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Abstract: Although robotic systems have found their place in agriculture, there are still many
challenges, especially in the area of localization in semi-structured environments. A robotic system
has been developed and tested to perform various tasks in the steep vineyards of the Mediterranean
region. In this paper, we describe a method for vine trunk localization, based solely on the visual
recognition of vine trunks by neural networks fed by an RGB camera. Assuming that the height of the
first wire in the vineyard is known, the proposed method is used to determine the location of vines
in the immediate vicinity of the all-terrain mobile manipulator—ATMM-VIV—needed for spraying
and bud suckering. The experiment was conducted in a slightly inclined vineyard to evaluate the
proposed localization method.

Keywords: autonomous mobile manipulator; vineyards; viticulture; protective spraying; suckering;
localization; surrounding awareness

1. Introduction

Robotics is rapidly transforming agriculture, with an increasing focus on the affordable
and effective automation of agricultural processes [1]. This technology belongs to a class of
professional service robots and has significant applications in viticulture, one of the most
challenging areas of agriculture [2,3]. Vineyards, especially those located on slopes, are
very labor-intensive, and conventional machinery is often unsuitable for rocky terrain, such
as that found in the Mediterranean region. In addition, unfavorable working conditions
have led to a shortage of labor, compelling farmers to look for advanced technological
solutions to address these problems [4,5].

A steep slope vineyard is a semi-structured environment. On the one hand, a vineyard
can be considered unstructured because each vine is different and the terrain and soil
conditions can also vary. The soil surface can be rough, uneven, grassy, or rocky. In addition,
vineyards are often located on slopes. On the other hand, the vineyard has a certain internal
structure. In most modern vineyards, the vines are planted in an orderly fashion, mostly
in straight rows and at prescribed intervals. The aisles are wide enough for tractors to
pass between them. On steep slopes, on the other hand, the rows of vines follow the
surface of the terrain. The width of the aisles between the rows of vines may vary. Regular
agricultural maintenance of vineyards is labor intensive and requires a lot of manpower
(weeding, pruning, bud suckering, spraying, and harvesting). In addition, steep slopes can
make this work even more demanding. The use of autonomous robots for such work offers
the possibility of facilitating vineyard maintenance and improving the health of farmers.

Our research focuses on the navigation required for two challenging tasks in viticul-
ture: suckering and spraying. In steep slopes, these tasks are typically performed by hand,
which can lead to unnecessary ecological damage. It has been shown that, in conventional
viticulture, up to 95% of chemicals end up in the soil and water [6]. The use of a robotic sys-
tem can help mitigate these drawbacks by allowing for the precise application of chemicals
to specific parts of the vines.
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In this paper, we describe a local tracking system that detects vine trunks using a
simple camera and extracts all necessary localization data from it. We also experimentally
examined the possibility of using the proposed vine trunk detection as a navigational
goal. Although the basic theoretical background of this research is well-known, to the
best of the author’s knowledge there has been no practical implementation in such a
complex environment as a vineyard. In this paper, we investigate the implementation
of a monocamera approach to localization in a vineyard, which can be considered as a
semi-structured environment.

The present work is organized as follows. Section 1.3 describes the approach used in
the HEKTOR project. Section 2 presents the state of the art in navigation in semi-structured
environments, focusing on navigation in vineyards and autonomous task execution. Subse-
quently, Section 3 presents the localization of vine trunks. Experimental verification of the
proposed solution is shown in Section 4. Section 5 concludes the paper with an outlook on
future work.

1.1. HEKTOR Project

The research presented in this paper is part of the HEKTOR project (hektor.fer.hr,
accessed on 16 March 2023). The goal is to pave the way for the use of robotic technology
in two challenging agricultural fields: viticulture and mariculture. The goal is to develop a
heterogeneous, modular, and autonomous robotic system suitable for various inspection
and intervention tasks [7,8]. In addition, the goal of the HEKTOR project is to provide
a systematic solution for the coordination of intelligent heterogeneous robots/vehicles
(marine, land, and air) capable of autonomous cooperation and task distribution in open,
unstructured space/water. Mission planning for such systems will seek a multi-level con-
trol structure that combines high-level planning and coordination with low-level reactive
execution. However, this paper focuses on the challenges of navigation in viticulture. The
HEKTOR system is a robotic system consisting of four different types of robots that com-
municate and collaborate via a ROS-based middleware. Thought of on a large scale, such a
solution could help the potential end users (winemakers) save more time in the wine pro-
duction life cycle by moving to fully automated vine suckering and spraying tasks. These
tasks will be carried out in the steep sloped karst landscape of the Mediterranean region.

