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Abstract: The activities of the rotary axes of a five-axis machine tool generate heat causing temper-
ature changes within the machine that contribute to tool center point (TCP) deviations. Real time
prediction of these thermally induced volumetric errors (TVEs) at different positions within the
workspace may be used for their compensation. A Stacked Long Short Term Memories (SLSTMs)
model is proposed to find the relationship between the TVEs for different axis command positions
and power consumptions of the rotary axes, machine’s linear and rotary axis positions. In addition,
a Stacked Gated Recurrent Units (SGRUs) model is also used to predict some cases, which are the
best and the worst predictions of SLSTMs to know the abilities of their predictions. Training data
come from a long motion activity experiment lasting 132 h (528 measuring cycles). Adaptive moment
with decoupled weight decay (AdamW) optimizer is used to strengthen the models and increase the
quality of prediction. Multistep ahead prediction in the testing phase is applied to seven positions not
used for training in the long activity sequence and 31 positions in a different short activity sequence
of the rotary axes lasting a total of 40 h (160 cycles) to test the ability of the trained model. The testing
phase with SLSTMs yields fittings between the predicted values and measured data (without using
the measured values as targets) from 69.2% to 98.8%. SGRUs show performance similar to SLSTMs
with no clear winner.

Keywords: volumetric errors; deep learning; machine tool; thermal errors

1. Introduction

Machine tool accuracy may degrade significantly due to thermal effects resulting
partly from heat generated by the drives and the motions of rotary axes [1]. One way
to reduce these errors is real time compensation to cancel TCP deviation at an arbitrary
point in the work space by adjusting its command position [2]. Mayr et al. stated that
precise predictions of thermal errors through models are fundamental for effective real
time compensation [3]. The higher the predictability of the thermal error models, the more
accurate the compensation will be.

Brecher et al. developed first and second order transfer functions between the thermal
volumetric errors (TVEs) of a three-axis machine tool as outputs and the internal control
data (rotational speeds and motor currents) and environment temperature as inputs [4].
Horejs et al. compensated thermal displacements in the y and z directions of the TCP
through thermal transfer functions that were achieved using Matlab’s System Identification
Toolbox. The inputs are the temperatures from inside the main spindle, ram and base of
the horizontal milling machine, ambient temperature and spindle speed and the outputs
are the thermal displacements [5]. Liu at al. modelled thermally induced volumetric errors
based on the 21 geometric error components and nine thermal drift errors for milling and
boring machine using rigid body kinematics. Only volumetric error in the z direction
identified as the main error was compensated with Programmable Logic Controller and
the machine’s computer numerical controller (CNC) [6]. Mayr et al. found compensation
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values for individual thermal errors of rotary axis and main spindle from a gray box model
using cooling power as input [7]. Yu et al. investigated the dependence of volumetric errors
on spindle speed and temperature at pre-defined points through polynomial regression
model. The model with closest predictability to the measured outputs is chosen [8]. Bitar-
Nehme and Mayer developed first order transfer functions with delay terms to predict
individual machine geometric errors as output from power consumptions as input. The
machine table thermal expansion was also predicted [1]. Baum et al. modeled thermally
induced volumetric error from the 21 geometric errors components for a three-axis machine
tool through rigid body kinematics. Error components were measured with integral
deformation sensors in the training process and the R-test based procedure in the testing
process [9]. Liu et al. established a mechanism-based error model to identify three thermally
induced error terms of linear axes X, Y, and Z as functions of time and positions. With
spindle system, they modelled relationship between two angular thermal errors yaw and
pitch, two thermally translational errors in x and y directions, and spindle elongation with
temperatures of critical key locations by multivariate linear regression analysis [10].

