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Abstract: In order to solve the problem that the design constraints of the conjugated straight-line
internal gear pair are unclear, the designing and checking of gear pairs requires repeated trial and error.
By analogy with the design of the involute gear pair, the basic design parameters of the conjugated
straight-line internal gear pair were clarified. Based on the mathematical model of the gear pair, the
constraints on basic design parameters were given according to gear engagement theory and the
geometrical relations of the tooth profile. The calculation formula and the constraint of the contact
ratio were deduced according to the kinematic relations. Based on Litvin’s undercutting theory,
the constraints on avoiding undercutting and end cutting were deduced and their correctness was
verified by examples. The judgment method of tooth-overlapping interference and its corresponding
numerical calculation flow were presented. The constraint on avoiding radial interference was
deduced and analyzed. Based on the above content, the influence laws of design parameters on the
design constraints were studied. Last, design examples were given and the effective design flow
diagram of the conjugated straight-line internal gear pair was summarized. These research results
provide a theoretical basis for the parameter design of conjugated straight-line internal gear pairs,
provide guidance to avoid the interference of the gear pair, and promote the design system of the
gear pair.

Keywords: conjugated straight-line internal gear pair; design constraints; interference

1. Introduction

The conjugated straight-line internal gear pair consists of an external gear with a
straight-side profile and its conjugated internal gear ring, whose patent was first pro-
posed by Truninger in 1970 [1]. It has a series of excellent meshing properties, such as
smooth operation, small tooth profile curvature, high contact strength, and small relative
sliding rate. Through experiment and engineering verification, the gear pair was first
applied to the internal gear pump. SAUER-DANFOSS® (Rockford, IL, USA), Bucher®

(Klettgau-Griessen, Germany), SUMITOMO® (Tokyo, Japan) all purchased the patent and
developed mature products [2]. The advantages of simple structure, small trapped oil
volume, small flow pulsation, low noise, and long life give the pump an important position
in the hydraulic industry.

Scholars have studied the conjugated straight-line internal gear pair from different
angles. In terms of derivation and analysis of the tooth profile equation and meshing
characteristics, Wei et al. [3] derived the tooth profile curve equation of the gear pair by
using the tooth profile normal reversal method. Song et al. [4] solved the tooth profile curve
based on the conjugate tooth profile theory and established the universal mathematical
model of gear pair and rack cutter; on this basis, the flow delivery and trapped volume
performances of the pump were studied [5], and furthermore, Chen et al. [6] processed the
physical prototype and completed the performance test, which verified the correctness of
relevant design theories. In terms of gear pair structure and flow field simulation analysis,
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Chai et al. [7–9] built a 3D computational fluid dynamics simulation model of the pump
based on Simerics-MP+, a professional pump and valve software, to explore the influence
rule of oil properties on pump flow characteristics. Further, Liang et al. [10] studied the
time-varying rule of internal flow field characteristics of the pump, including pressure,
velocity, trapped oil, and cavitation, etc. At the same time, based on the international
standard ISO 10767-1:1996 [11], the flow pulsation test platform of the “secondary source”
method was built, and the flow pulsation of the pump was measured and compared with
the simulation results to verify the correctness of the test theory and simulation model.

To summarize, the current research on the conjugated straight-line internal gear pair is
mostly based on the gear pair model established based on the tooth profile meshing theory,
and the research depth is promoted in the aspects of simulation, test, and manufacturing,
etc., but there are still the following problems. (1) There is a lack of a systematic summary
of the design constraints of the conjugated straight-line internal gear pair. The selection of
basic design parameters lacks a theoretical basis; when some design parameters of the gear
pair exceed a certain range, the design will experience serious error and failure. Design
parameters are mutually constrained rather than independent, and a single change of a
parameter may not avoid design errors. It is often necessary to match design parameters
reasonably from a global perspective to achieve optimization. (2) The connection between
the design and processing of the gear pair is broken; that is, from the perspective of gear
transmission, the designed gear pair can operate normally without interference, but from
the perspective of gear processing, there may be a variety of interference conditions leading
to the failure to obtain the required tooth profile.

Therefore, based on the established mathematical model of the tooth profile of the
conjugated straight-line internal gear pair and rack cutter, this paper focuses on the analysis
of the design constraints that the gear pair needs to meet in designing and processing,
studies the influence rule of gear pair parameters on the constraint conditions, and grasps
the design method of the gear pair.

2. Mathematical Model of the Tooth Profile of Gear Pair and Rack Cutter

The parameters shown in Table 1 are defined as the basic design parameters of the
conjugated straight-line internal gear pair, whose definition is analogous to that of an
involute gear pair [12]. But different from the involute gear pair, the transmission of the
conjugated straight-line gear pair is not separable because its profile cannot extend radially
indefinitely. When the center distance changes, the tooth profile no longer satisfies the
conjugate relation, so the pitch circle of the gear pair coincides with the reference circle.
Table 2 shows relevant geometric parameters involved in the mathematical modeling of the
gear pair and rack cutter tooth profile.

Table 1. Basic design parameters of the gear pair.

Name External Gear Internal Gear Ring

Number of teeth z1 z2
Module m = p/π

Addendum coefficient h∗a1 h∗a2
Dedendum coefficient h∗f 1 h∗f 2

Tooth profile angle β -
Tooth thickness coefficient of reference circle ks = s/p -

Where s is the tooth thickness of the reference circle and p = πm is the pitch of the reference circle.
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Table 2. Geometrical parameters and calculation formulas of the gear pair.

Name
Calculation Formulas

External Gear Internal Gear Ring

Reference radius r1 = mz1/2 r2 = mz2/2
Center distance e = r2 − r1 = m(z2 − z1)/2

Addendum ha1 = mh∗a1 h f 1 = mh∗f 1
Dedendum ha2 = mh∗a2 h f 2 = mh∗f 2

Addendum radius ra1 = r1 + ha1 ra2 = r2 − ha2
Dedendum radius r f 1 = r1 − h f 1 r f 2 = r2 + h f 2

Addendum clearance coefficient c∗ = h∗f 2 − h∗a1 -
Central angle of tooth thickness of

reference circle θ = 2ksπ/z1 -

2.1. Coordinate Systems and Conversions

The external gear is machined by rack cutter. The coordinate systems and their move-
ment relations are shown in Figure 1. The fixed coordinate system Sg

(
Og − Xg, Yg, Zg

)
is

fixedly connected with the ground, and the movable coordinate systems S1(O1 − X1, Y1, Z1),
S2(O2 − X2, Y2, Z2), and Sc(Oc − Xc, Yc, Zc) are fixedly connected with the external gear,
internal gear ring, and rack cutter, respectively. The Z-axis of each coordinate system is
established in accordance with the right-hand rule. The coordinates S1 and S2 rotate with
the external gear and internal gear ring, the coordinate Sc moves parallel with the rack
cutter, and the counterclockwise direction is defined as the positive direction of rotation.
At this time, the axis Z1 and Z2 coincide with the rotation axis of the external gear and
internal gear ring, respectively, and the pitch circles of the external gear and internal gear
ring are tangent to point P; the axis Xc coincides with the pitch line of the rack cutter and is
tangent to the pitch circle of the internal gear ring at point Pc. At the initial position, the
coordinates S2 and Sg coincide.

Figure 1. Movement relations between coordinate systems: (a) external gear and internal gear ring;
(b) rack cutter and external gear.