The experimental field for HEKTOR is field T10 in the Jazbina vineyard of the Faculty
of Agriculture, University of Zagreb, shown in Figure 1.

Figure 1. The section of the vineyard chosen to carry out the experiments is indicated in orange in
the Jazbina vineyard. In this work, the experiments were carried out in the aisle marked in blue.
The Jazbina vineyard is located on an 8% slope with clayey soil.

hektor.fer.hr


Machines 2023, 11, 414 3 of 17

1.2. All-Terrain Mobile Manipulator- ATMM-VIV

The all-terrain mobile manipulator VIV (ATMM-VIV) is a four-tracked skid-steered
field research platform capable of autonomous movement in a variety of challenging
environments, including ruins, stairwells, and terrain with steep slopes. The existing
hardware was equipped with an Intel® NUC 10 i7FNK running Ubuntu 20.04 with ROS
Noetic, which serves as the primary processing and control computer. Robosense RS-
LiDAR-16, a lightweight omnidirectional laser radar with 16 beams, was mounted at the
central position of the robot. To increase mapping accuracy, a Pixhawk autopilot was
mounted on the robot, which provided IMU measurements and served as an interface
between the ATMM-VIV on-board control system and the GNSS subsystem. Additionally,
mounted on the front of the robot are two cameras, the Intel Realsense D435 depth camera,
and the Intel Realsense T265 tracking camera.

The drivetrain provides effective mobility in difficult terrain and enables the transport
of large loads. ATMM-VIV has four tracks mounted on adjustable flippers. These flippers
can be manually rotated 360 degrees and placed in any of the 12 predefined positions.
In our work, the flippers are always fixed in the rear-facing position. The ATMM-VIV
is a skid-steered vehicle, which makes the use of odometry unreliable. This kinematic
constraint is important for positioning ATMM-VIV in close proximity to vines. ATMM-VIV
can be equipped with a variety of tools, such as a suckering tools or a robotic arm, as shown
in Figure 2. The first is a compliant robotic end effector for bud suckering, presented in [9].
The ATMM-VIV can also have a robotic arm, KINOVA Gen3 7DoF, which can be equipped
with two different end effectors. The brush end effector is used for precise and selective
suckering [10]. The spray nozzle is attached for precise, selective spraying, as shown
in [11]. In addition, the mobile manipulator has a 30-L liquid tank that provides the liquids
required for spraying tasks.

(a) (b)

Figure 2. Design of an all-terrain mobile manipulator (ATMM-VIV) driven by four independently
controlled flippers/tracks in two possible configurations. (a) Robotic tool with one degree of freedom
(shaft rotation). (b) The 7 DoF robot arm with brush.

1.3. HEKTOR Vineyard Navigation

One goal of global path planning is to ensure that all vineyard aisles are passed by
ATMM-VIV, as shown in [12]. The vineyard is surveyed by the drone, and key navigation
points (entrances and exits of each aisle) are determined, as shown in Figure 3. In addition,
the robot changes its orientation, while navigating through the aisle, especially in vineyards
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on steep slopes, uneven terrain, and mountains. Such behavior can cause important
environmental features to be lost from the field of view. Figure 4 shows three cases. Uneven
terrain can also cause the same problem, only in the other direction. Figure 5 illustrates
how the field of view can be affected by a steeply sloping vineyard, especially when the
robot is placed at the top of the slope.

Figure 3. Schematic overview of the navigation operation of a heterogeneous HEKTOR viticulture
robot system. Global planning provides ATMM-VIV the entry points into the aisles (marked with
blue circle). Planning and navigation through the aisles is based on local features: vine trunks.

