
Citation: Kong, Y.; Jiang, H.; Dong,

N.; Shang, J.; Yu, P.; Li, J.; Yu, M.;

Chen, L. Analysis of Time-Varying

Mesh Stiffness and Dynamic

Response of Gear Transmission

System with Pitting and Cracking

Coupling Faults. Machines 2023, 11,

500. https://doi.org/10.3390/

machines11040500

Academic Editor:

Domenico Mundo

Received: 4 April 2023

Revised: 17 April 2023

Accepted: 20 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Analysis of Time-Varying Mesh Stiffness and Dynamic
Response of Gear Transmission System with Pitting and
Cracking Coupling Faults
Yiyi Kong, Hong Jiang *, Ning Dong, Jun Shang, Pengfei Yu, Jun Li, Manhua Yu and Lan Chen

School of Mechanical Engineering, Xinjiang University, Urumqi 830047, China; kyy@stu.xju.edu.cn (Y.K.)
* Correspondence: onlyxjjh@xju.edu.cn

Abstract: The gear transmission system is an important part of the mechanical system, so it is essential
to judge its running state accurately. To solve the difficult problem of identifying the components of
coupling faults, this paper derives the calculation method of gear time-varying mesh stiffness for
coupling faults of pitting and cracking based on the energy method and considering the coupling
between teeth, establishes the dynamics model of two-stage gear transmission system with coupling
faults and studies the influence of coupling faults on gear time-varying mesh stiffness and dynamic
characteristics. The accuracy of the proposed method is verified by experiments. The results show
that both pitting and cracking can lead to a reduction in mesh stiffness. The stiffness of pitting
will fluctuate irregularly due to the influence of pitting on the tooth surface, while the stiffness of
cracked teeth is relatively smooth. The coupling fault stiffness is dominated by more serious faults.
By analyzing the periodic impact components in time domain and the sideband components around
the harmonics in frequency domain the faulty gears in the transmission system can be distinguished.
It provides an effective reference for the diagnosis of faulty gears.

Keywords: coupling faults; dynamic response; energy method; gear system; time-varying
mesh stiffness

1. Introduction

Gears are important components of transmission systems and have been widely used
in various items of large mechanical equipment, industrial production and military indus-
tries due to their precise transmission ratios, long service life and high reliability. However,
they may fail over time due to the inevitable fatigue that occurs in gear systems under
heavy loads and harsh working conditions [1]. Inadequate lubrication and overloading can
cause deformation, which can lead to wear, cracking, pitting, spalling and even tooth break-
age, directly affecting the safe operation of equipment. Particularly in some large-scale
engineering fields, gear failures often cause huge economic losses and threaten the safety
of people and property [2]. Therefore, it is particularly important to study the mechanism
of gear failure [3,4]. The more common forms of gear failure are cracking and pitting [5].
Cracking occurs mainly at the tooth root during the meshing process, while pitting occurs
on the tooth surface. However, whether pitting or cracking occurs, it will damage the
surface material, reduce the gear teeth’s effective cross-sectional area, change the gears’
meshing stiffness and ultimately affect the dynamic characteristics of the gear system [6].

