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Abstract: Comb-plate expansion joints are widely used in bridge construction, and their failures are
mainly static strength and fatigue. This paper used a new type of comb-plate expansion joint as
the research object. Firstly, the finite element models (FEM) of the comb-plate expansion joint with
minimum and maximum openings were established by Ansys software. Then, the equivalent stress,
vertical deformation, and shear stress of the expansion joint under these two working conditions
were checked with code. The results showed that the static strength of the expansion joints met
the code requirements under both working conditions. Secondly, to investigate the service span of
the comb-plate expansion joint, the fatigue life of the expansion joint was predicted using nCode
DesignLife software, and the results showed that the minimum fatigue life of the expansion joint was
2.012 × 106 times, which is higher than the 2 × 106 times specified in the code. Finally, a fatigue test
of 2 million times was carried out on the full-size expansion joint. Failure modes such as deformation,
fracture, or breakage hardly appeared after the fatigue test, demonstrating the reliability of this new
type of comb-plate expansion joint.

Keywords: comb plate expansion joint; finite element model (FEM); full-scale specimens; bench
fatigue test

1. Introduction

Statistics released by the Chinese Ministry of Transport state that with increased
national infrastructure investment and attention. The mileage of highways in China will
have exceeded 5 million kilometers by 2023. And the development of the expansion joint
has contributed to the construction of bridges and highways. Expansion joints are mainly
made of rubber, steel, and other components indispensable in bridge structures. The
destination of the expansion joint is to accommodate the relative movement between the
bridge deck and abutments to ensure the serviceability of bridges [1]. Nowadays, more and
more companies have developed their mature product. Namely, MAURER in German, D.S.
BROWN and Watson Bowman in the United States, Mageba in Switzerland, and BRITFLEX
in the United Kingdom.

Due to the increase incessantly in the vehicle’s speed and load, expansion joints
are the vulnerable parts of the bridge, and the probability of damage is very high. The
maintenance costs related to expansion joints can reach 20% of the total bridge maintenance
costs [2]. Common diseases of the comb plate expansion joint can be classified into several
categories: ulnar-plate fall-off caused by anchor bolt damage, concrete damage under
the tooth plate, loosening and failure of the bolts, etc. And these damages are not easily
detectable during the serving of the bridge. Alternatively, the traffic may be interrupted
during the replacement or maintenance of expansion joints, thus affecting the normal
operation of bridges. Therefore, paying attention to the fatigue life of comb plate expansion
joints is of great practical significance. Surveys have indicated that the service life of
expansion joints is frequently much lower than expected. For instance, the Akashi-Kaikyo
Bridge, the world’s longest suspension bridge span of 1991 m, experienced fatigue cracks
in the connection pin of the expansion joints only three years after the bridge was opened
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to traffic [3]. The suspension Runyang Bridge with a main span of 1490 m suffered the need
for the expansion joints to be repaired after a three-year service [4]. The suspension Jiangyin
Bridge with a main span of 1385 m, suffered excessive wear and transversal shear failure of
bearings in expansion joints after only four years since operation [5]. The expansion joints
in the Martinus Nijhoff Bridge have been repaired several times in recent years [6].

At the beginning of this century, Guo, and Liu [5] clarified the failure mechanism of
the expansion joints in a suspension bridge through field tests and numerical studies. They
put forward suggestions to improve expansion joint performance finally. Chang and Lee [1]
recommended extending the service life method by comparing the fatigue performance of
various expansion joints. Marques Lima and de Brito [7] conducted an inspection survey
of expansion joints in road bridges and suggested several defect types and maintenance
methods for bridge expansion. The above research mainly focused on the cause and control
of the failure of expansion joints during long-term service. The specific life value of the
expansion joint has hardly been investigated.

