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Abstract: In the manufacturing industry, there are claims about a novel system or paradigm to
overcome current data interpretation challenges. Anecdotally, these studies have not been completely
practical in real-world applications (e.g., data analytics). This article focuses on smart manufacturing
(SM), proposed to address the inconsistencies within manufacturing that are often caused by reasons
such as: (i) data realization using a general algorithm, (ii) no accurate methods to overcome the
actual inconsistencies using anomaly detection modules, or (iii) real-time availability of insights of
the data to change or adapt to the new challenges. A real-world case study on mattress protector
manufacturing is used to prove the methods of data mining with the deployment of the isolation
forest (IF)-based machine learning (ML) algorithm on a cloud scenario to address the inconsistencies
stated above. The novel outcome of these studies was establishing efficient methods to enable efficient
data analysis.

Keywords: smart manufacturing; isolation forest; machine learning; data-centric system

1. Introduction

Manufacturers around the world are trying to adapt to the advancements of technolo-
gies that integrate the physical into virtual shop floors. Many researchers have proposed
theoretical approaches to the integrated framework of digital technologies. These inte-
grated technologies are often termed differently around the world, such as Industry 4.0
in Germany, Made in China 2025, and Industrial Internet in the US [1]. These terms have
propagated the application of digital technologies within complex manufacturing systems.
Smart manufacturing is the framework or practice that has evolved by using the data ac-
quired by machines on the physical shop floor. The data generated throughout a product’s
lifecycle can be analyzed from the multiple perspectives of manufacturing [2]. The data
generated by these systems have unpredictable growth and are purely unrefined. Informed
or precise decisions within manufacturing rely on these manufacturing data. Unfortu-
nately, until now, the decision-making frameworks have not been that efficient [3] due
to manufacturing systems neglecting the data that have been generated. This negligence
has resulted in the loss of production, cost-effectiveness, and flexibility in manufacturing.
According to (3), roughly more than 100 EB of data are generated from manufacturing
systems across the world annually. That is to say, data-centric manufacturing is missing
in the current systems. The implementation of data-centric manufacturing systems has
become a necessary aspect of smart manufacturing practices, and the reports generated
from these have impressed manufacturers to consider this approach inevitably [4]. Among
all these complications, the collaboration of cloud empowerment in manufacturing systems
should never be underestimated. Data-centric manufacturing seems promising, but the
platform of data analytics is equally as important. The manufacturing industry has been
going through a lot of improvements and advancements. One of these advancements is
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cloud computing or cloud-empowered manufacturing systems [5]. The important contribu-
tion of cloud-empowered manufacturing is its unmatched on-demand computing, along
with its undeniable availability, convenience, and highly reliable services.

2. Cloud-Empowered Data-Centric Systems

The invention of IoT and the resulting data accumulated from these sensors in manu-
facturing systems will be a continuous process. As a result, these data need methods to
analyze, define, and understand the behaviors of the machine [6]. If these data are left
unanalyzed, then there would be no point in integrating these machines with the required
sensors and communication protocols [7]. The number of machines that are smart enough
to provide data has been growing immensely, and this rapid growth cannot be left unat-
tended. An estimated 3 exabytes of data are generated every day, an amount equal to the
data produced by all the IBM systems in previous years [8]. This amount of data cannot be
stored in any personal computer or any locally generated database storage system, which
would be hard to access. Solely for this reason, gigantic companies such as Microsoft, IBM,
Google, AWS, and many more are providing on-demand cloud solutions [9].

These data can be treated as an information source, and in turn, the same data will be
treated as knowledge for the future. However, this transformation of data from information
to knowledge cannot be handled by sensors or local analytical platforms [10]. This is where
cloud empowerment for data analytics takes prominence. Figure 1 represents the general
architecture of a cloud-empowered data-centric system where the manufacturing system
data have been transferred to the cloud system. This data transfer has been achieved
through multiple fast and reliable communication protocols such as WLAN, Bluetooth,
WSN, Wi-Fi, and many others.
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Integrated systems have been evolving with the incorporation of the reliable source:
sensing technology [11]. There are sensors for every possible expectation that can be
incorporated into the machine. In the architecture that is presented in Figure 1, the data
from sensors were collected and accumulated in the cloud environment for processing. The
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aspects of the data such as scalability, elasticity, economic benefits, reliability, security on
storage, and accessibility for prediction were justified using cloud empowerment. Efficient
and effective computing of data that have been collected in cloud storage are important to
extract useful and important features. The data generated from heterogenous machines are
of very high volume, wide variety, and intense velocity. To understand these three V’s of Big
Data concepts [12], there are many providers around the world that have taken initiative
in managing these databases. The topmost among them include Apache Hadoop, Oracle,
Cassandra, and Vertica. These companies do the background job of storage and computing,
which consumers will in turn use around the world to develop virtual scenarios.

