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Abstract: Biomechanical overload is considered a significant occupational risk in manufacturing and
a potential cause of musculoskeletal disorders. This research aims to introduce new methodologies
for the quantitative risk evaluation of biomechanical risk by combining surface electromyography
with a motion acquisition system based on inertial measurement units. Due to the lack of exper-
imental data in the literature acquired in a real industrial environment during the working shift,
an on-the-field study regarding an automotive assembly line workstation has been carried out in
collaboration with Fiat Chrysler Automobiles Italy S.p.A. Data related to the trunk flexion forward
and the erector spinae muscle activity have been acquired for several consecutive working cycles by
considering three different workers. Data analyses indicated kinematic and muscular activity patterns
consistent with those expected and that the proposed wearable technologies can be integrated and
used simultaneously during work activities. Furthermore, the results demonstrated data repeatability,
strengthening the feasibility and usefulness of the combined use of kinematic and electromyography
technologies to assess biomechanical overload in production lines. This study could lay the bases for
the future definition of a method for assessing biomechanical overload due to awkward postures.

Keywords: surface electromyography; inertial sensors; biomechanical overload; experimental
data analyses

1. Introduction

Musculoskeletal disorders (MSDs) are the most frequent occupational disorders in the
European Union: they affect workers in all sectors and occupations, and they are the most
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important causes of long-term sickness absences with effects and costs not only on workers
themselves but also on the society as a whole [1]. Several reasons have been identified as
follows, and even if the work-related biomechanical load is not the only causative factor, it
is likely to constitute a significant part of it: posture, repetitive movements, heavy lifting,
awkward postures, exposure to cold temperature and insufficient recovery time, as well as
psychosocial risk factors [2,3]. All those factors must be considered to estimate exposure [4].

The prevention of MSDs, a cornerstone of ergonomics and a challenge in industrial
settings, must be integrated with correctly evaluating and managing biomechanical over-
load. Two risk assessment approaches allow for analysing the amount of discomfort and
postural stress: observational and instrument-based techniques [5,6].

Traditionally, working postures and movements have been assessed using various
observational protocols and checklists, such as the Ovako Working Postures Assessment
System (OWAS) [7,8], the Rapid Upper Limb Assessment (RULA) [9], and the Rapid Entire
Body Assessment (REBA) [10]. In some occupational contexts, e.g., the automotive industry,
specific working methods have been developed, such as the Ergonomic Assessment Work-
sheet (EAWS) [11]. These assessment tools use on-the-job observation or video recordings
to classify the ranges within which each body segment falls, with obvious limitations in
characterising physical exposure: subjectivity, observer bias, low accuracy, long analysis
periods, and the need for highly trained observers. Their internal and external validity has
also been questioned. Many observational tools for biomechanical risk assessment have
been developed; these tools only require a little equipment, other than an evaluation sheet
and pencil, and moderately agree with technical measurements [5,12]. These methods are
also vulnerable to errors: the most significant discrepancies arise in estimating the applied
forces and the posture, and their inter-rater reliability might vary a lot [13].

In the Industry 4.0 era, several research groups have been interested in the application
of new technologies in the field of ergonomics, also through the combination of different
methods to allow for the use of quantitative biomechanical measures, which are more
precise and reliable, and to obtain detailed and accurate values for jobs with varying
tasks of work [13–19]. In recent years, wearable sensors have been used for quantitative
instrumental-based biomechanical risk assessments to prevent work-related musculoskele-
tal disorders (WMSDs) [20]. Surface electromyography (sEMG) is considered an important
and helpful tool for the quantitative evaluation of biomechanical overload and offers the
possibility of obtaining ‘inline’ information, highly relevant from several ergonomic points
of view [21,22]; sEMG is a non-invasive method and, for this reason, it can be used during
the execution of a work task [23]. Several methods evaluate the range of motion during pro-
fessional activities, for instance real-time measurement could be conducted using sensors
attached to the worker’s body. For industrial applications, motion capture systems record
workers’ gestures to assess ergonomic risk and improve working conditions objectively.
Motion capture systems consisting of Inertial Measurement Units (IMU) represent the best
solution for ergonomic applications in a real occupational setting since they do not hinder
working activities and they are not bulky like vision systems, even if data could be less accu-
rate than those ones. Several researchers have introduced IMU devices to measure workers’
body motion [14,17,24,25]. However, the equipment mentioned above suffers from possible
electromagnetic interference, which occurs widely in industrial environments [17].