Crocetti and Edlund [8] studied the impact load and fatigue life of some modular
expansion joints (MBEJ) in the United States through tests and finite element modeling.
Wang [9] conducted a fatigue test for the modular beam expansion joint by an MTS fatigue
test machine and found that an increase in the number of fatigue cycles led to a rise in the
residual strain at the key position and the growth rate of the cumulative residual strain
increased significantly with the increase of the load amplitude. Additionally, Artmont and
Roy [10] performed an infinite fatigue life assessment of modular beam expansion joints
by a full-scale test. Using time-history dynamic analysis, Stamatopoulos [11] developed
a fatigue life prediction model for single-supported composite bridge expansion joints
connected by bolts. Zhang [12] used a finite element model to simulate the stress of a
Maurer bridge expansion joint and estimated the fatigue life. Chaallal [13] conducted a
fatigue test for the modular beam expansion joint of the Jacques Cartier bridge. Three types
of cracks were observed in the test, and an evaluation method for the fatigue mechanism
of expansion was proposed. Guizani [14] performed the experimental and analytical
investigation on the fatigue performance of a single-support bar modular bridge expansion
joint with welded stirrups and established the experimental fatigue S-N curve for the main
critical details. Ma [15] performed fatigue and static loading tests for modular bridge
expansion joints. A theoretical fatigue performance assessment method on MBEJs was
introduced, based on the nominal stress method and a linear Miner damage accumulation
rule. While the number of specimens should be tested to demonstrate the S-N curves and
the fatigue stress expression of the expansion joint. A modular joint was fatigue tested
under the infinite life regime according to American Association of State Highway and
Transportation Officials (AASHTO) specifications by Mahmoud [16]. As mentioned in
literature [17], bridge expansion joint contains many interacting components, and each
modular has unique (often patented) features developed by the producer. These complicate
the load distribution and evaluation process, i.e., each new structure needs to be considered
individually. This results in very few studies on the fatigue life of expansion joints, mainly
through full-scale fatigue tests. To study the fatigue mechanism of expansion joints via
fatigue simulation and full-scale fatigue test, the design duration can be significantly
reduced, and the reliability of expansion joints can be improved affirmatively.

In this paper, the object of this research is a new comb plate expansion joint of the
bridge, which has the distinct merit of being boltless, as the loosening or failure of bolts
could result in a considerable negative influence on the service of the bridge. To investigate
the mechanical properties of this new comb-plate expansion joint. This paper is organized
as follows. First, the equivalent stress, deformation, and shear stress of the expansion joint
at the maximum opening amount and the minimum opening amount were evaluated using
Ansys software. Secondly, nCode DesignLife software concerning fatigue life prediction
was adopted to predict the fatigue life of the expansion joint. As a result, the minimum
life in the structure was recognized as the fatigue life of the entire device. Thirdly, the
comb plate expansion joint bench fatigue test was performed following industry code
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JT/T327-2016 [18] in domestic. The full-scale fatigue test results show that the expansion
joint was intact after 2 million cycles. It is noted that the test results also nearly agreed with
the simulation results obtained by nCode DesignLife 2020 R2 software.

2. Finite Element Analysis of the Expansion Joint

The new comb plate expansion joint comprises a movable comb plate, fixed comb
plate, anchor system, support system, steel groove, and rubber bearing, as depicted in
Figure 1. The total length and width are 1000 mm × 500 mm approximately. The boltless is
the most advantage of this new type of expansion joint. The anchor system and the comb
plates are connected by welding. Similarly, the supported system and fixed comb plate are
connected by welding. The anchor system is situated in the concrete of the bridge.
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2.1. Analysis of the Working Condition of the Expansion Joint

According to the code [18], the axle load of the vehicle is taken to be 200 kN. Taking
the impact coefficient into account, the vertical action of a tyre on the expansion joint, the
wheel load is 100 kN. A wheel landing area of 200 × 600 mm2 was demonstrated in code
JTG D60-2015 [19].

