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Abstract: Dry, frictional steel-on-steel contacts under small-scale oscillations are considered experi-
mentally and theoretically. As indenting bodies, spheres, and truncated spheres are used to retrace
the transition from smooth to sharp contact profile geometries. The experimental apparatus is built
as a compliant setup, with the characteristic macroscopic values of stiffness being comparable to
or smaller than the contact stiffness of the fretting contact. A hybrid macroscopic–contact model is
formulated to predict the time development of the macroscopic contact quantities (forces and global
relative surface displacements), which are measured in the experiments. The model is well able to
predict the macroscopic behavior and, accordingly, the frictional hysteretic losses observed in the
experiment. The change of the indenter profile from spherical to truncated spherical “pushes” the
fretting contact towards the sliding regime if the nominal normal force and tangential displacement
oscillation amplitude are kept constant. The transition of the hysteretic behavior, depending on the
profile geometry from the perfectly spherical to the sharp flat-punch profile, occurs for the truncated
spherical indenter within a small margin of the radius of its flat face. Already for a flat face radius
which is roughly equal to the contact radius for the spherical case, the macroscopic hysteretic behav-
ior cannot be distinguished from a flat punch contact with the same radius. The compliance of the
apparatus (i.e., the macrosystem) can have a large influence on the energy dissipation and the fretting
regime. Below a critical value for the stiffness, the fretting contact exhibits a sharp transition to the
“sticking” regime. However, if the apparatus stiffness is large enough, the hysteretic behavior can be
controlled by changing the profile geometry.
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1. Introduction

Fretting is a widespread source of surface damage and, possibly, structural failure
in many tribological contacts, which are subject to oscillating loads, e.g., in turbine blade
roots [1] or artificial joints [2]. The physical (or chemical) nature and mechanisms of the
tribological damage associated with fretting can be very diverse; in dry contacts of corrosion-
resistant materials, the main sources of damage are (fretting) wear and (fretting) fatigue [3].

Based on so-called “fretting loops”—i.e., hysteresis loops between contact forces and
macroscopic relative surface displacements—one can distinguish different fretting regimes:
the partial slip regime with narrow hysteresis, the sliding regime with a broad (round or
rectangular) hysteresis, and a mixed regime in between [4].

Although wear and fatigue in fretting contacts are separate (albeit interacting or even
competing [5]) damage phenomena, in many cases, the partial slip regime is dominated by
fatigue (due to the oscillating stress singularity at the edge of the permanent stick area),
while the dominant phenomenon in the sliding regime is wear [6].

From a contact mechanical perspective, it is clear that the fretting regime (and, thus,
the dominating damage mechanisms) can be heavily influenced by the contact profile, i.e.,
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the geometrical form of the gap between the contacting surfaces in the undeformed state of
first contact [7]. In that regard, the two main profile geometries that have been analyzed
in the context of fretting are the parabolic (or spherical) (see, e.g., [8–10]) and the rounded
flat punch profiles ([11,12])—which is due to the fact the these are the most common in
engineering contacts that suffer from small oscillations.

Nonetheless, contact profile geometry as an influencing factor and, possibly, control
variable in fretting has rarely been considered explicitly in the literature. Kim & Lee [13]
theoretically studied the influence of the geometrical parameters in a plane rounded flat
punch contact on the elastic edge crack propagation for the analysis of fretting fatigue
failure. Bartha et al. [14] considered the influence of profile geometry on fatigue crack
nucleation and propagation in an elastic fretting contact, validating their theoretical model
with experimental results. Gallego et al. [15] systematically analyzed the wear-contact
problem in fretting and evaluated the possibility of finding a corresponding optimal contact
geometry. Warmuth et al. [16] experimentally studied the influence of the parabolic radius
on the wear behavior in a steel-cylinder-on-steel-flat fretting contact. Zhang et al. [17]
numerically compared the parabolic and rounded flat punch geometries in terms of the
corresponding fretting behavior. Finally, Argatov & Chai [18] searched for the wear-optimal
version of a symmetrical punch with compound curvature, which creates an almost constant
contact pressure distribution in plane elastic contact.