Acquiring the real working condition data may allow us to evaluate the dynamic pos-
tural aspects of the single worker’s activities, which observational pencil and paper method-
ologies would not provide. This feature can allow us to identify the real contribution to each
occupational task’s biomechanical overload and assess the effectiveness of any preventive
and corrective interventions through pre- and post-measurements. Moreover, a combined
approach throughout assessing muscle activity and a kinematic evaluation could lead to
a comprehensive assessment of the dynamic effects of the workers’ postures/activities.
In the literature, some approaches integrate multiple technologies (sEMG, IMUs, and
videotaping) to objectify the different factors of biomechanical overload [15,16,18]. These
approaches are innovative, and there needs to be evidence of analyses of data collected
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in the manufacturing environment during the normal production processes. An interest-
ing experiment was conducted, in the laboratory, by Poitras et al. [26], who studied the
validity of using wearable sensors at the shoulder joint, combining EMG and IMU sensors.
Although they highlighted the suitability of the combined use of the sensors during a work
task simulation, the authors emphasised the need to validate their use in the workplace, in
real work situations. Merino et al. evaluated the shoulder biomechanical overload in three
workers performing banana processing tasks using inertial sensor motion capture (Xsens)
and EMGs [27]. The methods used in the evaluation provided useful data on the possible
relationship between awkward posture and the occurrence of fatigue and musculoskeletal
disorders. This study also supports the need to obtain on-field data.

This on-the-field study is within the framework of a 2019 PhD project focused on
the role of sEMG in biomechanical overload assessment in the automotive manufacturing
setting. Some data were only preliminarily presented in the 2019 IEA publication [28].
This study aims to illustrate a methodological approach for quantitatively assessing biome-
chanical overload risk based on the combined use of sEMG and an IMU-based wearable
motion capture system for collecting experimental data during work activity in automotive
manufacturing production lines.

2. Materials and Methods
2.1. Setting and Subjects

The study was conducted in collaboration with Fiat Chrysler Automobiles Italy
S.p.A., at the assembly shop of the plant located in Melfi, according to a protocol pre-
viously described [26]. Three male workers were enrolled (mean age 36 ± 12 years (SD);
mean mass 79 (±14) kg (SD); height 173.7 ± 5.1 cm; working seniority 14.7 ± 11.0 years
(SD)). They reported no prior cases of low back pain or surgeries. The research was per-
formed following the ethical standards laid down in the 1964 Declaration of Helsinki and
its later amendments. Ethical approval is not necessary because the workers’ measure-
ments were performed within the mandatory risk assessment process and according to
Italian laws concerning the protection of workers exposed to occupational risks (Italian
Decree no.81/2008).

2.2. Working Activity Description

The following figures show a phase of the activity carried out by a worker on the
right side (Figure 1) and on the left side (Figure 2) of the workstation, where the central
cabinet is assembled inside the cabin using screws, dowels, and cables. The cycle duration
is approximately one minute (58 s). Experimental data have been acquired for about forty
consecutive working cycles per worker. The activity was studied by analysing the Standard
Operating Procedure (SOP) and with the support of the videos recorded by three different
cameras: two cameras are located behind and to the worker’s side, and another one is
located on the worker’s goggles. This last camera is integrated and synchronised with the
motion capture system.

The kinematic and electromyographic analyses focused only on the trunk in this study.
The choice to investigate this region is due to the preliminary observational investigations
of the working task that suggested the lumbar spine district was most overloaded.