Time-varying mesh stiffness of gears is one of the main internal excitations in gear
dynamics [7]. It is a time-varying phenomenon caused by changes in the number and
location of tooth contacts [8]. In gear fault diagnosis, the square-wave method, the potential
energy method and other methods are commonly used to calculate the time-varying mesh
stiffness of gears. In the case of gear cracks, the crack path is usually simplified as a
straight line [9] or a slightly curved line starting from the tooth root [10,11]. Most studies
assume that tooth cracks extend across the entire width of the tooth and have a constant
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crack depth. For healthy gears running continuously, gear mesh stiffness is a periodic
function. F. Chaari et al. [12,13] used a square wave to approximate the time-varying mesh
stiffness of the gear. The period of a square wave is called the mesh period, which is
equal to the duration of one rotation divided by the number of teeth. The square wave
can reflect changes in the number of tooth contacts, but ignores changes in the tooth
contact position, and the size of the square wave is essentially estimated based on personal
experience. Hence, the accuracy of the gear time-varying stiffness given by this method is
not high. Therefore, many researchers have improved the analytical models for stiffness
calculation. Weber [14] derived a comprehensive deformation calculation method using
energy integration, including tooth bending, shear and compression. Cornell [15] further
proposed a numerical integral method including root fillet and elastic deformation of
tooth foundation based on Weber’s research. Yang and Lin [16] established a potential
energy method based on the potential energy principle. They considered the total energy
stored in a pair of gears as the sum of Hertz contact energy, bending energy and axial
compression energy, which correspond to the Hertz contact stiffness, bending stiffness
and axial compression stiffness, respectively. Later, Tian [17] added another energy term
called shear energy, corresponding to the shear stiffness, and then used this method to
derive the mesh stiffness of gears with cracks. This method calculates the mesh stiffness
of gears with faults more efficiently and has been widely used. Since previous scholars
did not consider the deformation of the gear body when calculating the stiffness, i.e., the
gear body was assumed to be rigid, Sainsot et al. [18] proposed an empirical formula for
tooth deformation caused by fillet-foundation deflection, which has been widely used to
study the effects of various factors such as wear, cracking, stripping and pitting on mesh
stiffness. Ankur Saxena [19] studied the effects of various tooth cracking conditions on the
system’s modal characteristics and frequency response function. The modal and frequency
response characteristics induced by gear cracking were compared. Kramberger et al. [20]
indicated that cracks mostly initiated at the point of the maximum principal stress in the
tensile side of a gear tooth. Wan et al. [21] proposed a modified model that considers the
relative position of the root and base circles, and optimized and corrected the stiffness
calculation. The above model ignores the gear structural coupling deformation caused
by the gear body when calculating the double-tooth contact area. Xie et al. [22] proposed
a time-varying mesh stiffness calculation method that considers the structural coupling
effect between teeth and verified its effectiveness by finite element analysis. This further
improved the accuracy of the energy method. Regarding pitting failure, scholars’ research
mainly focuses on improving the similarity between the pitting analysis model and the
actual pitting failure model. Ankur Saxena [23] proposed an analytical method to calculate
the TVMS of the spur gear for different spall shapes, size and location considering sliding
friction. Bilal El Yousfi [24] double-discretized the tooth surface to consider the variation of
defect depth in the width and length direction of the gear teeth, and proposed a method
to calculate meshing stiffness of spur gears based on potential energy. Cheng et al. [25]
proposed a rectangular pitting model and put forward a method to evaluate the degree of
pitting damage. Chen et al. [26] regarded the pitting pit as cylindrical. They considered the
influence of crack and pitting pit deterioration on the time-varying mesh stiffness of gears
when both existed on the same gear, which was verified by finite element analysis. Luo
et al. [27,28] proposed a pitting pit model based on ellipsoidal geometry and verified the
accuracy of the model using the finite element method. Lei et al. [29] proposed a pitting
pit distribution model based on one-dimensional Gaussian distribution and simulated the
variation of gear mesh stiffness under different degrees of failure. Chen et al. [30] derived
the comprehensive mesh stiffness affected by pitting using a two-dimensional Gaussian
distribution model and further analyzed the conditions of multiple tooth surface pitting.

In summary, the above research has focused mainly on the mechanism and detection
of single faults in a single gear pair. However, in important mechanical and industrial
fields, various coupling faults may occur in the gear transmission system under heavy
loads and insufficient lubrication, among which pitting and cracking are most likely to
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occur. To address this problem, this paper proposes a stiffness calculation model for
coupling, pitting and cracking faults based on the energy method considering the coupling
effect between teeth, analyzes the influence of different degrees and types of faults on the
time-varying mesh stiffness and establishes a two-stage gear transmission system dynamic
model containing single faults and coupling faults based on the finite element method.
The effects of single and coupling faults on the dynamic characteristics of the transmission
system are analyzed, and the accuracy of the model is verified through experiments.