When the expansion joint experienced the minimum opening amount of 10 mm, and
the overlapping length of the comb plate was 250 mm, the contact surface of the tyre and
the comb plate is illustrated in Figure 2a. A1 represents the contact area between the wheel
and the cast concrete of the bridge. A2 is the contact area between the wheel and the
movable comb plate. A3 denotes the non-contact area. A4 signifies the contact area between
the wheel and the fixed comb plate. The minimum opening amount of the expansion
joint is defined as a working condition I in this work. The wheel load was distributed
to the comb plate expansion joint based on these mentioned contact areas. The vertical
load P1

v and horizontal load P1
h acting on the comb plate expansion joint was calculated by

Equations (1) and (2).

P1
v = 100 kN × (A2 + A4)/(A1 + A2 + A4) = 56.75 kN (1)

P1
h = Pv × sin 16.7◦ = 16.31 kN (2)
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Figure 2. The contact area under the two working conditions: (a)The working condition I, (b) The
working condition II.

When the expansion joint experienced the maximum opening amount, and the over-
lapping length of the comb plate was 10 mm, the contact surface of the tyre and the comb
plate is described in Figure 2b. The maximum opening amount of the expansion joint
is defined as working condition II in this work. The wheel load was distributed to the
comb plate expansion joint based on the contact area in working condition II. The vertical
load P2

v and horizontal load P2
h acting on the comb plate expansion joint was calculated by

Equations (3) and (4).

P2
v = 100 kN × (A2 + A4)/(A1 + A2 + A4) = 43.3 kN (3)

P2
h = Pv × sin 16.7◦ = 12.44 kN (4)

2.2. FEM of the Comb Plate Expansion Joint under Working Conditions I and II

The materials of the anchor system, support system, comb plates, and steel groove are
all Q355 steel, and the material of the rubber bearing is neoprene. The minimum values of
mechanical properties are listed in Table 1.

Table 1. Material characteristics of the expansion device.

Material Grade
Young’s

Modulus
(MPa)

Density
(kg/m3)

Poisson
Ratio

Yield Stress
(MPa)

Permissible
Stress (MPa)

Permissible Shear
Stress (MPa)

Steel Q355 2.06 × 105 7850 0.3 355 236 204.97
Rubber Neoprene 4 × 103 1300 0.47 / / /

The anchor system and support system were simulated by shell element 281. Shell
element 281 is suitable for analyzing thin to moderately thick shell structures. The movable
comb plate, fixed comb plate, steel groove, and rubber bearing were simulated via solid
element 186. Solid element 186 is a quadratic three-node beam element in 3-D. In other
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words, both elements are well-suited for linear applications. Since there is no concrete
structural part in the model, only the part of the tyre interacting with the expansion
joint, with an area of 245 × 200 mm2, is considered in the finite element analysis and
testing accordingly.

In terms of working conditions, I, as seen in Figure 3, to simulate the contact effect of the
tyre on the expansion device, a solid element with a dimension of 245 mm × 200 mm × 20 mm
was established in the middle of the movable plate. A vertical load of 56.75 kN and a
horizontal load of 16.31 kN were applied to this solid element. In particular, the horizontal
and vertical loads were divided equally among nine key points for better simulating the
contact between the tyre and the expansion joint. Besides, all displacement of the anchor
system was constrained. As a result, the frictional contact pair was built on the contact
surface between the comb plate and solid element shown in Figure 3b, and the friction
coefficient µ is 0.3. In terms of working condition II, as mentioned in Equations (3) and (4), a
vertical load of 43.3 kN and a horizontal load of 12.44 kN were applied to the solid element
differently, as shown in Figure 4a. The frictional contact pair under working condition II
was built on the contact surface between the comb plate and solid element, as shown in
Figure 4b. In this way, the finite element model (FEM) of the comb plate expansion joint
under working condition II was established, shown in Figure 4.
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The size of the elements of the FEM of the comb plate expansion joint is 5 mm. The
total number of elements and nodes was 452,464 and 727,419. The finite element mesh for
the two working conditions is shown in Figure 5.
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2.2.1. Stress Evaluation under Working Condition I and II by FEM