Figure 1a,b describes the movement relations between the external gear and internal
gear ring, and between the rack cutter and external gear during the meshing process,
respectively. Suppose that the external gear and internal gear ring rotate counterclockwise
around axis Z1 and Z2 at the angular velocities ω1 and ω2, respectively, for a period of time,
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and the rotation angles are ϕ1 and ϕ2. According to the definition of transmission ratio, the
transmission ratio i12 of coordinates S1 and S2 can be expressed as follows:

i12 = 1/i21 = z2/z1 = ω1/ω2 = ϕ1/ϕ2 = r2/r1 (1)

When the rotation angle of coordinate S1 is ϕ1, the translational displacement of
coordinate Sc is d. According to the meshing principle, it can be expressed as follows:

d = r1 ϕ1 (2)

The research object is the spur gear pair, so it only needs to model the tooth profile
on the X1O1Y1 plane. Considering the convenience of vector representation and coor-
dinate transformation, the component coordinate of the Z-axis is set as 1. Hence, the
transformation matrix from coordinate S1 to S2 can be written as follows:

M21(ϕ1, ϕ2) =

cos(ϕ1 − ϕ2) − sin(ϕ1 − ϕ2) e sin ϕ2
sin(ϕ1 − ϕ2) cos(ϕ1 − ϕ2) e cos ϕ2

0 0 1

 (3)

The transformation matrices from coordinate S1 to Sc and from coordinate S1 to Sg are
obtained in the same way:

Mc1(ϕ1) =

cos ϕ1 − sin ϕ1 r1 ϕ1
sin ϕ1 cos ϕ1 −r1

0 0 1

 (4)

Mg1(ϕ1) =

cos ϕ1 − sin ϕ1 0
sin ϕ1 cos ϕ1 e

0 0 1

 (5)

2.2. Tooth Profile of the External Gear

The tooth profile of the external gear in coordinate S1 is shown in Figure 2. The axis
Y1 coincides with the center line of the gear tooth and the left and right tooth profiles are
completely symmetric; therefore, the right tooth profile is modeled mathematically, and
then the left can be obtained according to the symmetry relationship. The right tooth profile

is composed of three parts: the arc
_

AB of the addendum circle, the straight-line segment

BC, and the arc
_

CD of the dedendum circle [1]. Among them, point A is located on the axis
Y1 and point D is located on the symmetric center line of the tooth groove of the adjacent
gear teeth. Then the mathematical model of the right tooth profile can be expressed by
Equations (6)–(8) [4]:

RAB
1 =

xAB
1

yAB
1

zAB
1

 =

 x1√
r2

a1 − x2
1

1

, 0 ≤ x1 ≤ xB (6)

RBC
1 =

xBC
1

yBC
1

zBC
1

 =

 x1
kx1 + b

1

, xB < x1 ≤ xC (7)

RCD
1 =

xCD
1

yCD
1

zCD
1

 =

 x1√
r2

f 1 − x2
1

1

, xC < x1 ≤ xD (8)

where (x1, y1, z1) is the coordinate of the external gear tooth profile in the coordinate S1,
and k and b are the slope and intercept of straight-line segment BC, respectively; xb, xc,
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and xd are the x-coordinate of points B, C, and D, respectively. According to the geometric
relationship, it can be obtained as follows:

k = − cot β (9)

b = r1 cos
θ

2
+ r1 sin

θ

2
cot β (10)

xB =
−kb−

√
(1 + k2)r2

a1 − b2

1 + k2 (11)

xC =
−kb−

√
(1 + k2)r2

f 1 − b2

1 + k2 (12)

xD = r f 1 sin(π/z1) (13)

Figure 2. Tooth profile of the external gear.

Then the position vector of the right tooth profile of the external gear can be expressed
as follows:

Re
1(x1) =

[
RAB

1 RBC
1 RCD

1

]
(14)

2.3. Tooth Profile of the Internal Gear Ring and Rack Cutter

According to the conjugate tooth profile meshing theory [13], the solution of the tooth
profile of the internal gear ring needs to satisfy both the coordinate transformation relation
(15) and the meshing Equation (16):

Ri
2(ϕ1, ϕ2, x1) = M21(ϕ1, ϕ2)Re

1(x1) (15)

Ne
1 · v

(ei)
1 = 0 (16)

where Ri
2(ϕ1, ϕ2, x1) is the envelope of the curve family formed by the position vector

Re
1(x1) in the coordinate S2, namely, the position vector of the tooth profile of the internal

gear ring. Ne
1 is the normal vector of the tooth profile of the external gear, and v(ei)

1 is the
relative motion velocity at any meshing point on the tooth profiles of the external gear and
internal gear ring. Both are defined in the coordinate S1. From Equation (16), it can be
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deduced that the tooth profiles of the external gear and internal gear ring need to meet
Equation (17) during the meshing process [4]:

g(x1, ϕ1) =
dy1

dx1
(r1 cos ϕ1 − y1)−

dx1

dx1
(x1 − r1 sin ϕ1) = 0 (17)

By combining Equations (3), (14), (15), and (17), the mathematical model of the tooth
profile of the internal gear ring can be obtained.

Similarly, the solution of the tooth profile of the rack cutter needs to satisfy both
Equations (18) and (19):

Rc
c(ϕ1, x1) = Mc1(ϕ1)Re

1(x1) (18)

Ne
1 · v

(ec)
1 = 0 (19)

where Rc
c(ϕ1, x1) is the envelope of the curve family formed by the position vector Re

1(x1)

in the coordinate Sc, namely, the position vector of the tooth profile of the rack cutter. v(ec)
1

is the relative motion velocity at any meshing point on the tooth profiles of the external gear
and rack cutter, which is defined in the coordinate S1. From Equation (19), it can be deduced
that the tooth profiles of the external gear and rack cutter need to meet Equation (20) during
the meshing process [4]:

f (x1, ϕ1) =
dy1

dx1
(r1 cos ϕ1 − y1)−

dx1

dx1
(x1 − r1 sin ϕ1)= 0 (20)

By combining Equations (4), (14), (18), and (19), the mathematical model of the tooth
profile of the internal ring can be obtained.

3. Design Constraints Analysis of the Gear Pair
3.1. Basic Parameters

Basic design parameters are the basis of modeling the tooth profile of the gear pair
and its cutting tool. Unreasonable parameters will directly lead to the failure of design.
Therefore, based on the meshing principle and the geometrical relations of the tooth profile,
the constraint ranges of basic design parameters were derived.

3.1.1. Addendum Coefficient, Dedendum Coefficient

As shown in Figure 3, in the coordinate Sg, the motion trajectories of the addendum
and dedendum of the external gear are circles centered on O1, with radius ra1 and r f 1,
respectively, and the motion trajectories of the addendum and dedendum of the internal
gear ring are circles centered on O2, with radius ra2 and r f 2, respectively.

In the transmission process of the gear pair, it is necessary to ensure that there is no
interference collision between the addendum of the external gear and the dedendum of the
internal gear ring or between the dedendum of the external gear and the addendum of the
internal gear ring. The following relationships must be satisfied:{

ra1 + e ≤ r f 2
r f 1 + e ≤ ra2

(21)

Substituting the relationships between the design parameters in Table 2 into Equation (21),
the following can be obtained: {

h∗a1 ≤ h∗f 2
h∗f 1 ≥ h∗a2

(22)
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Figure 3. Motion trajectories of the addendum and dedendum.

As shown in Figure 4a, tooth profiles on both sides of a single external gear tooth must
have an intersection E, and linear tooth profiles of two adjacent gear teeth must have an
intersection F. If the tooth profiles exceed this limit position, the design will fail. According
to the geometric relationship, the radius of the circle corresponding to the intersection can
be written:

rE =
h

sin β
(23)

rF =
h

sin(β + π/z1)
(24)

where h is the vertical distance between the center of the external gear O1 and the linear
tooth profile on one side, which can be expressed as follows:

h = r1 sin(θ/2 + β) (25)

As shown in Figure 4b, there is a meshing boundary point on the linear tooth profile of
the external gear. According to the meshing principle, the intersection between the normal
line of any meshing point G on the tooth profile and the pitch circle is the pitch point P. As
the external gear rotates counterclockwise around center point O1, the meshing point G
moves to the addendum of the tooth along the tooth profile, and the node P moves to the
left along the pitch circle. When the normal line of the tooth profile and the pitch circle are
tangent to the point P′, the meshing point G′ is the meshing boundary point. There is no
conjugate tooth profile on the linear tooth profile whose radius is larger than the radius
of the circle where the point G′ is located. According to the geometric relationship, the
circular radius of the point G′ is as follows:
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Figure 4. Constraints of the addendum circle and dedendum circle of the external gear: (a) intersec-
tion; (b) meshing boundary point.

rG′ =
√

h2 + r2
1 (26)

Therefore, it is necessary to avoid the tooth profile of the external gear beyond the
intersection and meshing boundary point when designing. In summary, the addendum
circle and dedendum circle of the gear pair tooth should meet the following constraints:

h∗a1 ≤ h∗f 2
h∗f 1 ≥ h∗a2
ra1 < min(rE, rG′)
r f 1 > rF

(27)

Furthermore, the limit range of the addendum coefficient and dedendum coefficient
of the gear pair can be given according to Equation (27):

0 < h∗a1 ≤ h∗f 2

h∗a1 <
min(rE ,rG′)−r1

m
0 < h∗a2 ≤ h∗f 1 < r1−rF

m

(28)

3.1.2. Tooth Profile Angle

Tooth profile angle β refers to the included angle between the linear tooth profile and
the symmetrical center line of the external gear, which directly determines the shape of the
linear tooth profile and is an important parameter affecting the meshing characteristics of
the gear pair.