Figure 4. A sketch of robot navigation through the aisle. Example of a vineyard aisle setup with
three positions of the robot and the field of view of the camera. When navigating through a vineyard,
a row of vines may be outside the field of view. In case (a), only one side of the aisle is visible. In case
(b), both sides are in the field of view. In case (c), only one vine trunk is in the robot’s field of view
because of the end of the aisle. The centerline of the robot’s field of view is also a tangent to the path.
The positions of the vine trunks are marked with a red dot.
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(a) (b)

Figure 5. An example of a steep slope vineyard used for previous work and described in [13]. One
can see the influence of the slope on the field of view of the robot. The vineyard shown has a slope
of up to 54%. (a) A cross-section of the vineyard. (b) An image of ATMM-VIV at the beginning of
the aisle.

In addition, when navigating for the spraying task, the mobile manipulator must main-
tain a certain distance from the vines to ensure optimal spraying performance. The distance
is even more important when a compliant robotic end effector for vine suckering is used
because the flexible rubber bands on the rotating shaft are only 20 cm long, which severely
limits the navigation in the aisle. For the third task, intended for ATMM-VIV, the KINOVA
Gen3 robotic arm is used in the version with seven degrees of freedom. The arm used in
our case has a reach of dop = 93 cm. Therefore, the maximum distance that can be between
the robot and the vine trunk is given as dvp. Moreover, three characteristic cases can be
distinguished, which are shown in Figure 6. Therefore, ATMM-VIV must ensure that the
entire vine trunk is within the working range of the robot arm.

To accomplish the autonomous task, ATMM-VIV must solve several nested problems,
shown in Figure 7. First, ATMM-VIV must precisely navigate in a semi-structured environ-
ment to position itself at the entrance of the desired aisle. Once the robot is inside the aisle,
it can move to the first vine and position itself in a suitable position next to vine. Then,
for example, a suckering task can be performed. Then the robot moves to the location of
the next vine. To achieve the goal of local navigation described above, it is necessary to
know the relative position of the vine, with respect to ATMM-VIV.
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Figure 6. Schematic overview of the three possible cases of the navigation process with positions of
ATMM-VIV, in relation to the vine trunks in the aisle. The positions of the vine trunks are marked
with a red dot. In case (a), the robot navigates through the center of the aisle. This case is suitable for
a surveillance task. In case (b), the robot navigates continuously near the vines, which is required for
the spraying task. In case (c), the robot also navigates from point to point (marked with red cross) in
the immediate vicinity of the vines to ensure that the trunk of the vines is within the working range
of the robot arm, which is a necessary condition for the suckering task.

Figure 7. High-level task flow of vine trunk-based navigation for autonomous vineyard task ex-
ecution. After entering a new aisle, the ATMM positions itself next to the next vine trunk in the
aisle. The robot performs the desired task and moves to the next vine trunk. At the end of the aisle,
the robot moves to the next aisle. The process is repeated until the mission is completed.

2. Related Work

Localization in a semi-structured environment is a difficult problem. The localization
accuracy is limited by the quality of the global navigation satellite system (GNSS) signal and
the map accuracy of the desired area. Therefore, the mobile robot should have appropriate
methods for reliable simultaneous localization and mapping (SLAM) and path planning.
The robot should not only reach the target, but also determine and follow a specific path
and navigate through all desired waypoints (e.g., to maintain a constant distance from the
vines during spraying) [11,14].

The next problem is the correct perception of the environment. It is difficult to recog-
nize the desired plants in the natural environment. This is because plants are susceptible to
changes, such as wind, the change of seasons, or even light conditions. There are almost no
straight lines in the vegetation structure, which makes reliable image recognition difficult.
In addition, the mobile robot should not damage the surrounding vegetation during its
movement. Most research has been performed in the field of crop monitoring [15]. In such
a task, the robot must navigate without disturbing the plants. However, to interact with the
plants, the robot must move precisely. In the vineyard, it must not only navigate, but also
identify, a single vine. A general robot arm usually has a spherical working area with a
radius of about 1 m. Moreover, the boundary between allowed and forbidden areas is
rarely sharp and well-defined. One way to solve the problem is to use the ubiquitous parts
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of the vineyard as navigation points. The authors in [14] present a hybrid map planning
approach, in which the path is planned based on a topological map. In [16], the authors
propose centerline navigation based on pillar detected by LiDAR and obstacle detection
in flat terrain. LiDAR mapping procedures often produce maps by matching current data
with data recorded a moment before. In LiDAR mapping techniques, detailed maps are
produced by a series of successive scans. In other words, LiDAR mapping creates maps by
matching current scan data with previous scans of the same area. This enables the detection
of changes in the environment and the creation of highly accurate and up-to-date maps.
However, vegetation is constantly moving, and the next moment, a vine leaf may not be
in the same place. Objects in the vineyard can be quite small, such as support structures,
wires, vine leaves, and vine trunks. All of these objects can easily go undetected by the
LiDAR, resulting in an unsuccessful match.