The above models show their ability to predict the TVEs (data sequence) of the machine
tools. However, the volume and variety of data become bigger; the model has more clues
to predict outputs better, but the calculation cost and internal parameters increase. In
some cases are over the capability of manual analysis [11,12]. Elaborate training of the
model is expected to be able to guarantee reliable results in the long term [13]. Deep
learning technique enables learning complex relations and is a new approach for these
problems. LSTM and GRU networks have attracted attention in recent time and Liang et al.
proved that they have a better quality than Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN) for processing sequence data and avoiding overfitting
problem [14]. Ngoc et al. [11] applied LSTM to predict multi step ahead data of thermally
induced geometric errors, which define the errors between and within individual machine
axes, from activity cycles involving the two rotary axes B and C of a five-axis machine
tool. Others [15–18] presented the efficiency of LSTM networks for modelling the thermal
behaviors of a machine tool. Refs. [15,16] modeled the thermal elongation of spindle as a
function of rotational speed. Ref. [17] used thermal elongation of spindle in the z direction
as output and temperature at key locations as inputs. Ref. [18] found the relationship
between thermal errors of ball screws and temperature of the feed drive system. While
in [11] thermally induced geometric errors (TGEs) were predicted using SLSTM, the current
paper applies SLSTM and SGRU to directly predict the TVEs without the use of a rigid body
kinematic model. This avoids having to develop the machine kinematic model and may be
able to model error sources that a kinematic model may not consider. Calculating them
from predicted TGEs does not consider errors that cannot be explained with the estimated
geometric errors [1,19]. TVEs directly relate to compensation values of the thermal errors of
paths to move the tool to target positions in the working space of the machine tool. These
predictions are more difficult than doing TGEs because the predictors need to realize not
only the change of thermal behavior of machine, but also the positions we want to move
the tool to. Therefore, the input data include not only the power consumptions of axes
B and C, but also the machine linear and rotary axis positions. Increasing the number of
inputs also increases the calculation cost. With a multivariate and multi-layer network, it
may be trapped within multiple local minima; Sagheer and Kotb suggest having a suitable
optimizer to facilitate the training of deep learning models [20]. Stochastic optimization is
successfully applied in Deep learning [21] and Adam [22] is a popular optimizer. Adaptive
moment with decoupled weight decay (AdamW) optimizer [23] is a modification of Adam
with flexible learning rate, decoupling the weight decay from the gradient update, is
expected to make the networks converge faster and improve accuracy. The proposed
scheme is presented in six sections: Section 1 reviews previous works. Section 2 describes
the experimental process. Section 3 presents the neural network configurations of the
SLSTMs and SGRUs models. Section 4 shows the training and predicting processes. The
results and discussion are in Section 5 and the conclusion follows in Section 6.
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2. Experiment Process

Motion sequences for machine axes were designed to warm up the machine tool
without any machining [1,24], while measuring the TVEs, or TCP displacements between
a contactless R-test device (sensor nest) [25] and ball artefacts on a Mitsui-Seiki HU40T
horizontal machining center with wCBXfZY(S)t topology as described in [1]. Figure 1
illustrates the experimental setup. Four separate artefact balls are fixed on stems with
different lengths and a scale bar made of Invar with two balls separated by a calibrated
distance on the workpiece side, while the sensor nest is mounted in the spindle on tool side.
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Figure 1. Experimental setup.

Heating (rotary axes’ motions at different speeds) and cooling (machine stopped)
cycles are shown in Figure 2 (on the left). Figure 2 (on the right) illustrates ambient tempera-
ture controlled between 22.1 and 23.5 Celsius degrees in 132 h (528 cycles) training process.
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Figure 2. Heating and cooling processes and ambient temperature.

The activity sequences are implemented using a machine tool G-code. TCP positions
are measured at 15 min intervals for both training and testing processes. TVEs, estimated
by the Scale And Master Ball Artefact (SAMBA) method [26] in both processes in the x,
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y, and z directions, are the subtractions of the initial value from all subsequent values to
avoid the effect of machine quasi-static geometric errors as given by Equation (1).

TVE = VE − VE0 (1)

Figure 3 on the left shows the long process of activity with different measured powers
of the B and C rotary axes lasting 132 h. In this process, each axis is exercised separately to
capture their individual effect on the behavior of the machine tool. Figure 3 on the right
shows the short process lasting 40 h with individual and simultaneous motions of rotary
axes, which was run after some days and with similar starting condition to the long process.
The short process is different from the long process and includes individual axis motions
as well as combined axis motions as would be likely during a machining process.
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3. Stacked LSTMs and GRUs

An LSTM unit has three gates: an input gate (it), an output gate (0t) and a forget gate
(ft) as shown in Figure 4 (on the left).
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Figure 4. LSTM and GRU unit.