Note that a related but slightly different question regards the influence of wear-induced
profile changes on especially fretting fatigue. This problem, as an aspect of the complex
interplay between fretting wear and fretting fatigue, has received a lot of attention in recent
years (see, e.g., [19–21]).

Theoretically speaking, the most important distinction with respect to the macroscopic
contact profile geometry, i.e., not considering roughness scales, is the one between (macro-
scopically) smooth profiles (e.g., paraboloids) and profiles with sharp edges (e.g., the flat
punch). As smooth profiles exhibit significant partial slip (propagating from the contact
boundary) but no stress singularities, they should be prone to wear rather than to fatigue,
while sharp edges can inhibit slip at the cost of introducing stress singularities, which
should make such profiles prone to fatigue rather than to wear.

To retrace the transition from smooth to sharp profile geometries—and, thus, to
possibly overcome the wear-fatigue dilemma in fretting—very recently [22], the truncated
parabolic geometry (which is also very easily realized experimentally) has been suggested
as an interesting object of study in the context of fretting contacts. Changing the radius (or
half-width) of the flat face of a truncated spherical (or cylindrical) profile geometry, one
might be able to tune the transition from smooth to sharp contact gaps to combine “the
best of both worlds”.

Based on the fundamental scientific principle of separating different aspects or parts
of a system or complex phenomenon, with the purpose of studying them individually, the
“academic” analysis of fretting is usually concerned with laboratory contacts, which are
not part of a larger macrosystem anymore (or the influence of the macrosystem is kept
negligible). Accordingly, apparatuses for the experimental analysis of fretting contacts
are usually constructed to be much stiffer than the contact itself, although it is known
that system inertia and compliance can significantly influence tribological properties, e.g.,
wear rates [23]. While this approach is, of course, and undoubtedly, necessary for the
understanding of the complex processes and mechanisms active in fretting contacts, it also
discards the properties of the macrosystem as a possible control variable of the damage
resulting from the tribological interaction. In contrast, for the analysis documented in
the present manuscript, the experimental apparatus was built as a compliant setup, with
the characteristic macroscopic values of stiffness being comparable to or smaller than the
contact stiffness of the fretting contact that is to be studied during the analysis.

The aim of the analysis is, therefore, to study the influence of the profile geometry
in fretting for a generic steel-on-steel oscillating laboratory contact, accounting for the
mechanical properties (stiffness) of the macrosystem. Before studying local phenomena,
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like wear or fatigue, the fretting regime shall be characterized based on the hysteretic (i.e.,
macroscopic) behavior, which is due to the frictional energy dissipation. A macroscopic
model shall be built and validated, which can later be used as a component of a multiscale
model for the analysis of the local phenomena.

The remainder of this manuscript is organized as follows: In Section 2, the experi-
mental setup for the analysis is described in detail. Section 3 gives a hybrid macroscopic-
contact-model that was used to predict the time development of the macroscopic contact
quantities (forces and global relative surface displacements), which are measured in the ex-
periments. In Section 4, the theoretical predictions are compared to experimental results to
substantiate the model. After that, the model is used to analyze the influence of the profile
geometry on the frictional energy dissipation, especially considering the high compliance
of the experimental apparatus (which can have a significant qualitative impact, as will be
demonstrated) in Section 5. A discussion of the methodology used and some conclusive
remarks finish the manuscript.

2. Experimental Setup

A photograph of the experimental setup is shown in Figure 1. For a clearer under-
standing, a reduced scheme of the setup is given in Figure 2.
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A flat steel block (stainless steel X5CrNi18-10) rests on a three-point bedding of silicon
nitride half-spheres, arranged as a regular triangle with the center of gravity below the
center of gravity of the block. The point of first contact with the steel indenter (also stainless
steel X5CrNi18-10, to ensure elastic similarity with the flat) lies above the center of gravity of
the block. The normal axis of the apparatus consists of a 3D force sensor (Kistler 9317C, with
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charge amplifier Kistler 5167A) and a linear stage (PI M-403.2DG, with controller PI C-863
Mercury). The force sensor is oriented in such a way that the sensor’s normal axis—along
which the sensor sensitivity is worse than along the sensor’s tangential axes—coincides
with the lateral axis of the contact so that the most relevant contact forces (in the contact’s
normal and tangential directions) are measured with the highest possible sensitivity. This
setup also leads to a relatively high tangential compliance of this axis of the apparatus.