The 2D and 3D path planning and navigation for ground robots is a widely researched
area. Most 2D planners assume that the terrain is perfectly flat, and that the robot can
always move freely over it. However, this assumption does not necessarily apply to a
vineyard on a slope. Therefore, some researchers are trying to adapt well-known SLAM
tools specifically for vineyard environments [17]. The authors in [18] compared different
2D and 3D SLAM tools (IO-SAM, StaticMapping, ORB-SLAM2, and RTAB-MAP) in four
different simulated scenarios.

In addition to LiDAR-based localization methods, there are also autonomous mobile
robots that use the depth camera for a “tactile” approach [19]. In addition, neural net-
works can be used to segment the environment with RGB and depth camera [19]. In [20],
the authors compare the most common cameras in agricultural environments. Other re-
searchers compared the depth-measuring capability of cameras [21]. Both investigations
of camera characteristics included the camera used in our work. It can be concluded that
the performance of depth cameras depends on the lighting conditions and that they are
better suited for measuring the depth of nearby objects. In the vineyard, the objects of
interest are the vine trunks. This presents a challenge for detection, considering that they
are quite thin and the bark has an uneven texture. An interesting class of robotic projects
in viticulture deals with spraying leaves and bud suckering [22]. The trunk of the vine
is used as a suitable landmark because it is robust and changes little over time [23,24].
In [25], the authors present a method for locating grapevine trunks based on single trunk
mapping. First, the location of the trunk bearing is determined by the position of the trunk
in the image and also in subsequent images, while the position change of the camera is
determined by the odometry of the mobile robot. The location of the vine trunk is obtained
from the intersection of the observed vine trunk bearings.

In [23], the authors discuss data collection and increasing the size of the data set using
data augmentation techniques. In addition, the authors describe the training, benchmark,
and characterization of singleshot multibox detector models for detecting vine trunk using
their dataset (VineSet). In addition, the authors discuss automatic annotation tools in an
agricultural context. In [26], the same group of authors uses the midpoints of detected vine
trunks to determine the vanishing point and steer a robot to place the vanishing point in
the center of the image. However, their method does not estimate the location of each vine
trunk, and their proposed method was tested in a simulation on flat ground, where all vines
are the same. In [27], the authors propose a solution to the problem of vine trunk detection
and present a dataset of vines that illustrates the difficulties in detecting vine trunks
(e.g., occlusions, similarities in color, and light conditions). If the precise identification of
individual plants is not required, the robot can use the neural network to orient itself to the
central line [28].

Estimating the distance from a camera to objects in the environment using a single
image is a crucial area of research in computer vision. This technique is particularly relevant
for autonomous car navigation, where it can aid in obstacle detection and avoidance. One
approach to achieve this is by training a neural network to learn how to determine the
distance of known objects in the image, as shown in [29].
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We assume that the height of the detected object can be used to determine the position
of the vine trunk in the vicinity of the robot. As far as we know, we are the first to use
this assumption in a semi-structured environment. This assumption is usually used for
estimating the distance of man-made objects with well-defined boundaries (e.g., cars [29])
or, for example, the size of a human head and other body parts.

3. Vine Trunk Localization
Detection of Objects of Interest

Visual recognition of vine trunks is used to determine the position of ATMM-VIV to
neighboring vine trunks. This requires the detection of the vine trunk in an image captured
by a camera. The direction of the camera in the aisle is also unknown, but in general, it can
be assumed that some vines from both sides of the aisle are visible in the image. The basic
idea of this approach is to identify key features (vine trunks) near the ATMM-VIV. Then,
using a pinhole model of the camera (Intel RealSense d435) and the known focal length of
the camera ( f l = 1.93 mm), the object position is determined. However, one needs to know
the size of the observed object to determine its distance.