3. Life Process of Smart Manufacturing Data

SM revolves around data that have been collected from the system. However, the
collected data will not be useful unless they are processed for the desired structure or
boundaries are defined for a particular data set. Typically, once the data are collected, they
need to be processed through several important steps called the “life process of the data”.
Once the data from sensors are collected, the following data life process will detail the steps
that they undergo: (i) data collection, (ii) preprocessing, (iii) transmission, (iv) visualization,
and (v) real-life application.

3.1. Data Collection from Sensors

Though technologies have taken the majority of use from the data that are collected in
manufacturing systems, there are systems that help the user to visualize them as well [13].
Such systems include manufacturing execution systems (MES) that handle data streams
between manufacturing machines; enterprise resource planners (ERP), which is a platform
that assists in planning the inventory of the organization; and product lifecycle management
(PLM). Modeling software utilizes these data as well as computer-aided design (CAD) and
computer-integrated manufacturing (CIM), which assist in realizing the manufacturing
in the virtual world. Data from the machines need to be captured, and there are many
methods possible to achieve this goal. In this article, the Raspberry Pi4 module was used
for capturing the high-dimensional manufacturing data, as presented in Figure 2. There
are four main types of data that can be collected from this system, i.e., (i) machine data,
(ii) management data, (iii) inventory data, and (iv) general data. As depicted in Figure 2,
the raspberry Pi 4 module has been used for the data generation techniques.
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3.1.1. Machine Data

Figure 3 illustrates about the preliminary data analysis in manufacturing scenario. Ma-
chine data are collected from the sensors that are inbuilt within the equipment. These data
include machine behavior, real-time execution, maintenance scheduling, history of equip-
ment, and many others. Machine data are very crucial in deciding which of the collected
data are useful so that they can be processed and analyzed for a concrete understanding of
the operation.
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3.1.2. Management Data

Management data are a type of data that is generated from the manufacturing man-
agement system. These data are often generated by the team that has been planning the
execution of the production such as MES, ERP, and others. These data are often con-
stituted of production planning, scheduling, inventory management, sales, distribution,
warehousing, and forecasts.

3.1.3. Inventory Data

Inventory data are often collected from the sensors that have been integrated into
the product itself. These data are often categorized into radio frequency identification
(RFID), barcode, QR code system, and others. Inventory tracking data are useful when the
manufacturing team is trying to integrate its system with customers or providers. These
data assist the system to store, track, and manage data related to manufacturing date, batch
of production, and warranty if applicable.

3.1.4. General Data

General data are usually generated from the research and development part of the
team. These data are related to any development of technology, integration, or advanced
protocols. In particular, this type of data allows manufacturers to guarantee the imple-
mentation of advanced technologies within their practices. In this Big Data era, with the
help of information technology (IT), manufacturers can conveniently hold onto and process
the necessary data to enhance production. This acquisition of manufacturing data has
given opportunities for all sizes of manufacturers, including SMEs, to implement these
technologies and enhance their productivity.

3.2. Data Storage and Management

According to IBM, the data generated from the manufacturing system cross 2.5 ex-
abytes on a daily basis. To store and manage this information is a nightmare for any system
that has been fully designed. Fortunately, there are cloud systems that make life easier for
manufacturers to access their work fluently [14]. These data can be often classified into
three categories: (i) structured data sets, (ii) semi-structured data sets, and (iii) unstructured
data sets.

3.2.1. Structured Data Sets

Structured data are often readily usable for any type of analysis with algorithms or
basic modeling such as digits, tables, symbols, and many others. One drawback of this
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data type is that it is not very descriptive. Often, there is some analysis and reporting that
needs to be performed on this data type to understand it.

3.2.2. Semi-Structured Data Sets

Semi-structured data are partially understood by the direct user but are again not
self-descriptive. Types of this category include data trees, XML documents, or graphs
generated by the system. A known practitioner is needed to handle and manage these
dat3.2.3. Unstructured Data Sets

Unstructured data are visually easy to understand but are difficult to realize. Data
sets such as images, videos, audio files, system logs, and many others are classified un-
der this data set. Unstructured data realization comes under the special section of data
engineering and image and pattern recognition to understand machine behavior. Initially,
manufacturers often tended to use structured data sets, as they were easy to manage. With
the introduction of object storage, data are stored in a designated object to store the storage
system, which is far more convenient and easier to analyze compared to file systems or
block storage. This is because file storage contains the data in one single file irrespective of
the data type, and block storage stores the data in singular blocks of data, which further
stores these data sets as separate pieces of data. The advantage of object storage over block
and file storage is that data are easily accessible for analysis, retrieval, and optimization of
resources while remaining at a competitive cost.

3.3. Data Preprocessing

Data that have been collected from the manufacturing system often need cleaning.
Cleaning refers to a series of steps involved in processing and refining data. Collected data
must be processed and converted for useful information so that they can be used to make
critical decisions about manufacturing [15]. The processing will filter null, misleading,
inconsistent, and redundant values within the collected data set. Specifically, the data need
to undergo cleaning to get rid of null entries and duplicates, as well as to find missing
inputs. These three values are the major impurities within the data sets. Data preprocessing
can be performed in six different stages depending on the type of data.