In the tangential direction (from left to right in Figures 1 and 2), the steel block is
connected to a custom linear piezo actuator via a bridge of two thin brass plates—that
is supposed to act as a parallel motion. The tangential displacements of the block and
the indenter foundation are measured by two laser vibrometers (OFV-505 and OFV-503,
with controllers OFV-5000). The data from the charge amplifier and the laser vibrometers
are collected as analog input from a measuring board (NI USB-6353). The whole setup is
controlled with LabVIEW scripts.

Before every experiment, the contact between the indenter and the flat steel block,
as well as the contacts between the block and the silicon nitride half-spheres, are cleaned
(the same bodies are used again for all experiments, as only a few dozen oscillations are
performed in each experiment). Moreover, the contacts between the silicon nitride half-
spheres and the flat block are lubricated with a drop of standard lubrication oil to reduce
the corresponding coefficient of friction. Note that the research interest solely lies in the
(dry) steel-on-steel contact between the indenter and the flat block.

For the experiments, two types of indenter profiles are used. First, the experiments
are performed with full spheres. After that, the indenter profile is truncated, and a flat
planform is introduced mechanically, in parallel to the contact plane.

The rms roughness of the original spherical steel indenter is approximately 1 µm, and
the rms roughness of the flat steel block is approximately 3 µm. The rms roughness of the
flat face of the truncated spherical indenter after the common turning process to generate
the flat face is approximately 2 µm, so it is decided that no surface finish of the flat face
is necessary. The tilting angle of the flat face with respect to the contact plane is less than
π/3600. The width (in theradial direction) of the transition region from the flat part to the
spherical part of the truncated indenter is less than the rms roughness of the surfaces.

3. Hybrid Macroscopic-Contact Model

As the energy dissipation in the fretting contact (as well as the fretting regime) can
be determined from the hysteresis loops between contact forces and global displacements
(i.e., macroscopic quantities), a hybrid macroscopic model was constructed that considers
the equilibrium of the flat block and the indenter, and which is shown in Figure 3. As the
frequency of the piezo actuator oscillation (f = 20 Hz) is much smaller than the smallest
eigenfrequencies of the block or the normal axis, inertial forces are neglected. In other
words, the motion of the apparatus is considered in the quasi-static limit. Moreover, elastic
deformations of the block as a whole are neglected. The brass plates are modeled as bent
beams within the framework of the Euler–Bernoulli theory. All deformations are assumed
to be small and within the elastic range.

The hybrid character of the model stems from the fact that all contact interactions
(between the indenter and the block, as well as between the block and the silicon nitride
bedding) are modeled within subroutines based on the method of dimensionality reduction
(MDR) [24]. The MDR description of elastic tangential contact with friction operates within
the framework of the Hertz–Mindlin-approximation ([25,26]), specifically:

• The characteristic length of the contact area is small compared to all linear dimen-
sions of the contacting bodies; the gradients of the deformed surfaces in the vicinity
of the contact are small (together, these two assumptions constitute the so-called
“half-space-approximation”).

• The frictional interaction can be described by a local-global Amontons–Coulomb
friction with a constant coefficient of friction.
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• All deformations are elastic. Elastic coupling between the normal and tangential
contact problem and local lateral displacements are neglected.

• Effects of roughness or adhesion are neglected.
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Within the MDR framework, the axisymmetric contact of elastic continua is exactly
mapped onto the contact between a rigid plane profile with an elastic foundation of
independent linear springs [27]. It has been proven that the MDR formalism, within the
restrictions of the Hertz–Mindlin approximation, will provide the correct contact solution
for arbitrary 2D oblique loading [28].