The function of the LSTM unit is to remove or add information to the cell state Ct
that is carefully regulated by these three gates. Ĉt represents new information that can
be applied to cell state Ct. Ht is the hidden state; σ and tan h are sigmoid and tangent
activation functions, respectively.

Gated recurrent unit (GRU) [27] is also working by a gating mechanism. GRU unit
contains a reset gate rt and an update gate zt. GRU does not have an output gate Ot and
long-term memory unit Ĉt as the LSTM unit. Both of them have the ability to eliminate the
vanishing gradient problem by keeping the relevant information and passing it to the next
time steps of the network.
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SLSTM/SGRUs in Figure 5 consists of stacked layers of LSTMs/GRUs and the output
layer makes a prediction [20]. The SLSTMs/SGRUs run when the first LSTM/GRU layer
takes the input sequence and every LSTM/GRU layer feeds hidden states to the next
LSTM/GRU in the stack. SLSTMs/SGRUs calculates only one error signal at the final
output layer, and then back propagates it through all previous layers [20]. This structure is
programmed with Pytorch library in Python using torch.nn.LSTM/GRU.
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4. Training and Testing Processes

The machine schematic in Figure 6 shows TVEs measured at four artefact balls. The
workpiece and tool branches are illustrated in green and black colors, respectively.
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Figure 6. Machine schematic with thermally induced volumetric errors.

The TVEs have three positioning error components as described in Equation (2).
These error components may change with activities of the B- and C-axis, positions, and
indexations.

TVEi = [TVEix TVEiy TVEiz]T with i = 1:N (2)

where N is the number of measured positions.
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In the training phase, the SLSTMs/SGRUs models are built using long process data,
as illustrated in Figure 7, and TVEs in 24 positions of the artefact balls 1, 2, and 3, shown in
Table 1, are used as targets. The power consumptions of the axes B and C, the 24 linear axis
positions used to move the sensor nest to the ball artefacts and the nine (B, C) indexations,
or rotary axis positions, are used as inputs.
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Table 1. 31 positions with nine different indexations of balls 1, 2, 3, and 4.

Positions of Artefact Balls Indexations A,B,C (Degrees)

P1,1,1 P1,2,2 P1,3,3 0 −90 135

P2,4,1 P2,5,4 P2,6,3 0 −90 −45

P3,7,3 P3,8,4 P3,9,1 P3,10,2 0 −30 −60

P4,11,1 P4,12,2 P4,13,3 P4,14,4 0 0 180

P5,15,2 P5,16,3 P5,17,4 P5,18,1 0 0 0

P6,19,3 P6,20,4 P6,21,1 P6,22,2 0 20 15

P7,23,2 P7,24,3 P7,25,4 0 90 45

P8,26,3 P8,27,2 P8,28,1 0 90 −45

P9,29,4 P9,30,1 P9,31,2 0 90 −135
Where: Pq,i,k with q = indexation (1 to 9); i = linear axis position (1 to 31); k = artefact (1 to 4).

The testing phase will consider two cases: long test data consisting of TVEs at
seven positions of artefact ball 4 as well as the short test data of all 31 positions at all
four artefact balls.

The 31 linear axis positions are shown in Figure 8. These positions are pre-determined
by calculations based on the indexations of B and C axes and the artefact’s positions
in the machine frame. They are used for the G-code to move the sensor nest to the
four artefact balls.

SLSTMs/SGRUs [28] are capable of capturing longer patterns in sequential data.
AdamW optimizer is used to generate the optimized weights and biases based on the
outputs of the SLSTMs\SGRUs and the measured TVEs at 24 different positions. In Figure 7,
Inputj =

[
PowerBj, PowerCj, xj, yj, zj, bj, cj

]T with j = 1 : n; p is the number of inputs in
one sample = 8; n is the number of training data = 528 × 24 = 12,672, corresponding to
24 position measurements or observations at each of the 528 measurement cycles;
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Targetj is the desired yj of SLSTMs/SGRUs equal to the measured TVEj;
[
yp, . . . ,yn

]
=

trained
[
TVEp, . . . ,TVEn

]
; U, W and b are weight and bias that need to be updated after

each batch (number of training samples) in the training process as Equations (3)–(5) [29]

Wnew = (1− λw)W
old − ηw√

v̂wt + ε
m̂wt (3)

Unew = (1 − λu)U
old − ηu√

v̂ut + ε
m̂ut (4)

bnew = (1 − λb)b
old − ηb√

v̂bt + ε
m̂bt (5)

where η is the learning rate, ε = 10−8, m̂ and v̂ are bias-corrected first and second moment
estimates and λ is the rate of the weight decay per step.