3.3.1. Batch Processing

Data from machines are collected in batches. These data are often used for later
stages of analysis, but this type of processing does not help in manufacturing. Rather, this
processing helps in payroll types of systems.

3.3.2. Real-Time Processing

Once data have been collected, they will be analyzed completely in seconds i.e., real-
time. One drawback of this processing is that it has been performed on only a small amount
of data, such as ATM machines, but in manufacturing, this is a real need.

3.3.3. Online Processing

Here, data will not be processed for null values or duplicates; rather, the data will
be directly fed to the servers, where they will directly work on the analytical algorithms.
However, often, this can be performed with only one system at a time.

3.3.4. Multi-Input Processing

Multi-input or parallel processing is a type of data processing that is often used when
there is more than one data point, and multiple servers are needed to process the data. This
type of processing is used when reporting about the weather or in the online streaming of
live events and many others.
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3.4. Data Realization

Once the data have been collected and preprocessed, they need to be visually realized,
i.e., there is a presentation method that needs to be implemented on the data set collected.
This realization can only be performed with the help of ML algorithms, data analytical
formulas, graphs, tables, figures, and other such presentation forms. The realization
will help manufacturers understand their standing when compared to similar data sets
generated from virtual systems or CPS systems. The analytical reports can then be further
compared, and effective measures of implementation can be taken. Figure 3 represents
preliminary data analysis from the data collected from one typical machine from the shop
floor based on the number of sheets that were manufactured in a given set of time.

4. Cloud Empowerment in Smart Manufacturing Systems

As described in the data methods in the previous section, cloud empowerment within
a system plays a similarly vital role. Everything is regarded as a service in CC, including
software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service
(IaaS). A layered system is defined by these services. Table 1 shows pivot outcomes for
cloud computing from the gathered data. At the infrastructure layer, standardized network
services are referred to as processing, storage, networks, and other crucial computer
resources. The underlying infrastructures of clients of cloud providers can be configured
and used with software and operating systems. For the purpose of building, testing, even
deploying, hosting and supporting applications in an integrated development environment,
PaaS, the intermediate layer, offers abstractions and services. The application layer provides
the full suite of SaaS applications. Then there is the top user interface layer which enables
smooth interaction with all of the underlying SaaS levels. Table 1 represents the pivot
table that was generated after integrating the basic modules of cloud computing. This was
assumed to be the recipe holder for subsequent manufacturing processes.

Due to the development and convergence of multiple computing trends, including
internet delivery, elasticity, “pay-as-you-go/use” utility computing, virtualization, dis-
tributed computing, content outsourcing, storage, Web 2.0, and cloud computing, grid
computing is occasionally regarded as a multidisciplinary research field. In actuality, cloud
computing may be seen as the commercial development of grid computing. A change
in approach for business and IT architecture is required to implement cloud computing,
where processing power, services and data storage are outsourced to outside parties and
thus made available to businesses (along with customers) as commodities. Businesses such
as NEC are using cloud computing more and more. Solutions provided by its cloud-based
service platform play a significant part in the transformation of corporate systems, result-
ing in cost savings, agile service deployment, more flexibility, and increased productivity.
Manufacturing companies have good reasons to embrace cloud computing and even to
“steal” the idea in order to create a “cloud industry,” which is the manufacturing equiva-
lent of cloud computing. As industrial organizations in the new millennium grow more
IT-dependent, international, dispersed, and agile-demanding, such lateral thinking is seen
as reasonable and natural.

4.1. Requirements for Cloud Computing

Before jumping into actual computing, there are basic requirements or checklists for
cloud computing. These requirements are very crucial, and meeting these requirements is
the primary aspect before jumping into selecting cloud services. The following sections are
a list of requirements that seem necessary for the stated purpose of the paradigm.
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Table 1. Pivot results from collected data.

Process Definitions Data Results Planning

Object Type

Model Object Name Data Source Category Data Item Statistics Average Total

Model
ModeEntity

Model NumInWIP UserSpecified StateValue Average 7.3177

Final Value 11.0000

Maximum 16.0000

ModeEntity Queen Population Content NumberInSystem Average 1.5127

Maximum 7.0000

FlowTime TimeInSystem Average (s) 94.9607

Maximum (s) 148.9808

Minimum (s) 76.1057

Observations 400.0000

Throughput NumberCreated Total 403.0000

NumberDestroyed Total 400.0000

Single Population Content NumberInSystem Average 4.6296

Maximum 13.0000

FlowTime TimeInSystem Average (s) 89.2010

Maximum (s) 155.9064

Minimum (s) 69.3057

Observations 1305.0000

Throughput NumberCreated Total 1312.0000

NumberDestroyed Total 1305.0000

Superking Population Content NumberInSystem Average 1.1754

Maximum 6.0000

FlowTime TimeInSystem Average (s) 101.2347

Maximum (s) 152.0274

Minimum (s) 84.7057

Observations 292.0000

Throughput NumberCreated Total 293.0000

NumberDestroyed Total 292.0000

4.1.1. Fault Tolerance

This aspect of cloud computing deals with the ability of the cloud system to tolerate
the faults that occur while computing: tolerating faults or the performance of the system
such as self-diagnosis, recovery, and app-particular recoveries when the system encounters
faults. Even after the faults are detected, the system needs to recover and revise its version.