Within the model, the measured normal force (in the contact between the indenter and
the flat) and the tangential displacement of the flat block (which is enforced by the piezo
actuator) are taken as external excitations. For the determination of the fretting hysteresis
loops, this leaves three degrees of freedom (the normal displacement w3 of the block, the
rotation ϕ of the block, and the tangential displacement u1 of the indenter) to be calculated
from the vertical and angular equilibrium of the block, and the tangential equilibrium of the
indenter. In that regard, Euler–Bernoulli theory will provide force laws for the vertical force
and bending moment in the brass plates, and the MDR formalism provides (incremental)
force laws for the contact interaction.

Hence, the macroscopic equation system is closed. Note that the real tangential
indenter displacement in the contact is assumed to be u2 = u1(h1 + h2)/h1 from the
intercept theorem.

4. Comparison between Experimental and Numerical Results

As was stated above, the measured normal force in the contact between the indenter
and flat, as well as the experimentally determined tangential displacement of the block,
are taken as external loads/excitations for the model. That leaves the frictional force in the
indenter–flat contact, as well as the tangential indenter displacement u1, as variables that
allow for a comparison between the model prediction and the experimental results.

The following parameters, shown in Table 1, are known a priori and were used for
the model (the tangential stiffness kx of the normal axis of the apparatus was determined
before the experiments):

As b (i.e., the radius of the flat face of the truncated spherical indenter) is much larger
than the characteristic contact radius for the full spherical (i.e., parabolic) profile under the
considered nominal normal loads (below 1 N), the model results for the truncated sphere
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can, actually, not be distinguished from the respective results, if a flat punch with the radius
b is used as the indenting body.

Table 1. List of a priori known parameters for the numerical simulation of the existing experimental
apparatus (for notations, see Figure 3 and the text below).

l = 34 mm E1 = 200 GPa B = 42 mm h1 = 50 mm m1 = 335 g ν1 = 0.29

l1 = 8 mm E2 = 300 GPa b = 0.6 mm h2 = 20 mm m2 = 47 g ν2 = 0.29

l2 = 13 mm E = 100 GPa R = 6 mm h = 19 mm kx = 1.9 N/µm t = 0.2 mm

In Figure 4, a comparison between experimental results and model predictions for the
fretting loops of frictional force over normal force (left) and frictional force over relative
tangential displacement (right) are shown for a spherical indenter, with a nominal normal
force of FN,0 = 0.35 and a piezo oscillation amplitude of uA = 90 nm. The red line is the
model prediction for a stationary fretting cycle with µ1 = 0.24 and µ2 = 0.06, and the black
lines are the experimental results for seven fretting cycles in the initial stationary state
(after 60 oscillation cycles to exclude the initial acceleration state, but before running-
in). The choice of µ1 was based on the ratio of tangential force oscillation amplitude and
nominal normal force (which varies about 0.01–0.02 between the three different experiments
performed for the same parameter combination); µ2 was chosen arbitrarily but had only a
very weak influence on the theoretical prediction for the hysteresis loop. Three experiments
have been performed for each parameter combination. However, as the apparent coefficient
of friction varies slightly between the experiments (even if they are done consecutively and
with the same parameter combinations), the experimental hysteresis curves of only one
experiment are shown to avoid confusion. The agreement between the model prediction
and the experimental fretting loops is very good. The fretting contact is in the partial slip
regime, with a narrow, slightly irregular hysteretic behavior.
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Figure 4. Comparison between experimental results and model predictions for the fretting loops
of frictional force over normal force (left) and frictional force over relative tangential displacement
(right) for a spherical indenter, with a nominal normal force of FN,0 = 0.35 and an oscillation amplitude
of uA = 90 nm. Red: model prediction for stationary fretting cycle with µ1 = 0.24 and µ2 = 0.06. Black:
Experimental results for seven fretting cycles in the initial stationary state.