As shown in Figure 5a, the intersection H of the linear tooth profile and the reference
circle of the external gear is fixed. With the increase of tooth profile angle β, the correspond-
ing tooth profiles of the addendum circle and dedendum circle of the external gear decrease.
When the tooth profile angle reaches β1, the dedendum circle will disappear. According to
the geometric relationship, the following can be obtained:{

h = r1 sin(β1 + θ/2)
h = r f 1 sin(β1 + π/z1)

(29)
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Figure 5. Extreme value of the tooth profile angle: (a) maximum value; (b) minimum value.

The following can be calculated from Equation (29):

β1 = arctan
r f 1 sin(π/z1)− r1 sin(θ/2)
r1 cos(θ/2)− r f 1 cos(π/z1)

(30)

When the tooth angle reaches β2, the addendum circle will disappear. According to
the geometric relationship, the following can be calculated

ra1

sin(π − θ/2− β2)
=

r1

sin β2
(31)

The following can be calculated from Equation (31):

β2 = arctan
r1 sin(θ/2)

ra1 − r1 cos(θ/2)
(32)

The size of β1 and β2 is determined by specific design parameters. The disappearance
of the addendum circle or dedendum circle will lead to the design failure of the external
gear. Therefore, the maximum tooth profile angle βmax should be selected as the smaller
value of β1 and β2, namely:

βmax = min(β1, β2) (33)

As shown in Figure 5b, it is assumed that the meshing point of the gear pair is at the
vertex B of the linear tooth profile. As the tooth profile angle β decreases, the point B moves
to the right along the addendum circle, and the normal line through point B intersects
the pitch circle at the pitch point P. According to the meshing principle, when segment
PB′ is tangent to the pitch circle, the tooth profile angle reaches the minimum value βmin.
With the further reduction of the tooth profile angle, the tooth profile at the addendum
of the tooth will exceed the meshing boundary point without the conjugate tooth profile.
According to the geometric relationship, the following can be obtained:{

h = r1 sin(βmin + θ/2)
r2

a1 = r2
1 + h2 (34)

The following can be calculated from Equation (34):

βmin = arcsin

√
r2

a1 − r2
1

r1
− θ

2
(35)
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In summary, the tooth shape angle of the external gear should meet the following constraints:

βmin < β < βmax (36)

3.1.3. Tooth Thickness Coefficient of the Reference Circle

As shown in Figure 2, in order to determine the shape of the linear tooth profile
of the external gear, two parameters must be determined; the tooth profile angle β and
the vertical distance h can be selected. However, the vertical distance has no intuitive
geometric meaning in the actual design; the tooth thickness coefficient of the reference
circle is taken as the basic design parameter, and its geometric meaning is the ratio between
the tooth thickness and pitch of the reference circle. The larger the coefficient, the larger the
central angle corresponding to the tooth thickness of the reference circle, and the greater
the bending strength of the tooth.

As shown in Figure 6a, with the increase of the tooth thickness coefficient ks, the
intersection H gradually moves to the right, and the corresponding tooth profile of the
dedendum circle gradually decreases. When the tooth thickness coefficient reaches ks_max,
the central angle corresponding to the tooth thickness reaches θmax, and the dedendum
circle will disappear. According to the geometric relationship, the following can be obtained:{

h = r1 sin(β + θmax/2)
h = r f 1 sin(β + π/z1)

(37)

Figure 6. Extreme value of the tooth thickness coefficient of the reference circle: (a) maximum value;
(b) minimum value.

Substituting the relationship between the design parameters in Table 2 into Equation (37),
the following can be calculated:

ks_max =
z1

π

(
arcsin

[ r f 1

r1
sin
(

β +
π

z1

)]
− β

)
(38)

As shown in Figure 6b, with the decrease of the tooth thickness coefficient ks, the
intersection H gradually moves to the left, and the corresponding tooth profile of the
addendum circle gradually decreases. When the tooth thickness coefficient reaches ks1, the
central angle corresponding to the tooth thickness reaches θ1, and the addendum circle will
disappear. According to the geometric relationship, the following can be obtained:

ra1

sin(π − θ1/2− β)
=

r1

sin β
(39)
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Similarly, the following can be calculated from Equation (39):

ks1 =
z1

π

(
arcsin

(
ra1

r1
sin β

)
− β

)
(40)

It is assumed that the meshing point is at the vertex B of the linear tooth profile. The
normal line through point B intersects the pitch circle at the pitch point P. According to
the meshing principle, when segment PB′ is tangent to the pitch circle, the tooth thickness
coefficient reaches ks2 and the central angle corresponding to the tooth thickness reaches
θ2. With the further reduction of the tooth thickness coefficient, the tooth profile at the
addendum of the tooth will exceed the meshing boundary point without the conjugate
tooth profile. According to the geometric relationship, the following can be obtained:{

h = r1 sin(β + θ2/2)
r2

a1 = r2
1 + h2 (41)

The following can be calculated from Equation (41):

ks2 =
z1

π

arcsin

√
r2

a1 − r2
1

r1
− β

 (42)

The size of ks1 and ks2 is determined by specific design parameters. The disappearance
of the addendum circle or absence of the conjugate tooth profile will lead to design failure.
Therefore, the minimum tooth thickness coefficient ks_min should be selected as the bigger
value of ks1 and ks2, namely:

ks_min = max(ks1, ks2) (43)

In summary, the tooth thickness coefficient of the reference circle should meet the
following constraints:

ks_min < ks < ks_max (44)

3.2. Contact Ratio

Meshing line refers to the trajectory of the meshing points of a pair of conjugate tooth
profiles in a fixed coordinate system [13]. The coordinates of the meshing points in the
movable coordinate S1 are converted to the fixed coordinate Sg, then the meshing line
equation of the gear pair can be obtained, and the change relation is as follows:

Rl
g(ϕ1, x1) = Mg1(ϕ1)Re

1(x1) (45)

where Rl
g(ϕ1, x1) is the position vector of the meshing line in the coordinate Sg.

Similar to the solution method of conjugate tooth profiles, the solution of Rl
g(ϕ1, x1)

must also satisfy the meshing Equation (17) of the gear pair. Taking the design param-
eters of the gear pair in Table 3 as an example, the meshing line solved by combining
Equations (17) and (45) is shown in Figure 7. Its shape is similar to a parabolic curve, differ-
ent from the linear meshing line of the involute gear pair, so their meshing characteristics
are quite different.

Table 3. Design parameters of the gear pair.

z1 z2 β m h∗a1 h∗f1 h∗a2 h∗f2 ks

10 13 25◦ 4 mm 0.7 0.8 0.7 0.8 0.5
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Figure 7. Meshing relationship of the conjugated straight-line internal gear pair.

In order to ensure the continuity and smoothness of gear transmission, gear pairs must
meet the restrictive conditions ε > 1 of the contact ratio ε. In Figure 7, assuming that the
gear pair rotates clockwise and the direction is positive, the curve I J is the actual meshing
line of a pair of gear teeth during the meshing. The point I is the intersection between the
meshing line and the addendum circle of the internal gear ring, and is the initial meshing
point. The point J is the intersection between the meshing line and the addendum circle
of the external gear, and is the final meshing point. When a pair of gear teeth enter and
exit meshing, the corresponding angles of the external gear are ϕ01 and ϕ02, respectively, so
the angle at which the external gear rotates is ∆ϕ = ϕ02 − ϕ01 as the meshing point moves
from the point I to point J, and then the contact ratio of the conjugated straight-line internal
gear pair and the constraints it meets are as follows:

ε =
∆ϕ

2π/z1
=

ϕ02 − ϕ01

2π/z1
> 1 (46)

In coordinate Sg, the following can be obtained from the geometric relationship in
Figure 7:

ρ2
1 = h2 + r2

1 cos2(β− ϕ1) (47)

ρ2
2 = [h + e sin(β− ϕ1)]

2 + r2
2 cos2(β− ϕ1) (48)

where ρ1 and ρ2 are the distances from the meshing point G to the center O1 and O2 of the
external gear and internal gear ring, respectively.