2.3. Instrumentation, Procedure, and Data Acquisition
2.3.1. Acquisition and Processing of sEMG Signals

A six-probe electromyography device (FreeEMG, BTS SpA, Milan, Italy) was used
to record the electrical activity of the muscles. Each of them has a 100 dB CMRR instru-
mentation amplifier, a Hamming band-pass filter, a sampling frequency of 1 kHz, an
analog-to-digital conversion system, and a wireless data transfer system (Wi-Fi). Accord-
ing to the recommendations of the Atlas of Muscle Innervation Zones [29], the probes
were placed over the muscles engaged in the research using pre-gelled Ag/AgCl elec-
trodes (H124SG, Kendall ARBO, Donau, Germany). Specifically, electrical activity was
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collected bilaterally from the paravertebral muscles: Erector Spinae Thoracic (EST), Erector
Spinae Lumbar (ESL), and Multifidus (M), of which the landmarks for electromyographic
measurements were identified, positioning the electrodes following the indications of the
innervation zone atlas as given in the literature [29] (Figure 3).
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Figure 3. Example of the correct positioning of the electrode for EST assessment (a) and its placement
on the operator’s back (b).

The muscles’ maximum voluntary contractions (MVCs), recorded before the work
activity began, were used to calculate the peak amount of muscle activation that would
serve as a benchmark during the signal processing stage. The patient extended his back for
15 s while lying on the abdomen with all his strength (Figure 4). After a three-minute break
between each trial, each MVCs assignment was repeated three times, and the average value
was calculated [21,30].
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Figure 4. Isometric contraction test (maximum voluntary contraction) for the Erector Spinal muscles.
The figure shows the prone position of the worker who performed a back extension involving the
whole paravertebral musculature.

An algorithm created in MATLAB software (verses 9.3.0, MathWorks, Natick, MA,
USA) was used to analyse the collected sEMG signals [29]. To lessen motion artefacts
(electrode skin) and other high-frequency noise components, the electromyography signals
were first filtered with an a%th-order Butterworth IIR digital pass filter in the study’s target
frequency range (30–450 Hz). The muscular activity profile was then extracted using an
adaptive sEMG envelope extraction algorithm. [31]. Finally, the sEMG signal envelope was
expressed as a percentage of the MVCs of each muscle and time-normalized from 0 to 100%
of the work cycle. The root mean square (RMS) index was calculated to obtain an overall
index of muscle activity:

RMS =

√√√√ 1
N

N

∑
i=1
|xi|2 (1)

where N is the total number of samples and xi is the i-th sample value.

2.3.2. Body Motion Study

An inertial motion capture wearable system has been used to study the body’s mobility.
The system was created at the Luigi Vanvitelli Engineering Department of the University
of Campania and comprised several micro–Inertial Measurement Units (IMUs) [25]. The
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upper-body configuration in this study required the development of a system made up of
two independent modules. Four IMUs make up each module, placed on the pelvis, boot,
arm, and forearm, respectively (Figure 5). A Raspberry Pi that is powered by a battery
records and pre-processes data.
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Figure 5. Wearable motion capture system, in upper-body configuration: (a) scheme; (b) equipped by
the worker.

The attitude estimation is based on a Kinematic Extended Kalman Filter [25] and
provides both attitude data (in terms of quaternions and Euler angles), per each IMU, and
posture angles trends over time: rigid pelvis rotation; flexion forward, lateral flexion and
torsion of the trunk; elevation, lateral flexion and rotation of the arm; flexion and rotation
of the forearm. The alignment of axes between IMUs and body segments is assured at the
initial time by a software reset with the acquisition of the initial conditions from inertial
sensors. The system’s accuracy was tested and verified during experimental tests in a
laboratory. Posture angles data were compared with those provided by the optical motion
capture system SMART-DX by BTS Engineering®.

To make the estimation less subject to possible electromagnetic interferences, typical
of industrial environments, the on-board Kalman filter was augmented with an adaptive
virtual magnetometer reset when a significant difference in the magnitude of the magnetic
vector was sensed. To match the postures data and the electromyographic data, only the
flexion forward angle of the trunk has been considered in this study.