As we can see from Figure 6, the maximum equivalent stress of the expansion device
is 259.42 MPa under the working condition I. Moreover, the danger point is located at the
connection between the movable plate and the middle anchor. For working condition II, as
shown in Figure 7, the maximum equivalent stress of the expansion device is 284.64 MPa.
The danger point is located at the connection between the fixed plate and the middle
anchor. Therefore, the maximum equivalent stress of the expansion device under two work
conditions is less than the permissible stress of 236 MPa for Q335 steel. The equivalent
stress of structures is detailed in Table 2.
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Table 2. Results of the equivalent stress of the structure.

Working
Condition Comb Plate Rubber

Bearing Steel Groove Anchor System Support
System

Maximum
Stress
(MPa)

I 259.42 30.50 47.97 93.47 9.28

II 284.64 20.69 100.45 113.28 42.48

2.2.2. Deformation Evaluation under Working Conditions I and II by FEM

As illustrated by Figure 8, the maximum total deformation located on the middle
finger of the moveable comb plate is 0.121 mm under working condition I. Furthermore, at
the same position shown in Figure 9, the vertical deformation is 0.121 mm. Therefore, the
detailed vertical deformation value of the expansion joint is summarized in Table 3.
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Table 3. Results of deformation of the structure under the working condition I.

Components Comb Plate Rubber Bearing Steel Groove Anchor System Support System

Vertical deformation (mm) 0.121 0.036 0.034 0.007 0.034

As illustrated by Figure 10, the maximum total deformation located on the middle
finger of the moveable comb plate is 0.304 mm under working condition II. Besides, at the
same position as shown in Figure 11, the vertical deformation is 0.304 mm. Therefore, the
detailed vertical deformation value of the expansion joint is summarized in Table 4.
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As we can see from Tables 3 and 4, the vertical deformation of the expansion joint
under the working condition I and II are less than the allowable vertical deformation value
of 1.0 mm stated in the code.

2.2.3. Shear Stress Evaluation under the Working Conditions I and II by FEM

Under working conditions, I, the maximum shear stress value of the comb plate
expansion joint was 87.74 MPa, located at the connection between the fixed comb plate and
the middle anchor, as shown in Figure 12. For working condition II, the maximum shear
stress value of the comb plate expansion joint was 163.38 MPa, located at the connection
between the fixed comb plate and the middle anchor, as represented in Figure 13. The
maximum shear stress value under two working conditions is less than the permissible
shear stress value of 204.97 MPa. Furthermore, the detailed shear stress value of the
expansion joint is summarized in Table 5.
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Table 5. Results of shear stress of the structure under two working conditions.

Working
Condition

Comb
Plate

Rubber
Bearing

Steel
Groove

Anchor
System

Support
System

Maximum
Stress
(MPa)

I 87.74 7.69 9.28 42.88 1.61

II 163.38 7.00 48.88 31.17 14.84

On top of that, the vertical deformation, equivalent stress, and shear stress of the new
comb plate expansion joint under these two working conditions fulfilled the design require-
ments. Meanwhile, the maximum stress points and stress values under the two working
conditions were found, and these results laid the foundation for fatigue life analysis.

2.3. Fatigue Life Prediction of the Comb Plate Expansion Joint via nCode DesignLife

nCode DesignLife is a fatigue analysis software with many functions [20–24]. Gen-
erally, software modules related to fatigue life, like nCode DesignLife, include geometric
models, material parameters, load spectrum or load history, set-up of fatigue solution, and
result display. To accurately predict the fatigue life of the comb plate expansion joint, the
nCode DesignLife 2020 R2 analysis software [21,22] was adopted to predict the fatigue life
of the comb plate expansion joint. It can provide a reference for strengthening the weak
parts and guiding fatigue tests. The analysis flow chart is depicted in Figure 14.
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The maximum opening amount of the comb plate bridge expansion device was taken
as the fatigue test condition, and a vertical force of 43.30 kN was loaded at the solid element.
The load on the expansion joint was calculated concerning the tyre’s contact area. The
specific data is shown in Table 6.