When the gear teeth enter meshing, there is a relation: ρ2 = ra2; when the gear
teeth exit meshing, there is a relation: ρ1 = ra1. Substitute the above relations into
Equations (47) and (48) to solve, and the expressions of ϕ1 and ϕ2 can be obtained:

ϕ01 = β− arcsin
eh +

√
e2h2 −

(
i212r2

1 − e2
)(

r2
a2 − h2 − i212r2

1
)

i212r2
1 − e2

(49)

ϕ02 = β− arccos

√
r2

a1 − h2

r1
(50)
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Substituting Equations (49) and (50) into Equation (46), the calculation formula and
constraint on the contact ratio of the conjugated straight-line internal gear pair can be obtained.

3.3. Interference

Unreasonable design parameters will lead to the interference of the gear pair in
the process of meshing transmission and generating manufacture, which will affect the
normal operation of the gear pair. Existing research on the interference of internal gear
pairs is mostly focused on the involute tooth profile [13–15]. Due to the different tooth
profiles, the involute verification formula is difficult to apply to the interference check of the
conjugated straight-line internal gear pair. Therefore, it is necessary to rederive the formula
based on the meshing characteristics, and discuss the interference and the constraints of
non-interference.

3.3.1. Undercutting and End Cutting

Undercutting refers to the phenomenon that part of the tooth profile at the dedendum
of the machined gear is cut off by the cutting tool during generating manufacture [12].
Undercutting will weaken the bending strength of the tooth dedendum, reduce the contact
ratio, and destroy the smoothness of gear transmission. Therefore, it is of great significance
to study the undercutting limit conditions of the conjugated straight-line internal gear pair
to avoid the undercutting interference of the tooth profile and improve the transmission
life of the gear pair.

In order to determine the limiting conditions for the non-occurrence of undercutting,
refer to the undercutting theory proposed by Litvin [13]: it is assumed that the tooth profile
Γ1 is a tool profile used to process the conjugate tooth profile Γ2. If singular points appear in
the tooth profile Γ2, undercutting will occur in processing, and the singular points should
meet the following mathematical conditions:

r′ = vr = 0 (51)

where r is the position vector of the meshing point on the conjugate tooth profile Γ2 and vr
is the relative motion velocity of the meshing point on the conjugate tooth profile along the
tooth profile.

Since the conversion relationship between the position vector of the linear tooth profile
of the external gear and the conjugate tooth profile of the internal gear ring is relatively
complex, it is not convenient to solve the singular points directly by taking the derivative
of the position vectors, so it can be solved according to the relative motion relationship
between conjugate tooth profiles. Then the mathematical model of the singular points on
the tooth profile can be expressed as follows [16–18]:

v(2)
r = v(1)

r + v(12)
1 = 0 (52)

where v(1)
r is the relative motion velocity of the meshing point of tooth profile Γ1 along

the tooth profile; v(12)
1 is the relative motion velocity at the meshing point of the conjugate

tooth profiles, namely, the motion velocity of the meshing point on tooth profile Γ1 relative
to tooth profile Γ2; and v(2)

r is the relative motion velocity of the meshing point of tooth
profile Γ2 along the tooth profile. The above velocity vectors are defined in the same
coordinate system.

Assuming that the linear tooth profile of the external gear is the tool profile used to
process the conjugate tooth profile of the internal gear ring, then, in the coordinate S1,
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combining the tooth profile expression and the relative velocity expression, the vectors v(1)
r

and v(12)
1 in Equation (52) are written in the form of components:

v(1)
r = ve

1 = v(1)rX1
i1 + v(1)rY1

j1 + v(1)rZ1
k1

v(1)rX1
= dx1

dx1

dx1
dt

v(1)rY1
= dy1

dx1

dx1
dt

v(1)rZ1
= 0

(53)


v(12)

1 = v(ei)
1 = v(12)

1X1
i1 + v(12)

1Y1
j1 + v(12)

1Z1
k1

v(12)
1X1

= (r2−r1)ω1
r2

× (r1 cos ϕ1 − y1)

v(12)
1Y1

= (r2−r1)ω1
r2

× (x1 − r1 sin ϕ1)

v(12)
1Z1

= 0

(54)

Substituting Equations (53) and (54) into Equation (52), the following can be obtained:{ dx1
dx1

dx1
dt = −v(12)

1X1
dy1
dx1

dx1
dt = −v(12)

1Y1

(55)

The meshing equation should be satisfied when the linear tooth profile of the external
gear is processed to form the conjugate tooth profile of the internal gear ring. Substituting
Equation (7) into Equation (17), the following can be obtained:

g(x1, ϕ1) = kr1 cos ϕ1 + r1 sin ϕ1 −
(

k2 + 1
)

x1 − kb = 0 (56)

The following can be obtained by taking the full derivative of Equation (56) with
respect to time t:

∂g
∂x1

dx1

dt
+

∂g
∂ϕ1

dϕ1

dt
= 0 (57)

The angular velocity of the external gear is expressed as follows:

ω1 =
dϕ1

dt
(58)

Substituting Equation (58) into Equation (57), a linear equation system with a single
unknown dx1/dt can be obtained by combining Equations (55) and (57). The specific form
is as follows: [

dx1
dx1

dy1
dx1

∂g
∂x1

]T dx1

dt
=
[
−v(12)

1X1
−v(12)

1Y1
− ∂g

∂ϕ1
ω1

]T
(59)

According to matrix theory, in order for the Equation (59) to have a definite non-zero
solution, the rank of its augmented matrix A and coefficient matrix A must be equal to
each other and equal to 1, namely:

r(A) = r
(

A
)
= 1 (60)

Then there is the following:
∂g
∂x1

v(12)
1X1
− ∂g

∂ϕ1

dx1
dx1

ω1 = 0
∂g
∂x1

v(12)
1Y1
− ∂g

∂ϕ1

dy1
dx1

ω1 = 0
(61)
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Combined with Equation (56), Equations (7), (54), and (56) are substituted into
Equation (61). The position parameters x1 and ϕ1 of the singular point on the conjugate
tooth profile of the internal gear ring satisfy the following functional relations: x1 = r1

√
k2+1 sin(ϕ1+∆ϕ)−kb

k2+1

x1 =
(2k2+1)r1r2−(k2+1)r2

1
(k2+1)(r2−r1)

sin ϕ1 − kr1r2
(k2+1)(r2−r1)

cos ϕ1

(62)

where ∆ϕ = β− π/2.
According to Equation (62), given a set of basic design parameters, the boundary point

on the linear tooth profile forming the singular point on the conjugate tooth profile can be
determined, whose corresponding x-coordinate is x1_lim1. Taking the right tooth profile of
the external gear as an example, it can be seen from Figure 2 that if the boundary point is
outside the tool profile of the external gear, that is, the constraint of Equation (63) can be
met, the undercutting in the conjugate tooth profile of the internal gear ring can be avoided
during the forming process of the linear tooth profile of the external gear.

x1_lim1 < xB ‖ x1_lim1 > xC (63)

Similar to undercutting, end cutting refers to the phenomenon that part of the tooth
profile at the addendum of the machined gear is cut off by the cutting tool, which will lead
to an incomplete tooth profile and will damage the transmission of the gear pair.

Based on the principle of gear generating manufacture, the tooth profile of the rack
cutter and the linear tooth profile are conjugate tooth profiles in the process of forming the
linear tooth profile of the external gear by rack cutter. Therefore, the generating process
can also be regarded as the inverse process of forming the tooth profile of the rack cutter by
the linear tooth profile. If the latter experiences undercutting in the forming process, the
former is bound to experience end cutting in the forming process. Thus, the problem of
end cutting in the process of forming the linear tooth profile can be transformed into the
problem of undercutting in the process of forming the tooth profile of the rack cutter.