Figure 5 gives the comparison between experimental results and model predictions
for the fretting loops for a spherical indenter, with a nominal normal force of FN,0 = 0.61
and a piezo oscillation amplitude of uA = 220 nm. The model prediction uses µ1 = 0.26 and
µ2 = 0.1. The agreement between theory and experiment is still very good, although slightly
worse than in Figure 4. Note that the slight offset in the hysteresis curve (right) is not
due to an offset of the displacement measurement (which, of course, is arbitrary) but
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due to a misprediction of the phase difference between Fx and u1 (which is zero in the
model—because the corresponding force law is simply the one of a linear spring—and
nonzero in the experiments). However, the offset, naturally, has no influence on the
prediction quality for the energy dissipation or the fretting regime.
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In Figure 6, a comparison is shown between experimental results and model predic-
tions for the fretting loops of frictional force over normal force (left) and frictional force over
relative tangential displacement (right) for a truncated spherical indenter, with a nominal
normal force of FN,0 = 0.31 and a piezo oscillation amplitude of uA = 90 nm. The model
prediction uses µ1 = 0.2 and µ2 = 0.1. The agreement between theory and experiment is
good; the fretting contact is in the gross slip regime, which is expected, as the contact
stiffness is much higher, and the indentation depth d, therefore, much lower. Hence, the
tangential displacement necessary to cause gross slip—which is of the order of µd—is also
much lower.
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Figure 6. Comparison between experimental results and model predictions for the fretting loops
of frictional force over normal force (left) and frictional force over relative tangential displacement
(right) for a truncated spherical indenter, with a nominal normal force of FN,0 = 0.31 and a piezo
oscillation amplitude of uA = 90 nm. Red: model prediction for stationary fretting cycle with µ1 = 0.2
and µ2 = 0.1. Black: Experimental results for seven fretting cycles in the initial stationary state.
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Figure 7 gives a comparison between experimental results and model predictions for
the same fretting loops for a truncated spherical indenter, with a nominal normal force of
FN,0 = 0.61 and a piezo oscillation amplitude of uA = 220 nm. The model prediction uses
the values µ1 = 0.16 (which is quite low) and µ2 = 0.1. The agreement is still good, and the
contact is in the sliding regime. It can be noted that the behavior of the friction force at
the “corners” of the hysteresis loop, i.e., at the beginning of the sliding phases, is much
smoother in the experiments than predicted by the Amontons law.
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Figure 7. Comparison between experimental results and model predictions for the fretting loops
of frictional force over normal force (left) and frictional force over relative tangential displacement
(right) for a truncated spherical indenter, with a nominal normal force of FN,0 = 0.61 and a piezo
oscillation amplitude of uA = 220 nm. Red: model prediction for stationary fretting cycle with
µ1 = 0.16 and µ2 = 0.1. Black: Experimental results for seven fretting cycles in the initial stationary state.

5. Analysis of Profile Influence Based on the Numerical Model

Let us analyze the system and the important influencing variables a little deeper, based
on the macroscopic numerical model, which has been substantiated above.

The external excitations shall be harmonic, i.e., for the piezo-enforced tangential
oscillation of the block,

u3(t) = uA sin(2π f t), (1)

and for the normal force,

FN(t) = F0 + ∆F sin(2π f t + α). (2)

Note that, in the experiments, the normal force oscillation is not externally controlled
but exhibited by the apparatus due to the piezo actuator oscillation. However, ∆F and the
phase angle α only have a weak influence on the frictional energy dissipation anyway.

To avoid showing the full fretting loops, let us introduce two quantities to characterize
the frictional dissipation in the fretting contact between the steel indenter and the steel flat:
the energy dissipation per cycle,

∆W =

∣∣∣∣∮ Fxd(∆u)
∣∣∣∣, (3)

with the frictional force FR and the macroscopic relative surface displacement ∆u, as well
as a slip index [29]

δ =
∆W

4µ1uAF0
. (4)
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A small slip index corresponds to the partial slip regime, while a slip index of approxi-
mately 1 corresponds to the gross sliding regime. Note that definition (4) slightly differs
from the slip index proposed in the original paper by Varenberg et al. [29], as the dissipated
energy is used directly, instead of slopes of the hysteresis curve, to account for the bimodal
character of the fretting oscillation.