4.1.2. Cloud Security

A major reason manufacturers do not tend toward cloud integration is fear about the
security of their data. They are worried about data leaks, operation failures, or remote
handling of servers. Trusting third-party cloud providers to manage internal operations
and activities is one of the largest risks that one could ask from manufacturers. In their
databases, they have information related to customers, providers, sales reports, marketing
strategies, and internal employee details. Earlier discussed topics such as SaaS, IaaS, or
PaaS give different levels of security and flexibility of integration.
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4.2. Cloud Deployment Challenges and Strategies

Deployment of the whole manufacturing in the cloud environment has become quite
complex because of many reasons. Real-scale architecture needs to be obtained while the
application is required to be handled. With the expansion of goods, cloud deployment has
grown fairly complicated. To achieve real-scale architecture today, applications must be
able to manage traffic surges. The process of deployment itself becomes challenging due
to the growing demand for extra new features, and the release of updates multiple times
a week, especially when transferring servers, is challenging [6]. In the following section,
some of the challenges are stated for instances where a cloud application is deployed using
strategies that are outdated:

(1) Scaling difficulties;
(2) Manual replacement for server outages;
(3) Application release during maintenance window/time frame;
(4) Run-time faults through deployment;
(5) Unstable deployments;
(6) Deployment breakdown;
(7) Rare production deployments.

5. Data-Centric Cloud-Empowered Smart Manufacturing

Figure 4 represents the cloud empowered data-centric system that comprises of multi-
ple modules. Manufacturing model: Once the data from the manufacturing shop floor are
collected, processed, and analyzed ML technology, one can implement the ML technology
within the manufacturing to enhance the intelligence of the decision-making framework.
The data-centric module that is powered by CC is a multicapable framework. This module,
as presented in Figure 4, explains the possibilities. The following sections of this article
detail the different modules.
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5.1. Shop Floor Module

The shop floor module can accommodate various manufacturing processes. It is made
up of a range of manufacturing resources as well as the information systems, and it can be
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summarized as a “man–machine–material environment.” In this module, the inputs would
be completely raw materials, whereas the outputs tend to be completed goods. A variety
of dataset are collected throughout the input–output transformation process from sources
such as human operators, the information systems, the production equipment and/or the
industrial networks.

5.2. Data Principled Module

Throughout many phases of industrial data lifecycle, it is the data principled module
that serves as the engine for smart manufacturing. The manufacturing module’s data are
sent as inputs to the cloud-based data centers where further analysis can be conducted.
After that, the manufacturing module’s operations (such as product design, manufacturing
execution and production planning) are driven via explicit suggestions and information
which is derived from the aforementioned raw sets of data. Even the problem-processing
and real-time monitoring of the modules are supplied power by data driver module.

5.3. Real-Time Interfacing Module

The real-time interfacing module is involved in the real-time monitoring of the pro-
duction process to guarantee product quality. This module, which is powered by the
data driver module, can analyze the operational state of industrial facilities in real time.
Manufacturers may then design the best operational control techniques by staying up to
date with modifications to manufacturing process. A simple example is when the material
is spread, and it follows a trajectory is for the instance when the machine sits idle. Specific
product quality flaws can be addressed by adjusting the production process. The real-time
monitoring of the module can thereby improve efficiency of the manufacturing process and
facilities.

5.4. Fault Diagnosis Processing Module

The following tasks are carried out by the fault diagnosis processing module: recog-
nizing and anticipating emerging faults (such as quality defects and/or equipment faults),
diagnosing root causes, recommending potential solutions, calculating the efficacy of those
solutions, and evaluating potential effects on other forms of manufacturing activities. With
the collection of information/data in real-time and analysis of historically available data
(merged with ongoing data which is supplied by the data driver module), it is now possible
to make better informed decisions via Artificial intelligence programs or human operators.
This also has the potential to not only to solve existing issues but also create a pathway to
prevent problems of similar nature in the near future. This form of preventive maintenance
is thus made possible by this module, which eventually enhances and streamline the com-
plete industrial processes. The systematic process of data collection, storage, integration,
analysis, visualization as well as application can often be advantageous to a wide range of
diverse businesses. The suggested data-driven smart manufacturing system aims to benefit
everyone in this way. SMEs, as opposed to large corporations, can implement data-driven
smart manufacturing at varying scales based on the resources available. SMEs can use
services of cloud computing (which are offered by different third parties like Alibaba or
Amazon) on-demand. This is in contrast to larger enterprises that can afford to setup
their own private cloud infrastructure for the purpose of storing and analyzing data. The
essential value propositions of the aforementioned data-driven manufacturing approach
end up being similar for both the major enterprises and SMEs, regardless of where and how
data is maintained. Decision-makers use manufacturing data to predict changes as quickly
as possible, evaluate them accurately, and provide quick fixes for problems. Because of this,
smart manufacturing can be improved by carefully synchronizing production schedules,
manufacturing processes, and resources.
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5.5. Reporting Module