2.4. Results Analysis Methodology

The analysis of experimental data included the evaluation of the normality of the dis-
tributions and then applying comparison tests between averages/mediums. The Shapiro–
Wilk test was used to evaluate the normality distribution of the data (due to a sample size
of less than 30). In normal distributions, parametric comparison tests (t-test or ANOVA)
were used; for non-normal distributions, non-parametric tests were used (Mann–Whitney
for comparing two distributions, Kruskal–Wallis test for the comparison of more than two
distributions). A p-value of <0.05 was considered statistically significant, and post hoc anal-
yses were performed using a paired t-test with Bonferroni’s corrections when significant
differences were observed in the ANOVA. The statistical analysis was performed using
MATLAB software (verses 9.3.0, MathWorks, Natick, MA, USA).
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3. Results
3.1. Electromyographic Signal Analysis

The raw signals, recorded by each electromyographic electrode placed on the enrolled
workers, were acquired and processed to obtain the sEMG envelope. Figure 6 shows
EMG signals envelopes for the working task at the right and left side of the workstation,
respectively.
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Figure 6. Average values (solid black line) and standard error of the mean (SEM) (light and dark
grey coloured areas, left and right sides muscles, respectively) of the muscle activity of paravertebral
muscles (Erector Spinae Thoracic (EST), Erector Spinae Lumbar (ESL), and Multifidus (M)) from three
workers (W1, W2, and W3) at the left and right workstations, respectively.

Table 1 reported the comparisons between the average values (±SD—standard devia-
tion) of each enrolled worker’s muscle activity (left and right paravertebral complex) while
performing activities on the left and right side of the workstation.

Table 1. The mean values (±SD) of the muscle activity are expressed as a percentage of MVCs.

W1 W2 W3

Trunk Muscle Side Trunk Muscle Side Trunk Muscle Side

Right side of
the

workstation
Left Right Left Right Left Right

EST 6.7 ± 1.9 16.9 ± 2.7 8.9 ± 2.4 10.5 ± 2.2 15.7 ± 5 23 ± 3
ESL 10.4 ± 1.7 14.2 ± 3.6 14.6 ± 3.8 22 ± 6 13.7 ± 3.2 16.5 ± 2.8
M 10.1 ± 2 15.5 ± 2.7 12.9 ± 4 9.9 ± 2.2 14 ± 1.4 18.2 ± 2.8

Left side of
the

workstation
Left Right Left Right Left Right

EST 9.5 ± 1.6 Left 17.2 ± 5.3 11.7 ± 2.3 17.2 ± 1.6 23.4 ± 4
ESL 18.5 ± 5.7 12.9 ± 2.8 20.6 ± 4.1 25.2 ± 7.4 13.6 ± 2.4 15.7 ± 2.7
M 14 ± 6.9 13.8 ± 4.3 11.2 ± 2.2 14.6 ± 6.7 14.2 ± 3.4 17.8 ± 4.4

W—worker; EST—Erector Spinae Thoracic region; ESL—Erector Spinae Lumbar region; M—Multifidus.
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Figure 7 compares the mean values (±SD) of the muscle activity (right and left par-
avertebral complex) of all enrolled workers during the work performance on the right and
left side of the workstation.
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Figure 7. Muscle activity average values of overall paravertebral muscles (M—Multifidus;
EST—Erector Spinae Thoracic region; ESL—Erector Spinae Lumbar region). The comparison between
the right and left side of the workstation (BLUE stars across the two sides of the workstation) and
between the right and left muscles of the same side of the workstation (YELLOW stars on the same
side of the workstation) show a statistical difference in the activation among the different muscle
groups (* p value).

On the right side of the workstation, a significant statistical asymmetry (difference
in values between right and left paravertebral muscles) of the muscular activity between
the two paravertebral muscle groups EST (p = 0.002) and ESL (p = 0.03) was reported,
but not between muscles group M. In particular, the right-side muscles (16.8 ± 5.8%
EST and 17.6 ± 5.3% ESL) show increased activity compared to those on the left side
(10.4 ± 5% EST and 12.9 ± 3.4%). This asymmetry is not observed on the workstation’s left
side. However, on the left-side workstation, in the left paravertebral complex, the muscle
M (13.1 ± 4.6%) shows significantly less activity than ESL (17.6 ± 5%) (p = 0.02). There
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are two other significant differences in the results, i.e., between the right and left side of
workstations on two left paravertebral complexes EST (p = 0.008) and ESL (p = 0.04). The
EST (14.7 ± 4.9%) and ESL (17.6 ± 5%) muscles on the left side of the workstation present a
higher activity than the EST (10.4 ± 5%) and ESL (12.9 ± 3.4%) on the right one.