Once the vine trunks are detected in the image, the position of the ATMM-VIV, relative
to the neighboring vine trunks, is calculated using the camera parameters and the known
size of the observed objects, which is assumed to be the height of the first wire in most
modern vineyards. In this work, an assumption was made, i.e., that most modern vineyards
are planted, so that the first wire is at a known height, about 1 m above the ground, as shown
in Figure 8. A neural network was used to detect vine trunks in a vineyard. A yolov5 [30]
was used. A yolov5 nano implementation was used to perform the detection on the on-
board CPU of ATMM-VIV. This has the advantage that no additional hardware needs to
be installed on ATMM-VIV. All training was performed on a computer equipped with
an Intel Core i7-1070 CPU @ 2.9 GHz × 16, an Nvidia GeForce RTX 3090 24 GB GPU,
and 4 GB RAM. The neural network was trained with a learning rate of 0.01, a batch
size of 64, and 300 epochs. The inference time measured on CPU (Intel i7-10710U) of the
on-board computer from ATMM-VIV is 18.886 milliseconds. In addition, the following
hyperparameters used are listed in the Table 1.

Table 1. Hyperparameters used for neural network training.

Parameter Comment Value

image HSV-hue augmentation fraction 0.15
image HSV-saturation augmentation fraction 0.7

image HSV-value augmentation fraction 0.4
image rotation +/− deg 15.0

image translation +/− fraction 0.1
image scale +/− gain 0.5
image shear +/− deg 0.0

image perspective +/− fraction 0.0001
image flip up-down probability 0.0
image flip left-right probability 0.5

image mosaic probability 0.0
image mixup probability 0.0

segment copy-paste probability 0.0
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Figure 8. Height assumption to locate a vine trunk near the ATMM-VIV. Assuming the actual height
of the identified feature in the image allows localization of the position of the observed object, relative
to the camera.

The neural network was trained with a combination of datasets, including the publicly
available datasets from [31] in [23,32]. To ensure that the bounding box enclosed only the
desired portion of the vine (from the ground to the fork at the first wire), we pruned the
datasets, kept only RGB camera images, and readjusted the bounding boxes as needed.
In addition, annotations were added to a custom dataset. The vineyards used in the datasets
have different ground compositions. For example, the Jazbina vineyard has clay soil, while
the vineyard of Lumbarda has a rocky surface. The training dataset was enriched with
images from a vineyard in Lumbarda on the island of Korcula. Pruning and annotation
of the images was performed in LabelImg [33]. The dataset used includes 10,401 images.
The validation set consists of 209 images. Some of the validation images are from vineyards
that were not used in any form for training. The neural network training resulted in 0.84916
in the mAP_0.5 metric and 0.57806 in the mAP_0.5:0.95 metric.

A result of the trained network is shown in Figure 9. In Figure 9, one can see an
example of an uneven terrain. Such terrain is very common in vineyards located on a karst
geological topography. The heavy weight of tractors causes such unevenness in the terrain
within the aisle. Such terrain presents a challenge for autonomous navigation. The pitch
and roll of a robot also have a significant effect on the reach of a robot arm, especially
when the robot is tilted away from the vines. Moreover, it also influences the orientation of
the camera.

We can assume that the detected vine trunk has a predetermined height, known in
advance. Additionally, we assume that the camera’s pitch angle, relative to the horizon,
is small. As a result, we only use the endpoints of the bounding boxes of the vine trunk
to estimate the distance of the detected vine from the camera. Using only the endpoints
(specifically, the height of the bounding box) eliminates the impact of perspective distortion.
To determine the vine’s pose, we cross lines from the camera center through the bounding
box endpoints in the image plane with the vertical plane at the focal length from the
camera origin.
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Figure 9. Example of vine trunk detection in a vineyard on rocky terrain in Lubarda, an example of a
soil composition usually found in regions with karstic geological topography.

Figure 10 shows how object distance can be estimated. Using the Equation (1), we can
describe the lines passing through the origin of the camera and the center of the detected
trunk in the camera plane. Here, we denote the actual height of the vine trunk in mm as
hL, the focal length in pixels as f l, which is a known parameter. The height of the detected
vine trunk in pixels is h. All coordinates are measured relative to the center of the image.

xmm = hL
f l
h

(1)

This gives the distance of the observed vine trunk in the frame of the camera. The same
relationship can be established for the other two axes, giving us the position of the detected
trunk near the robot.