The reporting module is a very important aspect of the specified framework. This is
because it reports all the modules that have been mentioned in this section. The reporting
module has been programmed with multiple software and hardware aspects so that it
concatenates all the possible faults, issues, and recoveries that have been taken. These
faults are often important, and reporting them to the correct personnel is very crucial to
making important decisions within the smart manufacturing scenario. Decision-making
strategies depending on the reports that have been generated by these systems play a vital
role because the changes are often unavoidable. In the instance when the a pattern of data
is detected that don’t end up conforming to an ideal/expected type of behavior, it is then
known/considered as an anomaly detection [16]. The anomaly detection problem is, by
definition, dependent on the data and/or application in question.

There are many overviews and comparisons of approaches towards the different types
of anomaly detection, as presented in literature. This includes various examples, starting
from the industrial damage detection towards all the way to medical anomaly detection.
Think about the irregularity location issue using a multivariate time arrangement dataset
collected from sensors installed on the fabricating gear of a production line processing line.
The issue of inconsistency discovery is particularly challenging since the inconsistency
information records are constrained, the anomaly designs are exceedingly sporadic, and
the discovery must have precise timing. A few approaches have been proposed already as
discussed in Section 3. Traditionally, rule-based arrangements are connected for discovery.
These rules are specified for the encounters and space knowledge advertisement hoc
information examination. Subsequently, it is defenseless to an unseen anomaly and cannot
be effectively generalized to other fields or situations. Machine learning procedures have
to be more commonly seen with the rising worldview of enormous data [17]. Some of
these approaches are based on time arrangement analysis models, such as autoregressive
coordinate moving.

5.6. Case Study of High-Dimensional Data Anomaly Detection

In this section, a case study is represented. This case study illustrates the implementa-
tion of technologies alongside physical machines to overcome traditional challenges. This
case study is from one of the mattress protector manufacturers in Australia, as illustrated
in Figure 5.

Mattress protectors are one of the key components of human well-being. They protect
humans from bed bugs and many other potential risks that spread from bedding. In
addition, they protect mattresses from any tough stains such as coffee or oil spills. As
depicted in Figure 5, from input such as raw fabric from a slitting machine to output such
as RFID-chip-enabled mattress protectors, the manufacturing involves a series of intrinsic
production processes. These production processes are slitting, cutting, sewing, folding,
packing, and warehousing. As the industry is completely craft oriented, operations are
often intrinsic or heterogeneous in nature. Furthermore, these operations need human
intervention at every stage to ensure the production process proceeds smoothly, as well
as offer quality control. These operations can be made faster by introducing advanced
machinery that is capable of self-diagnosing their faults, efficiently transferring data to
perform analysis on their behavior, and possibly integrating with ERP and MES systems. As
shown in Figure 5, there are five major operations that have been continuously supported by
RFID-enabled conveyor systems. All the machinery is capable of generating large amounts
of complex data that make analysis a nightmare. Data generated from all the machinery
collected will be further used in analysis, integration, validation, and visualization. These
applications are only possible through integrated systems of advanced technologies such
as ML and CC. For material allocation and diversion to the respective stations, raw fabrics
are embedded with tracking technology such as RFID tags. The RFID-enabled conveyor
system makes it feasible to deliver the raw materials to their respective locations. Material
tracking is performed by mainly using three unique items: (i) product ID (generated from
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the ERP system), (ii) item code, and (iii) batch ID. These data will be validated by the MES
system at every manufacturing operation. From the start, i.e., fabric rolls to sleeved and
packed mattress protectors, an enormous amount of data will be generated. The data that
are collected have to undergo several steps of data preprocessing, which were discussed
in earlier sections of this article. Additionally, the data need definition, validation, and
recognition, which will give a description of the collected data. In the collected data,
there will be many instances where manufacturing stops because of unknown reasons.
Out of these unknown reasons, one definite answer is anomalies within the data sets.
The detection of these anomalies in these high-dimensional data is required to overcome
inconsistencies within the manufacturing line. The results of anomaly detection and the
correlation between the data individuals have been outlined.
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6. Proposed Method and Solution
6.1. Proposed ML Methods

This section identifies current challenges and relevant methods used for anomaly
detection. The following section discusses high-dimensional data analysis, precision of
anomaly detection, and relevant performances of various methods. This section compares
iForest and KNN methods used to address challenges.

6.1.1. Isolation Forest

The fundamental advantage of isolation forest (IF)-based anomaly detection is the
unorthodox approach it takes to detect anomalies by profiling normal data sets [18]. Rather
than a conventional approach, IF directly focuses on detecting anomalies using the basic
principle of decision trees. As part of this method, tree partitions are made by the feature
definition of a user definition [19]. Once the definition of the features is defined, the next
step is to select the random split value between maximum and the minimum values of the
aforementioned feature. To focus more on the principle of the algorithm, the target values
or anomalies are achieved by using a smaller number of splits.