Finally, from Figure 7, it is possible to observe an expected behaviour, both on the
paravertebral complexes of the left and right sides muscles and on both sides of the
workstation, i.e., an ever-higher activity of the ESL muscles.

3.2. Kinematic Analysis

The kinematic signals related to trunk flexion forward angle (Figures 8 and 9) were
acquired and processed to obtain data shown in Table 2.
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Table 2. Trunk flexion forward static posture data analysis: mean and peak flexion forward angle
and duration values.

Reference Ranges 20–60◦ >60◦

W1 W2 W3 W1 W2 W3

R
ig

ht
si

de
of

th
e

w
or

ks
ta

ti
on Mean value (±SD) [◦] 40.63 ± 6.25 39.32 ± 11.35 46.40 ± 4.29 - 77.90 ± 8.23 -

Peak value [◦] 50.71 ± 4.96 54.41 ± 3.74 56.55 ± 2.97 - 86.52 ± 8.60 -
Mean value (±SD) of
posture duration [t] 19.54 ± 2.58 12.00 ± 6.69 22.18 ± 1.71 0 10.82 ± 1.65 0

Posture duration in % of
working cycle [%] 34 21 38 0 19 0

Le
ft

si
de

of
th

e
w

or
ks

ta
ti

on Mean value (±SD) [◦] 38.83 ± 5.61 37.26 ± 5.28 43.15 ± 6.00 - 82.77 ± 4.99 65.29 ± 1.42
Peak value [◦] 49.84 ± 7.86 50 ± 6.61 56.52 ± 3.52 - 94.06 ± 6.47 71.01 ± 0.87

Mean value (±SD) of
posture duration [t] 17.32 ± 5.75 11.83 ± 3.40 16.85 ± 3.84 0 17.89 ± 7.15 6.37 ± 2.72

Posture duration in % of
working cycle [%] 30 20 29 0 31 11

From both Figures 8 and 9, it is possible to identify bending peaks of greater or
lesser duration linked to specific operations (installation of the cabinet—single arrow—and
assembly and wiring operations—double arrow).

Table 2 shows data on kinematic signal processing and refers only to static postures
(postures held for at least 4 s consecutively) by considering the angle values within the
range 20–60◦ and higher than 60◦, according to ISO 11226. For this reason, postures below
20 degrees are not shown.

The average values (±SD) of the static trunk flexion posture angles recorded during
working activities were 43 (±10.1) degrees for the left side and 44 (±6) degrees for the
right side during the whole recorded working activity, showing no statistical difference
(p > 0.05). The average values (±SD) of the total time in the static trunk flexion forward
fixed posture recorded during the whole work activity were 21.8 (±4.8) s for the left side
of the workstation and 20 (±3.9) s for the right side of the workstation. No statistical
difference was found (p > 0.05). It is possible to state that the working activities on both
sides are well balanced regarding the postural load of the trunk.

4. Discussion

The purpose of this study was to evaluate a combined methodological approach
based on the concurrent use of sEMG and a set of inertial sensors for the quantitative risk
assessment of biomechanical overload. Three automotive industry workers were enrolled
to evaluate the biomechanical effort during the working activity in the assembly line.

The sEMG results suggest a significant involvement of trunk muscles in the studied
working task. Indeed, the mean muscle activation values were between 10% and 20%
of MVCs, particularly the Erector Spinae Lumbar Region and the Multifidus. Accord-
ing to kinematic data, these values refer to a quite relevant effort of trunk muscles and
show a significant biomechanical load at the spine level. Moreover, these muscles have
been studied because they have an independent function for stabilisation and are cru-
cial for the stability and mobility of the lumbar spine, determining a main aetiological
action for low back pain. The extent of alterations in the structure and muscle function
of the paraspinal muscles could be related to the recurrence or chronicisation of low back
pain [32]. Therefore, the results suggest that it is important to analyse this kind of work task
in the real work environment to gain quantitative measurements to propose and verify er-
gonomic solutions and changes in work organisation for low back pain and musculoskeletal
disorders prevention.