The diagram in Figure 9 shows the testing procedure applying multistep predictions
with the trained SLSTMs/SGRUs and inputs without using measured TVEs as targets. In
this phase, to match the initial conditions, eight first states with values of zeros are added
to the data sequence, as Ngoc et al. conducted this in [11].
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Figure 9. Prediction process of thermally induced volumetric errors.

In Figure 9: Inputt = [PowerBt, PowerCt, xt, yt, zt, bt, ct]
T, t = 1 to m + 8 , p = 8,

m = 528 and 160 cycles in the long and short processes, respectively; and
[
yp . . . ym+8

]
=

Predicted
[
TVEp . . . TVEm+8

]
.

5. Results and Discussions

In this section, the prediction ability of the trained SLSTMs for all TVEs are shown
before some the best and worst cases are chosen to compare with the SGRUs’. In the
training phase, three Stacked LSTMs are used to build the models for TVEx, TVEy and
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TVEz separately. Data of the thermal behaviors of the machine in 24 positions (31 po-
sitions of Table 1 less positions 5, 8, 14, 17, 20, 25, and 29 of ball 4) were put in series.
Figure 10 shows the measured and predicted thermal volumetric errors (TVEs) for each
of the 24 balls’ positions where for each position, 528 measuring and prediction cycles are
conducted. The results for each position are concatenated horizontally, so the timeline of
the abscissa repeats for every position (Pi) for compactness of presentation.
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Figure 10. Training TVEx, TVEy, and TVEz from 24 positions in the long training process. For
example, between P2 and P3 are the 528 cycle measured and predicted thermal volumetric errors at
position P3 (1 cycle = 15 min).

The B axis has a greater impact on volumetric errors (TVEs) than the C axis. In fact, B
axis activity dominates almost all of the TVEx. However, the influence of C axis activity
relative to the B axis increases for TVEy and TVEz.

In the testing phase, three sets of volumetric errors were considered to test the ability of
the trained model: data of seven positions at ball 4 in the long process (different positions in
workspace but same process with training data), and data of 31 positions in the short process
which is divided in two sets: the first set with 24 positions at balls 1, 2, 3 (same positions
but different process) and the second set with seven positions of ball 4 (different positions
and process). Due to the limitation of space, some of the best and the worst predictions of
the TVEs in each set are presented. Multistep predictions (528 steps (cycles)) for positions
P14 and P20 in the long process are computed and illustrated from Figures 11–13. In the
short process, 160 prediction steps are shown from Figures 14–19 for positions P4, P5, P9,
and P25.
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Figure 19. Prediction of TVEy25 and TVEz25 in the short process (SP) (1 cycle = 15 min).

The trained model appears to have difficulty predicting TVEz20 from cycles 300 to
450, as its parameters tend to rely heavily on the patterns observed in the training data and
do not adjust well to changes in TVEz20 during the testing process. As a result, the model’s
predictions for TVEz20 during this period are likely to be inaccurate. Conversely, TVEz14
tends to be better predicted during this time. The model is able to adapt more easily to
changes in TVEz14.

The Root Mean Square Errors (RMSEs) and fittings of predictions compared with
measured values are calculated by Equations (6) and (7) and are shown from Figures 20–24.

RMSE =

√
∑n

j=1
(
Prediction valuesj −Measured valuesj

)2

n
(6)

fitting(%) =

(
1− RMSE∣∣Measured valuesjmax −Measured valuesjmin

∣∣
)
∗ 100 (7)
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Figure 20. RMSEs and fittings of seven positions at ball 4 in the long process (LP).