Anomalies occur less than in regular data and observation points, and they always
lie in the furthermost space of the observation [17]. The random splits or partitions will
generate shorter paths to the anomalies than distinguishing them from normal data points.
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IF is dependent on the model base, the density of the data point base, and the data profiling
base. Any changes to these require adjustment of IF properties. The IF properties that the
govern aforementioned dependencies are:

a. Subsampling: As the name itself suggests, it does not have to isolate all the data
points. IF can easily ignore normal data points or the majority of data points. This will
increase the computing powers of the algorithm, as well as provide better predictions of
the model.

b. Swamping: When the normal data points lie very close to anomalies, the model
needs to separate the data points in multiple partitions. This iteration of separation is
called swamping. To reduce the swamping process, IF often chooses subsampling as the
reduction option.

c. Masking: Masking is a similar feature to swamping, but this property applies only
when the number of anomalies is high in number. For instance, when there are a high
number of anomalies present within a data set, the identification of anomalous data is very
difficult. Because of this, IF chooses masking as an option where the set of data points
within the given data set can be alleviated using subsampling

d. High-dimensional data: The reason behind choosing IF as the key solution to HD
data is that the data points in HD are equally distributed all over the region. This makes
traditional algorithms have difficulty identifying the anomalies. This does not mean that IF
can easily detect anomalies within the data set, but it could be enhanced by adding feature
selection properties to the data set. AD with IF is a method that consists of the following
two important stages:

• Training dataset is utilized in the initial stage to construct iTrees according to previous
sections.

• In the following stage, every instance that is in test set is run through iTrees which
is constructed in the first stage. Additionally each instance is given an appropriate
“anomaly score” using the technique detailed below: An “anomaly” point is labeled
only when the score is larger than a predetermined threshold, which depends on the
domain where the analysis is being performed on, once each occurrence in test set has
been assigned the anomaly score.

e. Anomaly Score: The technique used to calculate the anomalous score of a data
point is founded on the observation that binary search trees (BST) is equal to structure of
iTrees. On the contrary, an unsuccessful attempt at searching in the BST is corresponded to
the an exterior node of iTree that is terminated. Therefore, the calculation of average H(x)
for terminations of exterior nodes is identical to that of the failed BST search, presented as
follows

c(m) =


2H(m − 1)− 2(m−1)

n f or m > 2
1 f or m = 2
0 otherwise

(1)

In this case, n is known as the data size being tested, m is known as sample set size, H
is identified as harmonic number, estimated by H(i) = ln(i) + Y where Y is 0.5772156649 is
the Euler–Mascheroni constant.

6.1.2. K-Nearest Neighbor

The K-nearest neighbor (KNN) is an effective, simple, linear, and nonparametric
supervised type of ML algorithm. However, when it comes to anomaly detection, KNN
chooses the unsupervised method [20]. This algorithm is used to build two different
scenarios such as regression and classification models. The output is clearly dependent on
input variables, but irrespective of inputs, KNN works on the basis of a simple strategy,
i.e., the closest lying data points will be considered in the training set [21]. Furthermore,
the result of KNN classification will always be something that is highly voted by the
neighboring data points. Comparatively, the regression model obtains a result from the
average of the nearest lying neighbors. Thus, KNN assumes the nearest lying data points
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as the normal data sets and extracts the features of the neighbors [22]. The model predicts
the closest neighbors depending on the proximity of the data points. The KNN algorithm
works in the following steps: (i) loading the data, (ii) initializing the nearest neighbors as
chosen ones for the feature extraction, (iii) calculating the proximity distance between the
training data set and test data set, (iv) extracting the proximity distance and index of the
data points, (v) sorting the features or test data sets in ascending order, (vi) selecting the
initial K elements from sorted data, (vii) labeling the data points for selected K elements,
and, finally (viii) deciding whether to return classification or regression results depending
on the mean or mode of the data points. The distance or proximity between two data points
represents the similarity that completely originated from the denoted features. Thus, the
Euclidean distance used in KNN can be derived from

dist(X, Y) =
√
(x1 2 − y12) + (x2 2 − y22) + · · ·+ (xn 2 − yn2) =

√
1 × (x1 2 − y12) + 1 × (x2 2 − y22) + · · ·+ 1 × (xn 2 − yn2) (2)

The most important drawback of these distance-measuring equations is the similarity
measure. The similarity measure is nothing but treating the nearest neighbors equally or
extracting features of these data points equally. Equal extraction will result in a miscal-
culation of normal and anomalous data points. Due to this, deciding on the extraction of
features of data points will create ambiguity within the different kinds of classifications.
Thus, deciding which feature is more important is uncertain.