Moreover, sEMG RMS data show a significant difference between the muscle activity
of the two body sides, identifying an asymmetry. These results relate to inherent trunk
torsional components during dynamic movements when workers follow moving cars
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in their assembly activity. It is worth underlining that this muscular behaviour agreed
with the preliminary observations of the working tasks before the experimental sessions.
Further sEMG and kinematic studies will allow a better understanding of how trunk flexion
and torsion are combined during tasks. This is important information considering the
pathogenetic role of trunk bending and twisting.

About the kinematic motion analysis, the contribution to the biomechanical overload
due to the static working posture of the trunk is made mainly by the flexion forward.

We decided to study trunk flexion for several reasons. The main risk factor for the
emergence of low back diseases is non-neutral trunk postures, especially those requiring
flexion [33]. Yet, over the past three decades, several quantitative techniques—such as
electro-goniometers and inclinometers—have been created to obtain precise measurements
of trunk postures in real working environments. Unfortunately, some of them require the
application of additional external structures to the subject’s skin, which is uncomfortable
and makes them unsuitable for long-term measurements [34]. In our opinion, sEMG
appears to overcome all of these constraints, although additional field study is required to
assess the overload of the arms specifically.

Both electromyographic and kinematic analysis results highlight a muscular effort
in the various phases of the work cycle. Just comparing the signals (Figure 6 with
Figures 8 and 9) shows a higher muscle effort with a concomitant higher value of trunk
flexion, from 20 to 40% of the cycle time and from 60 to 90% of the cycle time.

Another important aspect is the non-invasiveness of the methods applied. Further-
more, these techniques were well tolerated by the workers, and they did not interfere with
their performance either. Beyond the company’s production needs, this aspect is essential
for studying the muscles in real working conditions: the working gesture must not be
altered by the possible encumbrance of the probes that the worker must minimally perceive.
Moreover, it is necessary to verify that there are no physical interferences between the
instruments and the working environment, specifically electromagnetic interference. To
overcome this issue, in this research, a commercial system of sEMG probes was used; it
communicates wirelessly with a device connected to a notebook that acquires and processes
the signal. This is a closed system that, in this study, did not show interferences with the
instrumentation on the production line, and no systematic signal distortions were observed
in the kinematic data processing. Therefore, for this test, the two systems (sEMG and
inertial sensors suites) were found to be simultaneously usable, both in terms of wearability
and in the absence of interference in the reception of signals.

The results of this study confirm what has emerged from research in the literature,
i.e., the contribution of information about the biomechanical overload, which the wearable
sensor technology can provide. Another possible advantage could be integrating this infor-
mation with current risk assessment methods to obtain a risk evaluation [16]. Concerning
other research, this study provides data acquired in a working environment during real
production. However, the research carried out needs to be improved.

Due to specific technical difficulties that arose during the execution of the surveys
and that affected the suite of inertial sensors, it was not possible to focus attention on the
movement’s lateral bending and torsional components. These technical difficulties have
allowed improvements to be made to the software component of the suite.

Another limit is the sample number. The results of the electromyographic and kine-
matic data refer to only three subjects considered adequate for the type of study conducted
(pilot study) but are limited in generalising the data. However, the study’s outcome was
the applicability of the two methods under real working conditions: the obtained data high-
lighted the main aspects to be considered when applying a protocol that integrates sEMG
and kinematics. Future research must necessarily lead to a study with a more significant
number of subjects.

The electromyographic analysis then focused on studying amplitude parameters for
quick information about muscle activation. Further studies for developing a validated risk
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assessment method will have to consider the analysis of fatigue and frequency parameters
using specific validated protocols presented in the literature (EVA, JASA) [21].

5. Conclusions

This work presents a wearable wireless system that collects data to assess the biome-
chanical overload, characterised by the combined use of surface electromyography elec-
trodes and a wearable inertial motion capture system. This approach proved that both
methods give helpful information about parameters that can be used to evaluate the biome-
chanical load due to working postures. Future developments will include studies with a
larger sample, further analysis of electromyographic signals, and possible integration with
specific observational working methods (such as EAWS for the automotive sector).
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