The changes of TVEs depend on the inputs: powers of rotary axes, durations of
activities, positions, and indexations. The trained models have capability to predict TVEs,
respectively illustrated from Figure 11 to Figures 24 and 25 presents a set of TVEs in 33 linear
axis positions with directional components of TVEx, TVEy, and TVEz at one cycle in the
testing process. Predictions of TVEs of seven positions at ball 4 in the long process can
reach very high fitting with RMSE = 2.2 µm (fitting = 98.8%) for TVEy14, while the lowest
proportion of fitting in this process is for TVEz20 with RMSE = 5.6 µm (fitting = 80.3%).
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Figure 25. 31 linear axis positions and an example set of TVEs.

The trained models gave less quality when they predict TVEs at 7 positions at ball 4
in the short testing process as shown by RMSEs from 3.3 µm (86.7% fitting) for TVEx5 to
4.8 µm (75.27% fitting) for TVEz5. The predictions are good for positions at ball 1, 2, and
3 in the short testing process with the highest fitting 91.6% (1.8 µm) for TVEx9, and the
worst case in this process with 69.2% (7.5 µm) for TVEz6. The results also indicate that the
model gives the highest capability of prediction for TVEy and the worst for TVEz. These
situations happened in [11], with geometric errors relating to y and z components. There
are some over responses of the trained model in the beginning of the short process for all
TVEs, but the predictions gradually improve to closely track the measured values for the
rest of the process. Figures 20–24 reveal an interesting finding: for the positions located
at the artifact ball four, TVEy tends to have a higher fitting than TVEx and TVEz. On the
other hand, for the positions located at the artifact balls one, two, and three, TVEx tends to
dominate the others.

The SLSTMs model showed its ability to predict thermally induced volumetric errors
of the machine tool based on the motor powers of the rotary axes. GRU unit was invented
after LSTMs with a simpler structure for time series application. The question is: which one
is better for data sequences? To answer this question, this work continues by taking some
cases including the best and worst predictions of SLSTMs and uses SGRUs to train model
and predict these thermally induced volumetric errors with similar structure, learning rate,
and weight decay.

SLSTMs predict TVEy14, TVEx4 better than SGRUs as shown in Figures 26–29 with
RMSEs = 2.2 µm, 2 µm and 2.4 µm, 4.4 µm, respectively. For TVEz5, 6, SGRUs performs
better with RMSEs = 3.2 µm and 6.6 µm, while SLSTMs have RMSEs turnoff 4.8 µm and
7.5 µm. Both the SLSTMs and SGRUs proved that they have potential to predict the
sequence data. The results in this section partly prove the ability of SLSTMs and SGRUs to
predict TVEs at the 40 h process with different activities and inputs.

This study has several limitations that should be taken into account. Firstly, the heat
sources are limited to the rotary axes, which may affect the quality of predictions of TVEz.
To improve the accuracy of the predictions, it may be beneficial to include more information
on the activities of the linear axes and temperatures as inputs. Additionally, the ambient
temperature should not be overlooked as it can directly affect the change in temperature of
the axes following a sequence of activities.
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6. Conclusions

In this study, an approach using SLSTM/SGRU for directly predicting thermally
induced volumetric errors without the use of a kinematic model with geometric error
parameters was proposed. SLSTMs\SGRUs+AdamW are used for modelling and predict-
ing the sequential data. The training and testing data sets used different positions and
different B- and C-axis exercise cycles. The SLSTMs model’s best prediction in the long
process reached RMSE of 2.2 µm (98.8% fitting to the experimental measurement), while in
a short testing process, it achieved 1.8 µm (91.6%). The worst case predicted by the model
in processes is 7.5 µm (69.2% fitting). This work gives a potential solution in practice to
predict the thermal volumetric errors at different positions in the workspace directly over
an extended period of 40 h without the need for remeasuring the thermal errors, which
allows sufficient time for the machining of most workpieces.

A comparison between two popular deep learning models for sequential data, SLSTMs
and SGRUs, is carried out for some outstanding TVEs. The purpose is to determine which
one is better for this application. Their capabilities were similar.

Future work can focus on exploring the heat sources associated with the activities of
five-axis machine tools, as well as examining the robustness of deep learning models when
faced with variations in ambient temperature.