6.2. Results and Discussions

To outline the discussions of the results, there is a basic necessity to comprehend the
correlation between the data points. The data points that were collected were from multiple
industrial sensors, e.g., (i) temperature sensor, (ii) proximity sensor, (iii) accelerometer,
(iv) pressure sensor, (v) infrared sensor (IR), (vi) tension sensor, (vii) ammeter, (viii) volt-
meter, (ix) humidity sensor, and (x) light dependent sensor (LDR). These sensors are all
independent in nature or are not directly related to each other. Any variation in any of these
sensor inputs does not impact another sensor reading. To develop the correlation between
the data points, the power consumption reading was recorded. Power consumption is
the target variable, which was directly related to the aforementioned sensory data. This
development of the relationship between the set of input variables and the set of target
variable is called a correlation. The power data variation was the direct result of the target
variable recorded from any of the operations’ failures. The failure data or event data can be
traced back to the original cause of the interruption. To elaborate more on the relations of
the data points, whenever there was an issue wit the temperature of the machine, the ma-
chine stopped. However, to detect the event cause, the power consumption was collinearly
matched. To make a strong relationship between the data points, correlation analysis is
very crucial. Once the analysis of correlation is performed, plotting or predicting the target
variable in the given context will be easier. So, to define the correlation, when one of the
data variables starts to increase or decrease, the other variable will also show behavioral
changes. There might be a positive linear change, a negative linear change, or no change
at all. Furthermore, there are many ways to calculate the correlation coefficients, such as:
Spearman rank correlation measure, Pearson correlation measure, and Kendall correlation
measure. Once the correlation coefficient has been identified, its next important job is to
minimize the data dimensionality. Because of high-dimensional and high-volume data, the
prediction of a target variable will be very problematic, such as high computational costs,
model behavior changes from training data to test data, and the distance between two data
points becoming equal because of the high distribution of the data sets. To overcome this
basic challenge, the dimensions of the data points will be reduced to a greater extent; rather
than focusing on every data point, it is easier to focus on major events and behavioral
changes.
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6.2.1. Synthetic Data Generation

Sensor data are not publicly accessible/available. To deal with this problem, we
generated synthetic data of the sensor from publicly available limited data. In order to
generate the synthetic data, we adopted the complete synthetic data vault (SDV) [23]. The
SDV helps to produce the synthetic data with the exact statistical properties and format
as what was available in original set of data. We used four different models to generate
synthetic data using SDV. They are CopulaGAN, CTGAN, GaussianCopula, and TVAE.

Figure 6 represents the violin plot of the synthetic data generated using four models
of the SDV. The x-axis highlights the various methods adopted, whereas the readings
of the sensor are represented by the y-axis. From Figure 6, it is clear that the generated
synthetic data have a similar distribution to the original data. Amongst the various methods
compared in Figure 6 (Sensor 00), the CGAN-method-generated synthetic data seem closest
to the original data in the y-axis.
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Similar to Figure 6, Figure 7 presents the distribution of the synthetic data generated
from the original data for Sensor 01. Both Figures 6 and 7 used synthetic data and accurately
provided distribution plots comparable to original data. Thus, these figures establish that a
synthetic data plot is useful despite lacking measurement data sets. Further, these synthetic
methods enhanced accuracy of anomaly detection, thus improving algorithm performances.
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6.2.2. Event/Anomaly Detection

In this part, we discuss the simulation results using isolation forest and the KNN
algorithm. As discussed earlier, isolation forest and the KNN algorithm are applied to
detect the event and anomalies in the first phase from the power consumption data, as
shown in Table 2.

Table 2. Classification report for Isolation Forest (overall accuracy 97%).

Model Name Support F-Score Precision Recall

0 891 0.93 0.89 0.98
1 4382 0.98 1.00 0.97

Table 3 presents the classification report for event detection using iForest. These
included precision, recall, F-score, and support of iForest with an overall accuracy of 97%
while predicting anomalies. Figure 8 represents the confusion matrix calculated from the
iForest algorithm, where the actual labels are represented by x-axis, and the predicted
labels with reading ranges are represented by the y-axis represents. Out of 5000 data sets,
132 anomalies were not detected using iForest.

Table 3. Tracing the anomalous sensors from the detected anomalies in the power consumption data.
The bold represent the anomalies found in the power consumption data.

Index
Power

Consumption
Value

Index 1 2 3 4 5 6 7 8 9 10

11 38.95 Value
Anomaly

2.445
False

47.917
False

53.168
False

46.398
False

74.587
False

13.411
False

31.486
True

15.849
False

15.119
False

39.785
False

345 39.22 Value
Anomaly

4.823
True

46.267
False

52.777
False

45.356
False

13.614
False

16.167
False

15.705
False

15.802
False

15.802
False

13.614
False

850 39.24 Value
Anomaly

2.4666
False

48.915
False

52.821
False

46.821
False

73.867
True

26.257
False

16.131
False

15.654
False

15.162
False

41.631
False

900 38.43 Value
Anomaly

2.452
False

48.915
False

52.604
False

46.604
False

46.8352
False

144.0363
True

13.383
False

16.211
False

15.119
False

42.106
False

1247 200.42 Value
Anomaly

2.457
False

46.832
False

52.170
False

44.444
False

83.021
False

13.122
False

35.923
True

15.612
False

15.083
False

45.024
False

1217 305.89 Value
Anomaly

2.440
False

47.309
False

52.127
False

44.531
False

77.184
False

13.093
False

16.168
False

52.910
True

15.119
False

39.726
False
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Further, the KNN algorithm is applied for anomaly detection in the same data set.
Table 4 presents the classification report for event detection using the KNN algorithm.