Table 6. Loading data of fatigue test.

Maximum Value
(kN)

Minimum
Value (kN)

Average
Value (kN)

Amplitude
Value (kN) Stress Ratio Frequency

(Hz)

Parameter Fmax Fmin Fave Famp r f
Value 43.30 4.33 23.815 19.485 0.1 4

As aforementioned above, working condition II was taken as the fatigue test condition,
and the FEM is shown in Figure 15. The equivalent stress diagram of the structure under
the fatigue working condition is shown in Figure 16. The resulting file (.rst) of the FEM of
the comb plate expansion joint was imported into the FEInput module in nCode.
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Then, based on the load data of the fatigue test in Table 6, the TSGenerator module in
nCode software generated the load spectrum shown in Figure 17. Thirdly, owing to the
accumulation of damage caused by the external load, the comb plate expansion joint is
prone to fatigue failure. Therefore, the S-N fatigue analysis method was determined, and the
material properties of Q355 were selected in this module. Moreover, the SignedVonMises
method was adopted to predict the fatigue life of the comb plate expansion joint. Von Mises
Stress is a square of a sum of stress values squared. That way, Von Mises Stress is always
positive. Using this parameter, it’s impossible to analyze if the body is undergoing tension
or compression. Signed Von Mises Stress, in turn, considers the absolute value and the
stress signal. Finally, the interface of the specific analysis process is shown in Figure 18.
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Figure 18. The interface of fatigue analysis.

After calculation, the fatigue life of the comb plate expansion joint can be seen from
the FEDisplay, as shown in Figure 19. The minimum life of the expansion device is
2.012 × 106 times, which appears on the connection between the fixed plate and middle
anchor and is higher than 2 × 106 times stipulated by code [18]. The fatigue life of other
components is shown in Table 7.
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It should be noted that some areas have a shorter life span, such as the root of the
movable comb plate and the contact surface between the fixed comb plate and the support
system. Therefore, these areas also need to be carefully observed during the fatigue
test on-site.

3. Tests for the Comb Plate Expansion Joint
3.1. Load-Bearing Tests

To verify whether the load-bearing capacity and deformation of the device can meet
the code’s requirements, the load-bearing test of the comb-plate expansion device under
working conditions II was carried out, and the relationship between the test load and the
vertical deformation of the expansion device was derived. The results were compared with
the simulation results to determine the validity of the finite element calculation. According
to the standard JT/T 327-2016 [18], the limit state of the comb plate expansion device is
that the device is in the 100% open position, i.e., the maximum stretch with a lap length
larger than 10 mm, as shown in Figure 20a.

The load-bearing test was carried out, as shown in Figure 20b. A channel set was
installed below the vertical actuator to increase the loading area, and a tyre-like rubber plate
measuring 245 mm × 200 mm × 20 mm was installed below the channel set to simulate the
area of the wheel load. Dial indicator D1 and Dial indicator D2 were installed on the steel
plate and the expansion device, respectively, as shown in Figure 20d,e. D1 was used to
measure the deformation of the steel plate, and D2 to measure the total deformation of the
steel plate and the comb plate expansion device. Under the same static load, the difference
between the two scales is the deformation of the comb plate expansion.

The deformation of the expansion device was fitted to the test load data. The rela-
tionship between the loading force and deformation curve can be obtained as y = 127.65x,
where x is the vertical deformation (mm), and y is the loading force (kN). When the wheel
load is 100 kN, the actual load on the steel structure of the comb plate expansion unit
was 43.30 kN. According to the force-displacement curve, the vertical deformation of the
comb-plate expansion is 0.339 mm. The error of the simulated vertical deformation is
10.38% compared to the test value, which proves the validity of the finite element model.