Author Contributions: Conceptualization, H.V.N., J.R.R.M. and E.B.-N.; methodology, H.V.N. and
J.R.R.M.; software, H.V.N.; validation, H.V.N., J.R.R.M. and E.B.-N.; formal analysis, H.V.N., J.R.R.M.
and E.B.-N.; investigation, H.V.N.; resources, H.V.N., J.R.R.M. and E.B.-N.; data curation, H.V.N.,
J.R.R.M. and E.B.-N.; writing—original draft preparation, H.V.N.; writing—review and editing,
H.V.N., J.R.R.M. and E.B.-N.; visualization, H.V.N.; supervision, J.R.R.M. and E.B.-N.; project admin-
istration, J.R.R.M.; funding acquisition, J.R.R.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery, Grant number RGPIN-2016-06418.

Institutional Review Board Statement: I declare on behalf of my co-authors that this work is orig-
inal and has not been published elsewhere, nor is it currently under consideration for publication
elsewhere.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available from the corresponding author on reasonable request.

Acknowledgments: Elie Bitar-Nehme, technicians Guy Gironne and Vincent Mayer are acknowl-
edged for experimental data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bitar-Nehme, E.; Mayer, J.R.R. Modelling and compensation of dominant thermally induced geometric errors using rotary axes’

power consumption. CIRP Ann. 2018, 67, 547–550. [CrossRef]
2. Ibaraki, S.; Knapp, W. Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools: A review. Int. J.

Autom. Technol. 2012, 6, 110–124. [CrossRef]
3. Mayr, J.; Jedrzejewski, J.; Uhlmann, E.; Donmez, M.A.; Knapp, W.; Härtig, F.; Wendt, K.; Moriwaki, T.; Shore, P.; Schmitt, R.

Thermal issues in machine tools. CIRP Ann. 2012, 61, 771–791. [CrossRef]
4. Brecher, C.; Hirsch, P.; Weck, M. Compensation of thermo-elastic machine tool deformation based on control internal data. CIRP

Ann. 2004, 53, 299–304. [CrossRef]
5. Horejs, O.; Mares, M.; Kohut, P.; Barta, P.; Hornych, J. Compensation of machine tool thermal errors based on transfer functions.

MM Sci. J. 2010, 3, 162–165. [CrossRef]
6. Liu, Y.; Lu, Y.; Gao, D.; Hao, Z. Thermally induced volumetric error modeling based on thermal drift and its compensation in

Z-axis. Int. J. Adv. Manuf. Technol. 2013, 69, 2735–2745. [CrossRef]
7. Mayr, J.; Egeter, M.; Weikert, S.; Wegener, K. Thermal error compensation of rotary axes and main spindles using cooling power

as input parameter. J. Manuf. Syst. 2015, 37, 542–549. [CrossRef]
8. Yu, B.-F.; Liu, K.; Li, K.-Y. Application of Multiple Regressions to Thermal Error Compensation Technology—Experiment on

Workpiece Spindle of Lathe. Int. J. Autom. Smart Technol. 2016, 6, 103–110.

https://doi.org/10.1016/j.cirp.2018.04.080
https://doi.org/10.20965/ijat.2012.p0110
https://doi.org/10.1016/j.cirp.2012.05.008
https://doi.org/10.1016/S0007-8506(07)60702-1
https://doi.org/10.17973/MMSJ.2010_03_201001
https://doi.org/10.1007/s00170-013-5237-x
https://doi.org/10.1016/j.jmsy.2015.04.003


Machines 2023, 11, 496 16 of 16

9. Baum, C.; Brecher, C.; Klatte, M.; Lee, T.H.; Tzanetos, F. Thermally induced volumetric error compensation by means of integral
deformation sensors. Procedia CIRP 2018, 72, 1148–1153. [CrossRef]

10. Liu, J.; Ma, C.; Wang, S. Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine
tools. Mech. Syst. Signal Process. 2020, 138, 106538. [CrossRef]

11. Ngoc, H.V.; Mayer, J.R.R.; Bitar-Nehme, E. Deep learning LSTM for predicting thermally induced geometric errors using rotary
axes’ powers as input parameters. CIRP J. Manuf. Sci. Technol. 2022, 37, 70–80. [CrossRef]