Figure 10. True and apparent object size and position in camera frame and image coordinates.

4. Experimental Verification

An experimental verification was performed in the Jazbina vineyard at a known aisle,
shown in Figure 1 and highlighted in cyan. The selected aisle has a constant width of 206 cm.
The vines are planted in a straight line at a distance of about 120 cm. In this particular
vineyard, the first wire is 65 cm high (which corresponds to the detected bounding box).
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A close-up of the vine trunk and the first wire taken in Jazbina vineyard is shown in
Figure 11. The detected locations of the vines were analyzed in Matlab.

Figure 11. A section of the vine where the trunk of the vine begins to divide into two stems. The fork
is located in the vineyards at the level of the first wire. In this case (vineyard Jazbina), it is located at a
height of 65 cm above the ground.

In Figure 12, one can see the image of the camera and the corresponding position of
the detected vines visualized in Rviz.

(a) (b)

Figure 12. An image input for the detection and the estimated positions of the vine trunks around
the ATMM-VIV. The red arrow is the desired goal position for the robot to perform the given task.
(a) Animage input for the detection. (b) Estimated positions.
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It was shown that vine trunks are consistently detected. For visualization purposes,
locations of all detected trunks were super-positioned and shown in Figure 13.

Figure 13. The figure shows the superposition of all detected vine locations in the observed aisle in
the optical frame of the camera. This overlay was created by determining the location of the first
left vine trunk (blue) from each image, resulting in a total of 2494 vine trunk locations. Of these,
1226 (blue) are from the left side of the aisle, while 1268 are from the other side (red). In the upper
part of the image, the outliner of a detected vine trunk can be seen, which is the result of detecting a
vine trunk in the next aisle.

On average, the neural network used was able to detect 5.7 vine trunks in the left row
and 5.9 on the right side of the aisle. It follows that a vine trunk can be detected at a distance
of up to 12 m. After this distance, detection is sparse, and the influence of image resolution
is evident. A best-fit straight line was placed through the estimated vine locations, and the
perpendicular distance from the camera to the line was calculated. The given distances for
each observed image are shown in Figure 14. It can also be noticed that vines detected on
the left side of the aisle are located much more consistently. The consistently more accurate
detection of vines on the left-hand side of the aisle can be attributed to the orientation of
the camera and its proximity to the left side of the aisle.

Figure 14. Estimated horizontal distance of the camera from the vines on the left (blue) and right
(red) sides.

We manually evaluated the performance of our proposed method for vine trunk
recognition on a video. We counted the number of correctly detected vines, false positive
and false negative vines (non-localized vines), and wrongly recognized vines. We defined
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wrongly recognized vines as trunks that were either recognized twice or belonged to the
neighboring row. The results of our analysis are presented in the Table 2. Therefore,
the success rate, defined as ratio of correctly and all recognized vine trunks, is 86.9%.

Table 2. Performance of the proposed method.

Correct False Positive False Negative Double Detection Neighboring Row

298 14 16 14 1

Vine Trunk Detection as a Goal Setting Method

We wanted to explore the possibility of setting a navigation target based on the
recognized vine trunk. In many agricultural areas, all tasks can be accomplished by
passing orchids without stopping next to each plant. There is no need to distinguish
individual plants. Plants can be grouped together, and all tasks are performed continuously.
However, in vineyards, the robot has to position itself next to each vine.

The presented method for point-to-point navigation amidst the rows of a vineyard is
based on the visual recognition of vine trunks and odometry of the mobile manipulator.
However, in the vineyard with very rough, rocky soil, as seen in Figure 9, odometry
becomes much less accurate, and localization consequently deteriorates. Therefore, we
introduced a LiDAR to alleviate the problem. The proposed method itself does not require
a LiDAR, but for environmental reasons, a LiDAR was added as an additional sensor.

The proposed method for vine trunk localization was experimentally checked in the
Jazbina vineyard. A goal was given based on the closest left hand side vine trunk visible
in the image. A goal was given in a way that the ATMR-VIV positioned its camera in line
with the vine trunk. In Figure 15, the final position of the robot is seen.