3.2. Bench Fatigue Test for the Full-Scale Specimens

A fatigue test was carried out to determine whether the fatigue life of the full-scale
specimen of the comb plate expansion joint can fulfil 2 million times specified by industry
code [18]. Meanwhile, the fatigue life predicted by nCode DesignLife can be verified.
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The electro-hydraulic servo fatigue test system named PLS-1000 was used to conduct
a fatigue test for the comb plate expansion joint. The maximum vertical load of this test
machine is 1000 kN. The frequency can reach up to 20 Hz. The vertical loading head of
this testing machine was used to simulate the effect of vehicle load on this device. First, a
channel steel group was placed under the vertical loading head of the testing machine to
enlarge the loading area, as shown in Figure 20c. Then, a rubber block with a dimension
of 245 × 200 × 20 mm3 was laid up between the channel steel group and the expansion
joint to simulate the contact area of the wheel. The fatigue load spectrum was performed
by following the value listed in Table 6, and the cycle number is 2 million times, as shown
in Figure 21.

The variation range of the feedback signal of the loading force is 4.33~43.30 kN. After
the bench fatigue test 2 million times, the detailed views of the comb plate expansion joint
are displayed in Figures 22–25. There were no cracks that appeared in the welds of the
key components of the expansion device. The bolts connected the test bench, and the steel
plates were scarcely loose.
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4. Conclusions

In this work, a new type of comb plate expansion joint was taken as the research object,
with the merit of boltless as the loosening and failure of bolts have an intensively negative
influence on the service of the bridge. To investigate the safety of this new type of expansion
device, the equivalent stress, deformation, and shear stress were checked by Ansys software.
Furthermore, nCode DesignLife software concerning fatigue life was adopted to predict
the fatigue life of the expansion joint. The minimum life in the structure was recognized
as the fatigue life of the entire device. In addition, the load-bearing test and bench fatigue
test of the comb plate expansion joint were performed by code JT/T327-2016 [18]. The
load-bearing test validates FEM developed in this work regarding the expansion joint. The
fatigue test results show that the expansion joint was intact after 2 million cycles. The
conclusions obtained in this work are as follows:

(1) The vertical deformation, equivalent stress, and shear stress of the new type of comb
plate expansion joint under maximum and minimum openings fulfilled the design require-
ments. Meanwhile, the maximum stress points and stress values under the two working
conditions were found, and these results laid the foundation for fatigue life analysis.

(2) The fatigue life of the device was assessed via nCode DesignLife, and the results
show that the minimum value is 2.012 × 106, which appears on the connection of the
fixed comb plate and middle anchor. Moreover, the fatigue life obtained from simulation
is higher than the 2 × 106 times specified by the industry code, which meets the actual
engineering demand. Additionally, the simulation results also give reference to the fatigue
test on-site.

(3) To determine whether the fatigue life of the full-scale specimen of the comb plate
expansion joint can fulfil 2 million times specified by industry code, a full-scale fatigue test
was performed. There were no cracks that appeared in the welds of the key components of
the expansion device after the bench fatigue test. Furthermore, the bolts used to connect
the test bench to the steel plate were hardly loosened. Additionally, the test results prove
the validity of the simulation results.

(4) The relationship between the loading force and deformation was obtained by
the load-bearing test. The vertical deformation of the comb plate expansion device was
0.339 mm when the actual load on the steel structure of the comb plate expansion unit was
43.30 kN. The error in the simulated vertical deformation is 10.38% compared to the test
value, which proves the validity of the finite element model.

It should be noted that to study the fatigue mechanism of expansion joints via fatigue
simulation and full-scale fatigue test, the design duration can be significantly reduced, and
the reliability of expansion joints can be improved affirmatively. However, there are some
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limitations in this paper. For instance, sinusoidal excitation was adopted to calculate the
fatigue life of the comb plate expansion joint instead of actual vehicle excitation. Therefore,
research in the future ought to consider the actual excitation of the car driving through
the expansion joint. In this way, the fatigue life of a new expansion joint can be evaluated
more accurately.
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