. The
training set size corresponds to 80% of the total size of the dataset.

Pseudocode: SVR RBF predicting vibration signal

Input: real machine operational data containing parameters: 'Vibration', 'MillDepth','ProfileHeight',
'SpindleMotorTorque',ProfileLength’, 'ProfileThickness', 'CuttingSpeed’, 'FeedRate'

Output: predicted vibration signal compared with real vibration signal

1 #lmport dataset
Importing data as a compiled pickle file

2 #Extract features to reduce dimensionality
Extract parameters = PF| 1...8 - ([*operational data collected and visualized in Tables 1 and 2])

3 #Set input features to train the algorithm

Input data = ['Vibration', 'MillDepth','ProfileHeight', 'SpindleMotorTorque','ProfileLength’, 'Profile Thickness',
'CuttingSpeed’, 'FeedRate']

4 #Create train set with deepcopy function and SVR kernel parametrization features
Scaling and training of the dataset with parameters:

Train X (80% of the dataset), Deepcopy Y (X['Vibration'])

Normalization of the dataset with MinMaxScaler

SVR (kernel="rbf", C=100, epsilon=0.1))

Fitregression (X, Y)

5 #Predict vibration behavior through regression prediction function

Drop parameter 'Vibration' from the test dataset and test regression prediction 'SVR' RBF prediction in
comparison to 'Real’ vibration excitation.

Figure 9. The pseudocode of the SVR algorithm.

The graphical representation of the SVR RBF’s ability to predict the machine “Vibration’
trend is displayed in Figure 10. The SVR trend behaviour in the figure presents four hundred
(400) vibration data points formulated based on the input data presented in pseudocode
step three. Due to the collection frequency of 5 Hz during the data collection, the visualised
400 data points correspond to approximately 1.3 min of the milling operation.



Machines 2023, 11, 395

13 of 16

4.0 14 —  Real
SVR
3.51 A
T 3.0 ;J
E
(%]
s 2.5 4 X
: WY Y
'g 2.0 4 . ' L Y lJ lr|l] . ]l] ) I—|r‘ ’]'| 'l ll
g 4 H Lkl
2 i ,‘
S 1s] ﬁ' * f ﬁ
|
1.0 4 |
0.5 T T T T T T T T T
0 50 100 150 200 250 300 350 400
Data points

Figure 10. Support Vector Regression (RBF; ¢ = 0.1, C = 100) comparison with real vibration signal.

In conclusion, given by the quantified error scoring results in Table 3 and visualised
SVR results in Figure 10, the model’s capability to reflect the given wear indicator of
“Vibration’ is considered to occur with decent accuracy. Therefore, the ‘Vibration” parameter
should be further tested in addition to more complex prediction algorithms for determining
the machine HI index, and ultimately in the remaining life prediction based on the vibration
(velocity RMS) parameter.

5. Conclusions

In this paper, a multi-dimensional online data collection system in the context of a
peripheral milling machine was established and reported. The data was pre-processed
to receive a better understanding of the machine parameters correlating with the milling
blade wear phenomenon. The feature reduction methods used gave great confidence in
vibration excitation correlation as a wear indicator. As a conclusion from the PCC and PFI
results, it is proposed to conjugate additional vibration sensors to the case machine setup
and research the wear phenomenon more in-depth in the context. Receiving raw vibration
data in multiple dimensions, as well as from different vibration frequency ranges, may
result in more profound information for determining the machine health index through
vibration signals. Instead of only monitoring a vibration velocity RMS, a higher frequency
range monitoring is exploitable to receive an understanding of possible earlier indications
or more accurate signs of blade wear. Additionally, other machine-related excitations such
as motor torque measures are illustrated to contain information which may be used in
predicting machine health index and derived lifetime estimation.

This research also introduced testing of the support vector regression algorithm to
analyse vibration parameter behaviour based on the other data collected from the machine’s
usage and PLC automation system. The linear, polynomial, and RBF methods were applied
to find the most appropriate kernel to adapt the data points in the feature space. The
support vector regression method with RBF kernel was used to visualise the prediction of
the machine vibration behaviour.

To conclude, the SVR algorithm can predict the vibration signal behaviour rather
accurately based on the machine input parameters. As depicted in this research, the
vibration signal trend cumulation is unquestionably correlated with the case machine’s
usage over time, and with the cutting blade wear behaviour. The supervised machine
learning method of SVR can overcome most of the multidimensional data challenges;
however, changes in the production recipes create a vast amount of distraction to the
process parameter behaviour, which is challenging for the SVR to learn. Milling parameter
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changes and related vibrational data variation certainly affect the training and test scores
of the model; however, the model’s fit, especially with the RBF kernel, appears adequate
for vibration amplitude trend prediction over time. Despite the learning challenges, the
SVR can achieve acceptable results, and the model’s applicability for prognostic purposes
is recognised.

Determining discrete health index monitoring and forecasting an actual remaining
useful life (RUL) of the peripheral milling machine were not considered as part of this
research due to a lack of data considering the actual wear stages of the milling blades. A
hybrid prognostic approach including model-based simulation data implementation, other
machine learning techniques, and results of blade wear tests would be seen as beneficial to
estimate the HI and derived RUL for the asset. The next research steps will consider these
tests with added vibration sensors, diagnostics of other machine excitations to evaluate
machine state, as well as the use of other ML prognostic methods to better comply with the
recurrent actions occurring in the machines’ operation.
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Abbreviations

The following abbreviations are used in this manuscript:
ANFIS Adaptive Network-Based Fuzzy Inference System

API Application Programming Interface

AUC Area Under Curve

b Bias

BPNN Back Propagation Neural Network

CBM Condition-Based Maintenance

GenSVM  Generalised Multiclass Support Vector Machine
HI Health Index

KNN K-Nearest Neighbour

LSSVM Least Squares Support Vector Machines
MAE Mean Absolute Error

ML Machine Learning

MSE Mean Square Error

n Identification Number of a Single Data Point
OEM Original Equipment Manufacturer

PCC Pearson Correlation Coefficient

Phi ¢ Dot Product From Input Space to Feature Space
PLC Programmable Logic Controller

PPX Pay-Per-X

R? Squared Correlation Coefficient

RBF Gaussian Radial Basis Function

RF Random Forest

RMS Root Mean Square

ROC Receiver Operating Characteristics

RUL Remaining Useful Life

SVM Support Vector Machines
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SVR Support Vector Regression

w w is A Weight Vector in R™

X First Individual Data Point

Yi First Individual Data Point of the Comparable Variable

x Corresponding Arithmetic Mean of the First Sample

v Corresponding Arithmetic Mean of the Comparable Variable
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