Out of the several dimensional variables, which will influence the frictional dissipation,
F0 defines the characteristic scales of the contact problem (indentation depth, contact radius,
and, hence, contact stiffness) and shall therefore be kept constant. The normal force
oscillation amplitude and phase angle, as well as the coefficient of friction between the
steel flat and the silicon nitride bedding (if it is small enough), only have little influence
on the dissipation in the fretting contact between the indenter and the flat. That leaves the
actuator amplitude, uA, the coefficient of friction between the indenter and the flat, µ1, the
linear tangential stiffness of the normal axis of the apparatus, kx, and the indenter profile
as the main influencing properties. In that regard, the influence of uA is trivial (except for
a very interesting stiffness effect, which will be discussed below): increasing the actuator
amplitude will increase the energy dissipation and the slip index. Similarly, the influence
of the friction coefficient µ1 is relatively simple, except for the aforementioned stiffness
effect: increasing µ1 will generally reduce the slip index and (non-trivially) increase the
energy dissipation. However, as for dry contacts of a given material pairing, the coefficient
of friction can only be somewhat controlled within a very small margin; we shall not bother
ourselves with the intricacies of these dependencies.

As was mentioned, there is an interesting stiffness effect, which, in fact, includes all
important influencing factors, and which is due to the compliance of the experimental
apparatus (or, generally speaking, the macrosystem). One can imagine the normal axis of
the apparatus being very soft, i.e., kx being very small—but small compared to what? If

kxuA � µ1F0, (5)

the axis is able to elastically follow the tangential excitation of the block without significant
phases of sliding in the contact, and, therefore, the fretting contact will always be in the
partial slip regime. In fact, the resulting slip index might suggest the existence of a “sticking
regime” (without any frictional hysteresis), which, however, is only due to the apparatus
compliance, as was pointed out before [30].

In other words, there is a critical apparatus stiffness of the order

kc ≈
µ1F0

uA
, (6)

below which the indenter profile (via changing the contact stiffness) or other influencing
variables cannot “pull” the fretting contact out of the partial slip (or “sticking”) regime.

Let us illustrate these considerations with some small numerical parameter studies.
Only kx and the indenter profile geometry were varied for the study; all other parameters
and known quantities can be taken from Tables 1 and 2.

Table 2. List of chosen values for the fixed variables in the numerical parameter studies.

F0 = 0.5 N ∆F = 0.1 N µ1 = 0.2 µ2 = 0.1 uA = 150 nm

As F0, µ1, and uA are kept constant, the dissipated energy ∆W and the slip index δ
incorporate the same information because the latter, in this case, is just a non-dimensional
measure of the frictional hysteretic loss. Therefore, only the results of the macroscopic
model for the slip index will be given.

In Figure 8, the numerical results for the slip index δ as a function of the radius
b of the flat face of the truncated spherical indenter (in logarithmic scaling) are shown
for different values of the tangential apparatus stiffness. The thin lines of the respective
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colors correspond to the numerical solution if a flat punch with radius b is used as the
indenting body. It can be seen that already for values b > 30 µm (log10(30) ≈ 1.5) (which is
approximately equal to the characteristic contact radius in the parabolic contact, under a
normal load F0), the solution for the hysteretic behavior cannot be distinguished from the
respective solution for a flat punch indenter with radius b of the flat face.
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numerical model. The thin lines of the respective colors correspond to the numerical solution if a flat
punch with radius b is used as the indenting body.

Moreover, for b < 10 µm, the solution has already converged to the fully spherical (or
parabolic) case, b = 0. In other words, the “window” for the geometrical transition in the
hysteretic behavior from the smooth parabolic profile to a sharp flat-punch indenter is very
small, independently of the apparatus stiffness. Changes in the hysteretic behavior for
b > 30 µm are only due to the change in the contact stiffness of the flat-punch contact (which
is proportional to its radius).