Therefore, Equation (51) is directly used to carry out the undercutting analysis in the
process of forming the tooth profile of the rack cutter by the linear tooth profile of the
external gear, so as to determine the constraint that no end cutting occurs in the process
of forming the linear tooth profile by rack cutter. The idea and method of derivation are
similar to that of undercutting, so it is not repeated here. The position parameters x1 and
ϕ1 of the singular point on the tooth profile of the rack cutter can be obtained by solving
the following functional relations: x1 = r1

√
k2+1 sin(ϕ1+∆ϕ1)−kb

k2+1

x1 = kr1 sin(ϕ1+∆ϕ2)√
k2+1

+ r1 sin ϕ1
(64)

where ∆ϕ1 = β− π/2, ∆ϕ2 = β.
According to Equation (64), given a set of basic design parameters, the boundary point

on the linear tooth profile forming the singular point on the tooth profile of the rack cutter
can be determined, whose corresponding x-coordinate is x1_lim2. Taking the right tooth
profile of the external gear as an example, combined with Figure 2, it can be seen that
if the boundary point is outside the external gear’s tool profile, that is, the constraint of
Equation (65) can be met, the undercutting in the tooth profile of the rack cutter can be
avoided, that is, the end cutting in the linear tooth profile of the external gear during the
forming process.

x1_lim2 < xB ‖ x1_lim2 > xC (65)

Notably, the generating method uses the principle that the conjugate tooth profiles
meshing with each other are mutually enveloping lines. At this time, the processed
conjugate tooth profile of the internal gear ring is determined by the tooth profile of
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the external gear, and the addendum coefficient of the internal gear ring h∗a2 = h∗f 1, the
dedendum coefficient h∗f 2 = h∗a1. If there are boundary points on the linear tooth profile
of the external gear, undercutting will inevitably occur in the generating process. Thus,
undercutting is the constraint that must be considered in gear pairs processed by the
generating manufacture. If the forming method or other processing methods are adopted,
although undercutting will not occur in the machining process, if singular points appear
on the conjugate tooth profile of the internal gear ring, a complete and smooth conjugate
tooth profile curve cannot be obtained, resulting in the designed gear pair being unable to
engage in transmission normally. Therefore, in the design and machining of conjugated
straight-line internal gear pairs, it is necessary to take the occurrence of undercutting as a
necessary constraint. The design process and end cutting of the rack cutter’s profile can be
understood in the same way.

To summarize, in order to avoid undercutting and end cutting in the design and machining
of the conjugated straight-line internal gear pair, the constraints of Equations (63) and (65)
should be satisfied by reasonably matching the basic design parameters of the gear pair.

The four sets of design parameters in Table 4 are taken as examples of undercutting
and end cutting. MATLAB® programming is used to calculate the x-coordinates x1_lim1 and
x1_lim2 corresponding to the boundary points of undercutting and end cutting on the linear
tooth profile of the external gear, respectively, by using Equations (62) and (64). Then, it is
determined whether undercutting and end cutting will occur in the generating manufacture
according to the constraints of Equations (63) and (65). The detailed calculations and
analysis results are shown in Table 5.

Table 4. Design parameters for undercutting and end cutting examples.

Design Parameters Case 1 Case 2 Case 3 Case 4

m(mm) 3 4 5 6
z1 10 17 20 28
z2 13 38 29 40

β(◦) 23 25 26 27
ks 0.45 0.5 0.55 0.6
h∗a1 0.6 1 1.1 1.2
h∗f 1 1 1 1 0.9
h∗a2 1 1 1 0.9
h∗f 2 0.6 1 1.1 1.2

Table 5. Results of undercutting and end cutting examples.

Results Case 1 Case 2 Case 3 Case 4

xB 1.3076 1.2133 1.5514 1.8951
xC 3.5516 5.1417 6.9233 8.5423

x1_lim1 1.2987 1.4085 1.3567 0.5206
x1_lim2 1.4699 1.6395 1.9305 1.5278

Undercutting? ×
√

× ×
End cutting?

√ √ √
×

Taking case 2 and case 4 as examples, Figure 8 shows the conjugate tooth profiles of
the internal gear ring and rack cutter, and Figure 9 shows the envelope forming process of
tooth profiles in the generating manufacture. Since singular points exist on the conjugate
tooth profiles corresponding to case 2, and the specific positions are marked out in Figure 8,
undercutting and end cutting will occur. At this time, part of the conjugate tooth profile
above the singular point at the dedendum of the internal gear ring is cut by the linear tooth
profile of the external gear; the linear tooth profile at the addendum of the external gear
is cut by the small part of the tooth profile below the singular point at the addendum of
the rack cutter; the specific positions are circled by the red outlines in Figure 9. Conjugate
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tooth profiles corresponding to case 4 have no singular points, so undercutting and end
cutting will not occur. The above analysis results verify the correctness of the undercutting
and end cutting theory of the conjugated straight-line internal gear pair derived in this
paper; in addition, this research idea and method can also be applied to the undercutting
determination of other kinds of conjugate tooth profiles in plane.

Figure 8. Conjugate tooth profiles and their singular points: (a) profile of internal gear ring (case 2);
(b) profile of rack cutter (case 2); (c) profile of internal gear ring (case 4); (d) profile of rack cutter
(case 4)).
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Figure 9. Generating process of the tooth profiles: (a) profile of internal gear ring (case 2); (b) profile
of external gear (case 2); (c) profile of internal gear ring (case 4); (d) profile of external gear (case 4).
(The specific positions of undercutting and end cutting are circled by the red outlines).

3.3.2. Tooth-Overlapping Interference

In the transmission of internal gear pairs, the meshing profiles may overlap with each
other after they are out of meshing, which is called tooth-overlapping interference. The
existence of tooth-overlapping interference will lead to a failed operation, and the gear
pairs cannot be installed correctly. Therefore, in the design stage of the gear pair, the check
of tooth-overlapping interference must be carried out to avoid the interference.

As shown in Figure 10, in the coordinate Sg, assuming that the gear pair rotates
clockwise, the right tooth profile of the external gear and its corresponding conjugate
profile are taken as an example. At the initial moment, the axis Y1 and Yg coincide, the
corresponding angle of the external gear when a pair of conjugate tooth profiles exit
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meshing is ϕ02 according to Equation (50), and the point K is the intersection of the
addendum circles of the external gear and internal gear ring. When the linear tooth profile
rotates through the point, the two tooth profiles will completely separate, and the tooth-
overlapping interference will no longer occur; the corresponding angle of the external gear
is ϕ03 at this time. Therefore, the range of the external gear angle corresponding to the
check of tooth-overlapping interference is as follows:

ϕ1 ∈ (ϕ02, ϕ03) (66)

Figure 10. Analysis of the tooth-overlapping interference. (The specific position of tooth-overlapping
interference is circled by the red outline).

According to the geometric relationship in Figure 2, the expression of tooth thickness
r1i and its corresponding central angle θi on any circle of external gear can be deduced:

θi = 2
(

π

2
− β− arccos

h
r1i

)
(67)

si = r1iθi (68)

Substituting the relation r1i = ra1 into Equation (67), the center angle θra1 of the tooth
thickness of the external gear addendum circle is as follows:

θra1 = 2
(

π

2
− β− arccos

h
ra1

)
(69)

According to the geometric relationship in Figure 10, the following can be obtained:

ϕ03 = arccos

(
r2

a2 − r2
a1 − e2

2ra1e

)
− θra1

2
(70)

In Figure 10, the position of interference is circled by the red outline. If tooth-
overlapping interference occurs, the apex B of the linear tooth profile will definitely be
embedded into the conjugate tooth profile B′C′ of the internal gear ring, and the apex is
located on the right side of the conjugate tooth profile. Therefore, the following judgment
method is intended to be adopted to the check of tooth-overlapping interference: in the coor-
dinate S2, the motion trajectory of the apex B will form a curve, and the coordinates of curve(

x(2)B , y(2)B , 1
)

can be obtained by the coordinate transformation of Equation (71). If the
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curve intersects with the conjugate profile curve of the internal gear ring, tooth-overlapping
interference will inevitably occur; otherwise, it will not occur.(

x(2)B , y(2)B , 1
)T

= M21(ϕ1, ϕ2)(xB, yB, 1)T (71)