2. Calculation of Gear Time-Varying Mesh Stiffness

The time-varying meshing stiffness, as an internal excitation, is particularly important
in the calculation of the dynamic characteristics of the gear. Therefore, accurate calculation
of the meshing stiffness of the gear is conducive to accurate dynamic simulation and
dynamic characteristics of the gear system.

This chapter calculates the time-varying mesh stiffness of healthy and faulty gears,
and the parameters of gears are shown in Table 1.

Table 1. Gear parameter.

Parameters Drive Gear Driven Gear

Number of teeth 36 90
Pressure angle (◦) 20 20
Face width (mm) 12 12
Modulus (mm) 1.5 1.5

Rotary inertia (kg·m2) 0.000380 0.003492
Mass (kg) 0.1836 1.3114

2.1. Calculation of Meshing Stiffness of Normal Gear

As a mathematical method, the potential energy method is combined with the me-
chanics of materials to divide the object and integrate each part to obtain accurate results.
Therefore, this method is also used to calculate the stiffness of gears. According to numer-
ous studies, it is believed that the energy in teeth can be divided into four parts. The shear,
bending, axial and Hertzian energies are replaced by Us, Ub, Ua and Uh, respectively. The
above four kinds of energy formula calculation are described as follows [26]:

Uh = F2

2kh

Ub = F2

2kb
=
∫ d

0
[Fb(d−x)−Fah]2

2EIx
dx

Us =
F2

2ks
=
∫ d

0
1.2F2

b
2GAx

dx

Ua =
F2

2ka
=
∫ d

0
F2

a
2EAx

dx

(1)

Ix =
1

12
(2hx)

3L (2)

Ax = (2hx)L (3)

where F represents the acting force by the meshing tooth in the contact point. Fa, Fb are
radial and tangential forces, G, E, L, represent shear modulus, Young’s modulus and the
tooth width, respectively. Ix, Ax are the moment of inertia and cross-sectional area. the
other parameters are shown in Figure 1.
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Figure 1. Model of spur gear tooth: (a) rf < rb; (b) rf > rb.

According to the principle of gear, the relative positions of the dedendum circle and
the base circle are not fixed, which means the integral interval needs to be handled in
different cases [21]. The radii of the base circle and dedendum circle can be expressed as
follows:

rb =
mz
2

cos(θ), r f =
mz
2
− (h∗a + c∗)m (4)

where m, z and θ represent module, number of teeth and pressure angle, respectively. c∗ and
h∗a are tip clearance and addendum coefficients. Taking the standard gear as an example,
h∗a = 1, c∗ = 0.25, θ = 20◦, when rb = r f , the number of teeth z ≈ 42.

If the number of teeth is less than 42, that is rb > rf, as shown in Figure 1a, the bending
energy of teeth can be written as:

kb = 1/(
∫ α2
−α1
{3(α2 − α) cos α[1 + cos α1((α2 − α) sin α−

cos α)]2/2ELH3}dx +
∫ rb−r f

0 {[cos α1(d− x1)−
sin α1h]2/EIx1}dx1

) (5)

Similarly, the shear stiffness ks and axial compression stiffness ka can be obtained as
follows:

ks = 1/(
∫ α1

−α2

(1 + ν)(α2 − α) cos α cos2 α1

ELH
dα +

∫ rb−r f

0

1.2 cos2 α1

GAx
dx1) (6)

ka = 1/(
∫ α1

−α2

(α2 − α) cos α sin2 α1

2ELH
dα +

∫ rb−r f

0

sin2 α1

EAx
dx1) (7)

where Ix denotes the moment of inertia of the section at a distance x1 from the base circle.
Combined with the geometric relation of involute, d, x and hx can be expressed as:

d = rb[cos α1 + (α1 + α2) sin α1 − cos α2]
x = rb[cos α + (α + α2) sin α− cos α2]
h = rb sin α2
H = sin α + (α2 − α) cos α