Also, it is apparent that—while the curves in Figure 8 for kx = 2 N/µm, 10 N/µm and
20 N/µm are all qualitatively very similar—the curve for kx = 1 N/µm is very different,
and the slip index is close to (or even equal to) zero. This sharp transition is shown again
in Figure 9, giving the slip index as a function of the tangential apparatus stiffness, for
different values of the radius of the flat face of the truncated spherical indenter, according to
the numerical model. For kx > 2 N/µm, all three curves are in the mixed or sliding regime
of the fretting contact, while between 1 N/µm and 2 N/µm, there is a steep transition to
the “sticking” regime, where the dependence of the slip index on the apparatus stiffness
somewhat resembles the behavior of the order parameter in a second-order phase transition.
Notably, that resemblance is especially good in the case of the curves for b = 50 µm and
b = 100 µm—for which the contact macroscopically already behaves like a flat-punch
contact, as was discussed above—while the transition behavior for b = 10 µm (which
basically corresponds to the spherical limit) is slightly smoother.
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6. Discussion and Conclusions

Being able to predict the macroscopic contact behavior in terms of forces, global
relative displacements, and, as a result, energies is, of course, only the first step in the
analysis of the fretting contact. The study of damage mechanisms inevitably requires
knowledge of the behavior on (several) smaller scales and over much more oscillation
cycles—in the present study, only the initial stationary states, before running-in, i.e., only
several hundred cycles, were considered. It is, therefore, self-evident that the present study
can only be the first step in a larger project, with the final aim of retracing the competition
between wear and fatigue in steel-on-steel fretting contacts through the “lenses” of the
contact profile geometry.

It is interesting that, while “fretting” is the result of many integrated, complex, tri-
bological processes, a simple mechanical model with extremely few degrees of freedom,
apparently, can successfully describe the contact’s macro-behavior. This, at first glance,
might be especially surprising, considering that the contact interaction is captured within
the framework of a very basic contact mechanical description—the Hertz–Mindlin formal-
ism. It must be noted, however, that the experimental setup was designed to comply with
most of the restrictions of that formalism. For example, the normal load was kept very
small to ensure the absence of relevant plastic deformations, equal materials were chosen
for the contact pairing, and the contacts were cleaned before each experiment to avoid the
influence of the tiniest amounts of wear debris in the contact.

On the other hand, the simplicity of the model also constitutes its strength, as all
parameters of the model can be determined a priori, except for the global coefficients
of friction (which are extremely difficult to predict precisely, anyway, for the type of
contact considered here). In this regard, the model represents the “absolute minimum”
of complexity—in the spirit of the principle to explain things “as simple as possible, but
not any simpler”—which, in future work, can be extended step-by-step to improve its
predictive power.

The next phase of research will be concerned with the influence of the profile geometry
on the running-in process and the long-term wear behavior, studying the surface topog-
raphy evolution and modeling the contact interaction on a smaller scale, based on the
boundary element method—which has already been used to model adhesive wear within
the framework of an asperity-free Rabinowicz criterion [31].

The main findings of the analysis documented in the present manuscript can be
summarized as follows:
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• The hybrid macroscopic–contact model is well able to predict the time behavior of
the macroscopic contact quantities (forces and displacements) and, accordingly, the
frictional hysteretic losses observed in the experiment.

• In the experiments and the simulation, the change of the indenter profile from spherical
to truncated spherical “pushes” the fretting contact towards the sliding regime if the
nominal normal force and tangential displacement oscillation amplitude are kept
constant; this is mainly due to the higher contact stiffness (and, accordingly, smaller
indentation depth) for the truncated profile.

• The transition of the hysteretic behavior, depending on the profile geometry from the
perfectly spherical to the sharp flat-punch profile, occurs for the truncated spherical
indenter within a small margin of the radius of its flat face. Already for a flat face
radius which is roughly equal to the contact radius for the spherical case, the macro-
scopic hysteretic behavior cannot be distinguished from a flat punch contact with the
same radius.

• The compliance of the apparatus (i.e., the macrosystem) can have a large influence
on the energy dissipation and the fretting regime. Below a critical value for the
stiffness, which is of the order of µF0/uA, the fretting contact exhibits a sharp transition
to the “sticking” regime (with almost no dissipation). However, if the apparatus
stiffness is large enough, the hysteretic behavior can be controlled by changing the
profile geometry.
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