12. Provost, F.; Fawcett, T. Data science and its relationship to big data and data-driven decision making. Big Data 2013, 1, 51–59.
[CrossRef]

13. Dahlem, P.; Emonts, D.; Sanders, M.P.; Schmitt, R.H. A review on enabling technologies for resilient and traceable on-machine
measurements. J. Mach. Eng. 2020, 20, 5–17. [CrossRef]

14. .Liang, Y.; Li, W.; Lou, P.; Hu, J. Thermal error prediction for heavy-duty CNC machines enabled by long short-term memory
networks and fog-cloud architecture. J. Manuf. Syst. 2020, 62, 950–963. [CrossRef]

15. Liu, J.; Ma, C.; Gui, H.; Wang, S. Thermally-induced error compensation of spindle system based on long short term memory
neural networks. Appl. Soft Comput. 2021, 102, 107094. [CrossRef]

16. Liu, P.-L.; Du, Z.-C.; Li, H.-M.; Deng, M.; Feng, X.-B.; Yang, J.-G. Thermal error modeling based on BiLSTM deep learning for
CNC machine tool. Adv. Manuf. 2021, 9, 235–249. [CrossRef]

17. Yu-Chi, L.; Kun-Ying, L.; Yao-Cheng, T. Spindle Thermal Error Prediction Based on LSTM Deep Learning for a CNC Machine
Tool. Appl. Sci. 2021, 11, 5444.

18. Gao, X.; Guo, Y.; Hanson, D.A.; Liu, Z.; Wang, M.; Zan, T. Thermal Error Prediction of Ball Screws Based on PSO-LSTM. Int. J.
Adv. Manuf. Technol. 2021, 116, 1721–1735. [CrossRef]

19. Mchichi, N.A.; Mayer, J. Axis location errors and error motions calibration for a five-axis machine tool using the SAMBA method.
Procedia CIRP 2014, 14, 305–310. [CrossRef]

20. Sagheer, A.; Kotb, M. Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series
forecasting problems. Sci. Rep. 2019, 9, 19308. [CrossRef]

21. Curtis, F.E.; Scheinberg, K. Adaptive Stochastic Optimization: A Framework for Analyzing Stochastic Optimization Algorithms.
IEEE Signal Process. Mag. 2020, 37, 32–42. [CrossRef]

22. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
23. Gugger, S.; Howard, J. AdamW and Super-Convergence Is Now the Fastest Way to Train Neural Nets. Available online:

https:/www.fast.ai/2018/07/02 (accessed on 19 July 2018).
24. Bitar-Nehme, E.; Mayer, J.R.R. Thermal volumetric effects under axes cycling using an invar R-test device and reference length.

Int. J. Mach. Tools Manuf. 2016, 105, 14–22. [CrossRef]
25. Weikert, S. R-test, a new device for accuracy measurements on five axis machine tools. CIRP Ann. Manuf. Technol. 2004, 53,

429–432. [CrossRef]
26. Mayer, J.R.R. Five-axis machine tool calibration by probing a scale enriched reconfigurable uncalibrated master balls artefact.

CIRP Ann. 2012, 61, 515–518. [CrossRef]
27. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.
28. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
29. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.procir.2018.03.045
https://doi.org/10.1016/j.ymssp.2019.106538
https://doi.org/10.1016/j.cirpj.2021.12.009
https://doi.org/10.1089/big.2013.1508
https://doi.org/10.36897/jme/122768
https://doi.org/10.1016/j.jmsy.2020.10.008
https://doi.org/10.1016/j.asoc.2021.107094
https://doi.org/10.1007/s40436-020-00342-x
https://doi.org/10.1007/s00170-021-07560-y
https://doi.org/10.1016/j.procir.2014.03.088
https://doi.org/10.1038/s41598-019-55320-6
https://doi.org/10.1109/MSP.2020.3003539
https:/www.fast.ai/2018/07/02
https://doi.org/10.1016/j.ijmachtools.2016.03.003
https://doi.org/10.1016/S0007-8506(07)60732-X
https://doi.org/10.1016/j.cirp.2012.03.022
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276

	Introduction 
	Experiment Process 
	Stacked LSTMs and GRUs 
	Training and Testing Processes 
	Results and Discussions 
	Conclusions 
	References