(8)
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If the dedendum circle is greater than base circle, that is rb < r f , as shown in Figure 1b,
the bending energy of the tooth can be written as:

kb = 1/(
∫ α2

−α1

{3(α2 − α) cos α[1 + cos α1((α2 − α) sin α− cos α)]2/2ELH3}dx) (9)

ks = 1/(
∫ α1

−α2

(1 + ν)(α2 − α) cos α cos2 α1

ELH
dα) (10)

ka = 1/(
∫ α1

−α2

(α2 − α) cos α sin2 α1

2ELH
dα) (11)

The Hertz contact stiffness is expressed as [29]:

kh =
ELπ

4(1− µ2)
(12)

According to the theory of Muskhelishvili, in addition to the tooth deformation, the
deflection of the fillet-foundation has a great influence. In this case, the tooth is regarded as
a rigid body and the fillet-foundation as an elastic body. The flexible deformation stiffness
of the fillet-foundation can be calculated by:

1
k f

=
cos2 α1

EL
{L∗

(
u
S f

)2

+ M∗
(

u
S f

)
+ P∗(1 + Q∗ tan2 α1)} (13)

where the coefficients L*, M*, P*, Q* are the same as in [18]. u and S f are shown in Figure 2.

Figure 2. Schematic diagram of structural coupling effect in the double teeth-meshing region.

In most previous calculation models, the stiffness of healthy teeth in the double teeth-
meshing region was commonly calculated by directly summing the corresponding single
teeth-meshing stiffness. Such a method ignores the influence of the two engaged teeth
sharing the same body, which makes the stiffness of the double teeth-meshing region
significantly larger compared to the results of the finite element method (FEM) [31]. This
will directly affect the results of the dynamic solution. The structural coupling between the
teeth in the double teeth-meshing region is schematically shown in Figure 2.

Referring to [22], the structural coupling stiffnesses kf21 and kf12 can be expressed,
respectively, as:

1
k f 21

= cosα1cosα2
EL {L2

(
u1u2
S2

f

)
+ [M2tanα2 + P2]

(
u1
S f

)
+ [Q2tanα1 + R2]

(
u2
S f

)
+

[S2tanα1 + T2]tanα2 + U2tanα1 + V2}
(14)
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1
k f 12

= cosα1cosα2
EL {L1

(
u1u2
S2

f

)
+ [M1tanα1 + P1]

(
u2
S f

)
+ [Q1tanα2 + R1]

(
u1
S f

)
+

[S1tanα2 + T1]tanα1 + U1tanα2 + V1}
(15)

where 1/kf21 denotes the displacement of meshing point 1 under the condition that F1 = 0
and F2 is the unit force. 1/kf12 is the displacement of meshing point 2 when F2 = 0 and F1 is
the unit force. Parameters such as Li, Mi, Pi, Qi, Ri, Si, Ti, Ui and Vi (i = 1,2) are the same as
those in [22], u1, u2 and sf are the same as mentioned above.

Therefore, the comprehensive mesh stiffness can be obtained from Equation (16):

k =


1

1
kp f 1

+ 1
kpt1

+ 1
kh1

+ 1
kgt1

+ 1
kg f 1

,
Single tooth meshing area

2
∑

i=1
ki, Double tooth meshing area

(16)

where ki =
1

Fj
Fikp f ij

+ 1
kp f i

+ 1
kpti

+ 1
khi

+ 1
kgti

+ 1
kg f i

+
Fj

Fikg f ij

(i 6= j), khi(i = 1, 2) denotes the Hertz con-

tact stiffness. knti(i = 1, 2; n = p, g) is the stiffness of the tooth part. It includes bending
stiffness, shear stiffness and axial compression stiffness. kn f i(i = 1, 2; j = p, g) is the flexible
deformation stiffness of the fillet-foundation. kn f ij(i, j = 1, 2, i 6= j; n = p, g) is the coupling
stiffness of the structure between teeth.