As shown in Figure 11, this method transforms the complex problem of tooth-overlapping
interference into the problem of judging whether there is an intersection between the
conjugate tooth profile of the internal gear ring and the trajectory curve of the apex of the
linear tooth profile in the coordinate S2. Furthermore, the checking ranges of the angle and
conjugate profile curve are discretized, and the numerical calculation method is used to
make the above method easy to be programmed. The specific calculation flow is shown
in Figure 12; when the angle of the external gear is ϕ1, find the coordinate (x∗2 , y∗2 , 1) of
the point on the position vector Ri

2 of the internal gear ring’s profile, which is equal to

the y-coordinate y(2)B of point B. If no corresponding point can be found or the relation

x(2)B ≤ x∗2 exists, it indicates that the point B is located on the left side of the conjugate
profile curve under this angle, and thus no tooth-overlapping interference occurs. If the
relation x(2)B > x∗2 exists, it indicates that point B is located on the right side of the conjugate
profile curve, and then the tooth-overlapping interference occurs. Complete the check
of tooth-overlapping interference within the whole range of the angle ϕ1. If no tooth-
overlapping interference occurs within the whole range, the tooth-overlapping interference
of the gear pair will not occur; otherwise, it will. Therefore, the constraint of no tooth-
overlapping interference of the conjugated straight-line internal gear pair can be written in
the following form:

G1(m, z1, z2, β, ks, h∗a1, h∗a2, ϕ1) = x(2)B − x∗2 ≤ 0 (72)

where G1 is the decision function of tooth-overlapping interference.

Figure 11. Determination principle of tooth-overlapping interference.
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Figure 12. Calculation flow of the check of tooth-overlapping interference.

3.3.3. Radial Interference

Radial interference means the following in the assembly process of the internal gear
pair, the external gear can only be assembled into the internal gear ring along the axial
direction, but the external gear cannot be installed to the meshing position along the radial
direction from the center of the internal gear ring. At this point, if the external gear is used
as a slotting cutter for the radial cutting and generating motion to process the internal
gear ring by the generating method, there will be an end cutting in the internal gear ring.
Therefore, the radial interference is a constraint that must be satisfied when the gear pair is
machined by the generating method, but not when the gear pair is designed.

In the coordinate Sg, the conjugate tooth profiles on the right are still taken as an
example. The initial meshing position is located at pitch point P. At this time, the included
angles between the radius of the tooth apexes B and C′ of the gear pair and the axis Yg are
σ1 and σ2, respectively. The following can be obtained from the geometric relationship in
Figure 13:

d1 = ra1 sin σ1 = ra1 sin(ϕ1 − τ1) (73)

d2 = ra2 sin σ2 = ra2 sin(ϕ2 + τ2) (74)

where d1 and d2 are the distance from the apexes B and C′ of the gear pair to the axis Yg,
respectively. τ1 and τ2 are the included angles between the radius on the pitch circles and
the radius of the apexes B and C′ at the tooth profile on the same side, respectively.
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Figure 13. Analysis of radial interference.

As can be seen from Figure 2, the coordinate of the intersection L of the reference circle
of the external gear and the straight-line segment BC is (xL = r1 sin(θ/2), yL = r1 cos(θ/2));
combined with Equations (7) and (11), the length of the straight-line segment BL is
as follows:

dBL =

√
(xB − xL)

2 + (yB − yL)
2 (75)

In ∆BO1L, the following is obtained according to the law of cosines:

τ1 = arccos

(
r2

a1 + r2
1 − d2

BL
2ra1r1

)
(76)

Since the conjugate tooth profile of the internal gear ring is an irregular curve, the point
coordinates on the tooth profile cannot be directly solved through geometric relationships.
Based on the mathematical model of the tooth profile of the internal gear ring in Section 2.3,
MATLAB® programming is used to solve the coordinates of the intersections M and C′ of
the conjugate tooth profile of the internal gear ring with its reference circle and addendum
circle, and then the length of the straight-line segment MC′ is as follows:

dMC′ =

√
(xM − xC′)

2 + (yM − yC′)
2 (77)

In ∆C′O2M, the following is obtained according to the law of cosines:

τ2 = arccos

(
r2

a2 + r2
2 − d2

MC′

2ra2r2

)
(78)

In Figure 13, when d1 < d2, the radial interference of the gear pair will occur at the
angle ϕ1; on the contrary, when d1 ≥ d2, the radial interference of the gear pair will not
occur. Thus, the constraint that there is no radial interference of the conjugated straight-line
internal gear pair can be written in the following form:

G2(m, z1, z2, β, ks, h∗a1, h∗a2, ϕ1) = d1 − d2 ≥ 0 (79)

where G2 is the decision function of radial interference.



Machines 2023, 11, 412 23 of 34

4. Influences of the Design Parameters on Design Constraints

A set of design parameters used in the gear pump in Table 3 is taken as an example.
The influence laws of design parameters on the design constraints are studied by controlling
a single variable, which provides a theoretical basis for parameter design and interference
avoidance of the gear pair. During the discussion, since the necessary and sufficient
conditions of the value range of design parameters cannot be directly given, the value
range of the parameters is determined by the necessary conditions in Section 3.1. Based
on the above theory, the value range of the addendum coefficient of the external gear
h∗a1 is 0–0.7286, the value range of the dedendum coefficient of the external gear h∗f 1 is
0–0.9003, the value range of the addendum coefficient of the internal gear ring h∗a2 is 0–0.8,
and the minimum value of the dedendum coefficient of the internal gear ring h∗f 2 is 0.7.
The value range of the tooth profile angle β is 24.18◦–28.64◦, and the value range of the
tooth thickness coefficient of the reference circle ks is 0.4548–0.5528. The value range of the
parameters will be further restricted after considering the constraints such as the contact
ratio and interference.

4.1. Basic Parameters

Through the analysis of the derivation process and calculational formulas of the
constraints on basic parameters, when the teeth number z1, z2 is determined, the design
parameters m, h∗a2, h∗f 2 have no influence on the constraints on tooth profile angle β and
tooth thickness coefficient ks, while the parameters βmin, βmax, ks_min, ks_max are determined
by the design parameters h∗a1, h∗f 1, ks, and β. The influences of the above parameters on
parameters βmin, βmax, ks_min, and ks_max are shown in Figure 14.

Figure 14. Influences of design parameters on parameters βmin, βmax, ks_min, ks_max: (a) h∗a1; (b) h∗f 1;
(c) ks; (d) β.
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The results show the following:
(1) The maximum tooth profile angle βmax is negatively correlated with the parameters

h∗f 1 and ks, but independent of the parameters h∗a1 and β; the minimum tooth profile angle
βmin is positively associated with the parameter h∗a1, whose growth trend is determined by
the Equation (35), and negatively correlated with the parameter ks, but independent of the
parameters h∗f 1 and β.

(2) The maximum tooth thickness coefficient ks_max is negatively correlated with the
parameters h∗f 1 and β, but independent of the parameters h∗a1 and ks; the minimum tooth
thickness coefficient ks_min is negatively correlated with the parameter β, but independent
of the parameters h∗f 1 and ks, and positively correlated with the parameter h∗a1 and there
is an obvious “inflection point” in its variation curve, which has been marked out in
Figure 14a. Combined with the content in Section 3.1.3, at the first stage of the “inflection
point,” the minimum value ks_min is determined by Equation (40), and at the later stage of
the ”inflection point,” the minimum value ks_min is determined by Equation (42).

4.2. Contact Ratio

Through the analysis of the derivation process and calculational formulas of the contact
ratio of the gear pair, when the teeth number z1, z2 is determined, the design parameters
m, h∗f 1, h∗f 2 have no influence on the contact ratio, while the contact ratio is determined by
the design parameters h∗a1, h∗a2, ks, and β. The influences of the above parameters on the
contact ratio are shown in Figure 15.

Figure 15. Influences of design parameters on the contact ratio: (a) h∗a1; (b) h∗a2; (c) ks; (d) β.
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The results show the following:
(1) In Figure 15, the contact ratio ε is positively associated with the parameters h∗a1 and

h∗a2, and negatively associated with the parameters ks and β; the growth trend is determined
by the Equation (46).