KNN achieved an overall accuracy of 100% while predicting anomalies.

Table 4. Classification report for KNN (overall accuracy 100%).

Precision Recall F-Score Support

0 1.00 1.00 891
1 1.00 1.00 4382

Figure 9 represents the confusion matrix for kNN classifying the anomalous and
normal data. Normal data are classified as 0, and anomalous data are classified as 1. There
were no inaccuracies with 4290 anomalies detected using this algorithm.
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Figure 9. KNN event detection.

Table 5 compares the performances of the iForest and kNN algorithms in terms of
F-score, precision, and recall. Figure 10 visualizes the comparison of these two algorithms.

Although the KNN algorithm achieves a better performance than the iForest algorithm
with 100, once we detect the anomalies from real power values, we then trace back the
sensors’ dataset to identify which sensor is performing in an anomalous fashion. All the
data points (all sensors’ measurements) for that specific timestamp (where the anomaly
is detected in the real power value) are checked based on the upper threshold and lower
threshold of each of the sensors’ measurements. The upper and lower thresholds are
defined based on the measurements of the sensors. Table 1 shows some of the sample
tracings of the anomalous sensors from the detected anomalies in the power consumption
data. For instance, an anomaly was detected in the eighth dataset sample for power
consumption. The associated sensors’ readings are 15.849, 15.705, 15.654, 15.734, 15.612,
and 52.91.

Table 5. Model comparison in isolation forest and KNN.

Model Name F-Score Precision Recall

Isolation Forest 0.940701 0.955997 0.957171
KNN 1.00 1.00 1.00
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7. Conclusions and Recommendations

Currently, in all forms, manufacturing is complex in nature with convoluted manu-
facturing characteristics. Further, several controls and analytical capabilities are required
to capture these convoluted characteristics. For example, sewing operations constitute
more than one million multifocal datasets just captured from one sensor. Thus, integrating
various sensory data and analyses to effectively arrive at a decision is a significant mile-
stone. This paper presents a case study in the textile industry, capturing various convoluted
characteristics (e.g., sensory data from machinery). Further, these data were analyzed to
develop bespoke practices within manufacturing. Such an example is deriving the best
anomaly detection method by comparing various anomaly detection techniques. In addi-
tion, this research further hosted analytical data on a cloud-centric platform with various
access capabilities. This enabled minimizing data redundancy errors and significantly
improving decision-making capabilities. Such an example is establishing significant time
savings. The three V’s of data, i.e., volume, variety, and velocity, play an important role in
determining the characteristics of the manufacturing sector. The amount of drastically and
dynamically changing data that have been generated within the manufacturing industry is
enormous and still growing. Data generated and analyzed can be used to increase efficiency
within the production line. This article contributes to the cloud-centric smart manufac-
turing paradigm powered by data generated by manufacturing systems. This paradigm
has multiple dimensions, which this article presented in a versatile manner. It covered
historical aspects, data generation and maintenance aspects, and cloud empowerment
in manufacturing systems. Out of all of these, the development stage of the model that
constitutes data generation, transmission, processing, and realization plays an important
role. Following the development stage, empowerment was achieved with cloud systems.
Finally, real-time application was aided by anomaly detection in the cloud for uninter-
rupted smart manufacturing systems. While outlining the possibilities of the smart system,
this article illustrated many challenges in every stage of development. Current trends in
data collection, preprocessing, and realization, especially in high-dimensional data, are
very limited. Additionally, cloud empowerment has powered the systems in data storage,
processing, and analytical capabilities, but a feasible solution has not yet been proven in
a practical scenario. Low latency, network unavailability, server issues, and other such
problems are the top issues that can be detected in cloud empowerment.

Finally, the statement of SM claims that integration of physical and cyber systems is
possible, but the data and research collected are all performed on physical data. There
are no solid case studies that have taken consideration of parallel data accumulation of
physical and cyber systems for a better future. Even though this article showed a promising
framework of SM, it still asks important questions about data-centric smart manufacturing
systems:
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(1) Key feature extraction and processing of important data sets from the manufac-
turing system need promising improvements. IoT gateways and industrial internet of
things-integrated systems need to capture more heterogeneous data from manufacturing
systems.

(2) Though cloud empowerment seems fashionable and promising, issues related to
fog computing, edge computing, and cloud usage instances need a better understanding.
Advancements in this topic will surely decrease network latency, bandwidth issues, and
server downtimes.

(3) The data analytical programs and anomaly detection strategies that were illustrated
in this paper are some of the most feasible. However, the reason for the failures of other
algorithms and techniques needs to be understood. Integration of these technologies into a
real-time scenario is the biggest future prospect. Working in real time will enhance system
efficacy in predictive measures, preventive methods, and adaptable systems.
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