Figure 15. Position of the ATMR-VIV after reaching the specified goal next to the detected vine.
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The navigation of ATMR-VIV is based on the principle of local object approach.
The goal is set, and the robot uses move_base motion planning to navigate to the desired
target pose in the 2D map, while avoiding obstacles. To achieve this, the robot needs
a 2D cost map, which we create from a 3D LiDAR scan. In Figure 16, the readings of
the sensors during the experiment are shown. The 3D LiDAR point cloud is filtered by
height to capture only points in the LiDAR plane and ensure that only relevant information
is used to build the cost map. Relatively tall grass does not affect vine growth and is
common in vineyards. Therefore, 3D point cloud points below the lower threshold are
filtered out to avoid classifying tall grass as an obstacle. However, the terrain in vineyards
is uneven, and ground points that are far from the robot can be incorrectly classified as
obstacles. The “smaller” cost map was created using only odometry and laser scanning, as
shown in Figure 17. By doing so, the terrain’s unevenness was taken into account, and the
ground points that were far from the robot were less likely to be classified as obstacles, thus
mitigating the problem of uneven terrain. Therefore, our experimental setup used only
data from RGB camera, odometry, and laser scan.

Figure 16. An experimental setup for autonomous navigation to the recognized vine in a vineyard
environment, visualized in Rviz. This visualization uses data that has been acquired during the
experimental campaign in Jazbina vineyard. The robot’s perception of the environment at the
beginning of the experiment is shown. The position of the detected vine is marked with the red
cylinder. The red arrow is the goal pose of the robot. The goal pose is located in the immediate
vicinity of the detected vine. In the goal pose, the distance between the vine and the robot dvp should
be smaller than dop.

To determine the position of the vine, the robot was positioned in an aisle, and we
used the method described previously. After detecting the vine, we set a goal next to it,
and the robot moved towards it until it reached the goal. However, the robot’s camera only
faces forward, and its field of view is not very wide. As a result, the detected trunk soon
moves out of the camera’s view. We conducted a couple of subsequent tests on the same
terrain, and in each run, the robot was able to successfully detect and localize a vine trunk,
set a navigation target, and navigate to the selected vine trunk. A video of the experiment
is available at https://youtu.be/Hs-xjM84tiA (accessed on 16 March 2023) and in shown
in Supplementary Material: Video S1.

https://youtu.be/Hs-xjM84tiA
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Figure 17. The 2D costmap generated from the 3D point cloud, used for the move_base package.

Based on our experimental results, we can conclude that the assumption of the vine
trunk height of the vines described in this article is sufficient to determine the positions of
vine trunks in the vicinity of the robot.

The demonstrated position of the robot provides the bases for future work on the
autonomous execution of the envisaged tasks of autonomous suckering and spraying.

Our future work will focus on improving autonomous navigation. However, dur-
ing experimental verification, we found a problem with the laser sensors detecting tall grass.
Localization will be improved by creating a 2D map of the environment and localizing a
robot in this map.

To solve the problem of the laser sensors being obstructed by tall grass during au-
tonomous navigation, we plan to create a map only on the vine trunks detected by the
neural network. In this way, we hope to improve the accuracy of our autonomous naviga-
tion system and ensure that it can safely navigate through areas with tall grass. There is
also room for improvement, in terms of speed.

On the other hand, in future work, we will integrate autonomous suckering, spraying,
and removing bark, with autonomous navigation through the entire vineyard (of about
1 hectare).

5. Conclusions

In this paper, we presented the development of localization for the HEKTOR project,
enabling it to perform tasks autonomously. Our research focused on the localization of
objects of interest in the semi-structured vineyard environment near the mobile manipulator.
We used simple assumptions to compute the positions of the vine trunks, relative to the
camera, assuming that the height of the detected object corresponds to the height of the
first line of the vineyard, a constant parameter in vineyards.

The proposed solution was tested in a real vineyard on a small slope. It has been
shown that the assumption of the vine height can be used for the calculation of the position
of the vines from single RGB camera.

Our study demonstrates the viability of using a single camera on a robot for au-
tonomous navigation in a vineyard. In addition, all calculations were performed only on
the central processing unit of the robot’s on-board computer. Moreover, the robot per-
formed the tasks without being connected to any computer network. This advancement
could transform the agricultural industry and make autonomous farming more accessible
and affordable for farmers worldwide.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/machines11040414/s1, Video S1: Localization of Mobile Manipu-
lator in Vineyards for Autonomous Task Execution—experiment.
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