(2) In Figure 15a, as the addendum coefficient h∗a1 gradually increases to the upper
limit, the growth rate of the contact ratio ε gradually increases. On the one hand, it indicates
that the meshing time of the tooth profile near the addendum is longer than that of the
other parts of the tooth profile, and a small increase in the tooth height here can achieve a
better effect of increasing the contact degree; but on the other hand, a larger contact ratio
will lead to a serious oil trapping phenomenon, resulting in vibration and noise. Therefore,
the value of the addendum coefficient h∗a1 cannot be too close to the upper limit. Similarly,
as can be seen from Figure 15c,d, when the parameters ks and β gradually decrease to the
lower limit, the growth rate of the contact ratio ε gradually increases; the value of tooth
thickness coefficient ks and tooth profile angle β should not become too close to the lower
limit in the actual design.

(3) In Figure 15a,b, when the constraint of the contact ratio is satisfied, the value ranges
of the addendum coefficients h∗a1 and h∗a2 need to be further restricted. Based on the content
in Section 3.2, it can be obtained by programming that the value range of the addendum
coefficient of the external gear h∗a1 is 0.6179–0.7286, and the addendum coefficient of the
internal gear ring h∗a2 is 0.3816–0.8 when the constraint of the contact ratio is satisfied.

4.3. Interference
4.3.1. Undercutting and End Cutting

Through the analysis of the derivation process and calculational formulas of the
constraints of undercutting and end cutting, whether undercutting and end cutting occur
depends on the relationship of size between the x-coordinate of boundary points x1_lim1,
x1_lim2 and the x-coordinates of endpoints xB, xC on the tooth profile of the external gear.
When the teeth number z1, z2 is determined, the design parameters m, h∗a2, h∗f 2 have no
influence on the constraints, while the constraints are determined by the design parameters
h∗a1, h∗f 1, ks, and β. The influences of the above parameters on parameters x1_lim1, x1_lim2,
xB, xC are shown in Figure 16.

The results show the following:
(1) In Figure 16, the boundary points of the linear tooth profile are close to the apex

B. Combined with the constraints (63) and (65), the occurrence of undercutting and end
cutting can be determined by comparing the relationship of size between the parameters
x1_lim1, x1_lim2, and xB.

(2) In Figure 16a, as the addendum coefficient h∗a1 gradually increases, the x-coordinate
of xB decreases linearly, and the x-coordinates x1_lim1 and x1_lim2 of the boundary points
remain constant, indicating that the locations of singular points of the conjugate tooth
profiles are not affected by the parameter h∗a1; parameters x1_lim1, x1_lim2, and xB change
from satisfying to not satisfying the constraints (63) and (65), that is, from no occurrence to
the occurrence of undercutting and end cutting. Similarly, in Figure 16b, the parameters
x1_lim1, x1_lim2, and xB remain constant with the increase of dedendum coefficient h∗f 1,
indicating that the change of parameter h∗f 1 has no effect on undercutting and end cutting,
and undercutting will not occur, but end cutting will occur according to the constraints. In
Figure 16c, the parameters x1_lim1, x1_lim2, and xB all increase linearly with the increase of
tooth thickness coefficient ks, and parameters x1_lim1 and xB change from not satisfying to
satisfying the constraint (63), that is, from the occurrence to no occurrence of undercutting,
while parameters x1_lim2 and xB do not satisfy the constraint (65) all the time; that is, end
cutting always occurs. In Figure 16d, the parameters x1_lim1, x1_lim2, and xB all decrease
linearly with the increase of tooth profile angle β, and parameters x1_lim1 and xB change
from not satisfying to satisfying the constraint (63), that is, from the occurrence to no
occurrence of undercutting, while parameters x1_lim2 and xB do not satisfy the constraint
(65) all the time; that is, end cutting always occurs.
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Figure 16. Influences of design parameters on parameters x1_lim1, x1_lim2, xB, xC: (a) h∗a1; (b) h∗f 1;
(c) ks; (d) β.

(3) The value ranges need to be further restricted if the constraints of undercutting
and end cutting are satisfied. Combined with the content in Section 3.3.1, the coordinates
of intersections in Figure 16 can be solved by programming, and it can be obtained that
the value range of the addendum coefficient h∗a1 is 0–0.7047, the tooth thickness coefficient
ks is 0.4925–0.5528, and the tooth profile angle β is 24.87◦–27.64◦ when the constraint of
undercutting is satisfied. The value range of the addendum coefficient h∗a1 is 0–0.5555 when
the constraint of end cutting is satisfied.

To summarize, undercutting and end cutting can be avoided by reasonably matching
the design parameters of the gear pair to meet the constraints (63) and (65). Specifically,
undercutting can be avoided by reducing the addendum coefficient h∗a1 of the external gear,
increasing the tooth thickness coefficient of the reference circle ks and the tooth profile angle
β; end cutting can be avoided by reducing the addendum coefficient of h∗a1 the external gear.

4.3.2. Tooth-Overlapping Interference

Through the analysis of the derivation process and calculation formulas of the con-
straint of tooth-overlapping interference, the decision function G1 of tooth-overlapping
interference varies with external gear angle ϕ1. The smaller the value of |G1| is, the smaller
the transverse distance between the apex B and the conjugate tooth profile B′C′ of the
internal gear ring is, and the value range of angle ϕ1 is determined by Equation (66). It is
worth noting that, with the change of design parameters, there may be an unreasonable
value range of angle ϕ1 solved or no intersection of the addendum circles of the external
gear and internal gear ring. If the former occurs, it indicates that the design parameters are
unreasonable and there is no need to discuss it; if the latter occurs, it is verified that the
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value range of the angle can be set as 0–90◦ to complete the tooth-overlapping interference
check under these design parameters. In addition, the function G1 is not affected by the
design parameters h∗a2, h∗f 1, and h∗f 2, but is related to the parameters m, z1, z2, h∗a1, ks, β. The
influences of the above parameters on the function G1 are shown in Figure 17.

Figure 17. Influences of design parameters on the function G1: (a) m; (b) z1; (c) z2; (d) h∗a1; (e) ks; (f) β.

The results show the following:
(1) In Figure 17a, when the module m increases from 1 mm to 6 mm, the value range

of angle ϕ1 does not change, indicating that the module has no influence on the checking
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range of interference. Meanwhile, the relation G1 < 0 is always valid in the checking range
of angle ϕ1, satisfying the constraint (72), indicating that no tooth-overlapping interference
occurs. Since the size of the gear pair is proportional to the module, combined with the
calculation results, it can be obtained that the transverse distance between the apex B and
the conjugate tooth profile B′C′ is the same as the increase proportion of the module at the
same angle ϕ1, indicating that the change of module will affect the value of the function
G1, but will not affect the check result of the tooth-overlapping interference; that is, the
interference cannot be avoided by adjusting the module.

(2) In Figure 17b, when the teeth number z1 of the external gear is 10 and 11, the
relation G1 < 0 is valid within the whole range of the angle ϕ1, satisfying the constraint
(72), and no tooth-overlapping interference occurs. When the teeth number increases to 12,
the relation G1 > 0 exists and the tooth-overlapping interference occurs. This indicates that
the larger the teeth number z1, the more likely that the interference will occur. Similarly,
it can be seen from Figure 17c that the larger the teeth number z2, the less likely that the
interference will occur.

(3) As can be seen from Figure 17d, when the addendum coefficient h∗a1 increases from
0.1 to 0.7, the relation G1 < 0 is valid in the whole checking range of the angle ϕ1, satisfying
the constraint (72), and no tooth-overlapping interference occurs. The larger the addendum
coefficient h∗a1, the smaller the transverse distance between the apex B and the conjugate
tooth profile B′C′ will be, and the more likely that the interference will occur. Similarly, it
can be seen from Figure 17e,f that no tooth-overlapping interference occurs when the tooth
thickness coefficient ks or the tooth profile angle β increases, and the larger the parameters
ks or β, the less likely that the interference will occur.

To summarize, the tooth-overlapping interference can be avoided by reasonably
matching the design parameters of the gear pair to meet the constraint (72). Specifically, it
can be satisfied by increasing the difference of teeth number, the tooth thickness coefficient
ks of the reference circle, and the tooth profile angle β, reducing the addendum coefficients
h∗a1 of the external gear.

4.3.3. Radial Interference

Through the analysis of the derivation process and calculational formulas of the
constraint of radial interference, the decision function G2 of radial interference varies with
the external gear angle ϕ1, and the value range of the angle can be set as 0–180◦ according
to the symmetric relationship. In addition, the function G2 is not affected by the design
parameters h∗f 1 and h∗f 2, but is related to the parameters z1, z2, h∗a1, h∗a2, ks, β. The influences
of the above parameters on the function G2 are shown in Figure 18.

The results show the following:
(1) In Figure 18a, when the teeth number z1 of the external gear increases from 10 to

12, the relation G2 < 0 exists and the corresponding value range of angle ϕ1 becomes larger,
indicating that radial interference occurs, and the larger the parameter z1, the more likely
that radial interference will occur. Similarly, as shown in Figure 18b, the corresponding
value range of angle ϕ1 becomes smaller to the relation G2 < 0 as the teeth number of the
internal gear ring z2 increases from 11 to 14, indicating that the larger the parameter, the
less likely z2 that radial interference will occur. When the teeth number z2 increases to 15,
the relation G2 > 0 is valid within the whole value range of the angle ϕ1 satisfying the
constraint (79), and radial interference no longer occurs.

(2) As can be seen from Figure 18c, when the addendum coefficient h∗a1 is less than 0.3,
the relation G2 > 0 is valid in the whole value range of the angle ϕ1, satisfying the constraint
(79), and no radial interference occurs. With the further increase of the parameter h∗a1 to
0.7, the relation G2 > 0 occurs and the corresponding value range of the angle ϕ1 becomes
larger, indicating that radial interference occurs, and the larger the parameter h∗a1, the more
likely that radial interference will occur. As shown in Figure 18d, when the addendum
coefficient h∗a2 increases from 0.1 to 0.7, the relation G2 < 0 exists all the time and the
corresponding value range of angle ϕ1 becomes larger, indicating that radial interference
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occurs, and the larger the parameters h∗a2, the more likely that radial interference will occur.
As shown in Figure 18e,f, the corresponding value range of angle ϕ1 becomes smaller to
the relation G2 < 0 when the tooth profile angle β increases from 24.5◦ to 28.5◦ or the tooth
thickness coefficient ks increases from 0.46 to 0.54, indicating that the larger the parameters
β and ks, the less likely that radial interference will occur.

Figure 18. Influences of design parameters on the function G2: (a) z1; (b) z2; (c) h∗a1; (d) h∗a2; (e) ks;
(f) β.
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To sum up, radial interference can be avoided by reasonably matching the design
parameters of the gear pair to meet the constraint (79). Specifically, it can be satisfied by
increasing the difference of teeth number, the tooth thickness coefficient ks of the reference
circle, and the tooth profile angle β, reducing the addendum coefficients h∗a1 and h∗a2 of the
gear pair.

5. Design Examples

Taking the design parameters in Table 3 as an example, the values of parameters
satisfy the constraints in Section 3.1, and the contact ratio ε = 1.177 > 1, satisfying the
constraint Equation (46). According to the theory in Section 3.3.1, the design parameters
satisfy the constraint Equation (63) of undercutting, but do not satisfy the constraint
Equation (65) of end cutting. As shown in Figures 17 and 18, the relation G1 < 0 is always
valid in the checking range of angle ϕ1, satisfying the constraint Equation (72), and the
relation G2 < 0 exists in the value range of angle ϕ1, not satisfying the constraint Equation
(79). The above calculated results show that the values of the basic design parameters all
satisfy the constraints; the designed gear pair meets the constraint of contact ratio, and
undercutting and tooth-overlapping interference will not occur, but end cutting and radial
interference will occur. If the generating method is adopted to machine the gear pair, it is
necessary to modify the design of the rack cutter for the external gear and the slotting cutter
for the internal gear ring, or to reasonably adjust the design parameters, so as to avoid
undercutting and radial interference in the generating process. If the forming method or
other processing methods are adopted, the designed gear pair has met the requirement of
normal transmission, and axial assembly can be adopted.

According to the mathematical model in Section 2, the profiles of the gear pair and
rack cutter can be determined if a set of basic design parameters are known. In fact, the
working profiles in the transmission process of the gear pair are the linear tooth profile BC
of the external gear and the corresponding conjugate tooth profile B′C′ of the internal gear
ring; the tooth profiles of the addendum and dedendum circles, which can be designed
according to the parameter relation in Table 2, do not need to satisfy the conjugate relation,
namely, Equation (16). However, the gear pair with normal transmission can be designed
only if the constraints in Section 3 are satisfied. Similarly, the rack cutter can be designed
in the same way. In summary, according to the design flow diagram shown in Figure 19,
reasonable conjugated straight-line internal gear pairs and rack cutters for external gears
can be designed.

Furthermore, MATLAB® programming is used to solve the mathematical model of
tooth profiles. For the internal gear ring, the three segments of the tooth profile have the
following relations: the conjugate tooth profile does not intersect with the tooth profile of
the dedendum circle, and intersects with the tooth profile of the addendum circle. Here,
in order to facilitate the solid modeling of the gear pair, the following correction methods
are used for reference [4,6]: the transition curve of the tooth profile of the dedendum circle
and the conjugate tooth profile is simplified into a straight line; the intersection of the
tooth profile of the addendum circle and the conjugate tooth profile is found; and the tooth
profiles exceeding the intersection are discarded. The method is also adopted for the tooth
profiles of the rack cutter and the small segment of the tooth profile below the singular
point of the conjugate tooth profile is abandoned. The modified tooth profiles of the internal
gear ring and rack cutter are shown in Figure 20.
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Figure 19. Design flow diagram of the gear pair and rack cutter.

Figure 20. Tooth profiles: (a) internal gear ring; (b) rack cutter.
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The coordinates of the tooth profile solved by MATLAB® are imported into the de-
sign software SoildWorks®, the complete tooth curves are generated after mirroring and
arraying, and then the 3D geometric models of the gear pair are obtained by stretching;
the models assembled according to the meshing relationship are shown in Figure 21. The
model of the rack cutter is built in the same way. The accuracy of the models is related
to the step size of parameter x1 in the equations of the external gear’s tooth profile. The
smaller the step size, the more coordinates on the tooth curves, and the higher the accuracy
of the models.

Figure 21. Geometric models: (a) external gear and internal gear ring; (b) rack cutter and external gear.

6. Conclusions

This article has carried out a detailed investigation into the design constraints of the
conjugated straight-line internal gear pair for the first time, based on the mathematical
model of the gear pair. The constraints of the gear pair in the designing and machining
process, such as design parameters, contact ratio, and interference, were deduced, and the
influence of design parameters on the design constraints were analyzed, such as number of
teeth, module, tooth profile angle, tooth thickness coefficient, addendum coefficient, etc.
The design flow diagram of the gear pair and rack cutter was summarized, which should
be helpful in the design and manufacture of gear pairs. The following conclusions can be
drawn from this study:

(1) The basic design parameters of the conjugated straight-line internal gear pair are
clarified; the tooth profile of the gear pair is determined by nine parameters of z1, z2,
m, h∗a1, h∗f 1, h∗a2, h∗f 2, β, and ks. Based on the mathematical model of the gear pair, the
constraints of basic design parameters are given according to gear engagement theory
and the geometrical relations of the tooth profile.

(2) The calculation formula and the constraint of the contact ratio are deduced according
to the kinematic relations. Based on Litvin’s undercutting theory, the constraints on
avoiding undercutting and end cutting are deduced and their correctness is verified
by examples. The judgment method of tooth-overlapping interference and its corre-
sponding numerical calculation flow are presented. The constraint on avoiding radial
interference is deduced and analyzed.
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(3) The influences of design parameters on the design constraints are studied; design
faults and interference can be avoided by reasonably matching the design parameters
to meet the corresponding constraints, in the following specific ways: 1© undercut-
ting can be avoided by reducing the addendum coefficient h∗a1 of the external gear,
increasing the tooth thickness coefficient ks of the reference circle and the tooth profile
angle β; 2© end cutting can be avoided by reducing the addendum coefficient of h∗a1
the external gear; 3© tooth-overlapping interference can be avoided by increasing the
difference of teeth number, the tooth thickness coefficient ks of the reference circle, and
the tooth profile angle β, reducing the addendum coefficients h∗a1 of the external gear;
4© radial interference can be avoided by increasing the difference of teeth number,

the tooth thickness coefficient ks of the reference circle, and the tooth profile angle β,
reducing the addendum coefficients h∗a1 and h∗a2 of the gear pair.

(4) Design examples are given and the effective design flow diagram of the conjugated
straight-line internal gear pair is summarized.
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