2.2. Calculation of Time-Varying Mesh Stiffness of Gear Pair with Fault

Due to the concurrent and coupling effects of faults, cracking and pitting are most
likely to occur simultaneously under heavy load and poor lubrication. In [26] the authors
study pitting and cracking on the same tooth, but the gear failure has the driving wheel
and driven wheel fault coupling. Therefore, the influence of pitting and cracking on the
time-varying meshing stiffness of the driving and the driven wheel in the transmission
system is studied in this paper. The fault distribution is shown in Figure 3.

Figure 3. The location of the faulty gear in the transmission system.

2.2.1. Calculation of Time-Varying Meshing Stiffness of Gear with Root Crack

It is shown in [32] that the crack propagation path is smooth, continuous and, in most
cases, fairly straight, with only a slight curvature. Therefore, in this study, it is assumed
that the cracked gear is a cantilever beam model, the crack exists at the dedendum along
the tooth width direction through the crack, the intersection angle between the crack and
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the gear center line is a constant ν and the tooth profile curve remains intact [21]; the details
are shown in Figure 4.

Figure 4. Crack tooth cantilever beam model: (a) Model of a tooth cantilever beam with shallow
crack; (b) Model of tooth cantilever beam with deep crack.

The number of teeth of the gear where the crack is located is 90 teeth, so the case that
the dedendum circle is larger than the base circle is considered. Because the crack does not
change the length of the gear contact line, the Hertz contact stiffness does not change. In
addition, the gear can still bear axial compression force after the root cracks, so it can be
considered that the axial compression stiffness will not change. In this paper, it is assumed
that there are two stages of crack growth as shown in Figure 4. Figure 4a shows the initial
stage of crack growth, and Figure 4b shows the more serious stage after crack growth [21].

As shown in Figure 4a, the integration area can be divided into normal and fault areas.
The moment of inertia and the cross-sectional area of the gear in the region from the root to
gc away from the root are changed due to the crack in the fault region. The expression is as
follows [21]:

Ax =

{
(hc + hx)L (x ≤ gc)
2hxL (x > gc)

(17)

Ix =

{
(hc + hx)

3L/12 (x ≤ gc)
2hx

3L/3 (x > gc)
(18)

In this case, the axial compression stiffness is calculated in the same way as Equa-
tion (11), while the bending stiffness and shear stiffness can be expressed as [21]:

kb = 1/(
∫ α2
−αg
{12{1 + cos α1[( α2 − α) sinα− cos α]} 2(α2−α) cosα/{EL[sin α2 − (q/rb) sin ν + sin α+

(α2 − α) cos α]3}}da +
∫ −αg
−α1
{3{1 + cos α1[( α2− α) sinα− cos α]}2(α2 − α) cosα/{2EL[sin α+

(α2 − α) cosα]3 }}dα)

(19)

ks = 1/(
∫ α2
−αg
{2.4(1 + ν)(α2 − α) cosα cos

2
α1/ (EL(sin α2 − (q/rb) sinν + sin α + (α2−

α) cosα))}da +
∫ −αg
−α1
{2.4(1 + ν)(α2− α) cosα cos

2
α1/{EL[sin α + (α2 − α) cosα]}}da)

(20)
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As shown in Figure 4b, the cross-sectional area and moment of inertia of the gear can
be expressed in the following form:

Ax = (hc + hx)L (21)

Ix = (hc + hx)
3L/22 (22)

In this case, bending stiffness and shear stiffness can be expressed as:

kb = 1/(
∫ α2
−αg
{12{1 + cos α1[( α2 − α) sinα− cos α]} 2(α2− α) cosα/{EL[sin α2 − (q/rb) sinν + sin α+

(α2 − α) cosα]3 }}dα)
(23)

ks = 1/(
∫ α2

−αg

{
2.4
(

1 + ν)(α2 − α) cosα cos2 α1/ {EL[sin α2 − (q/rb) sinν + sin α + (α2 − α) cosα]}}da (24)

The calculation results of the time-varying meshing stiffness of the gear with crack
fault are shown in Figure 5. The results show that the meshing stiffness of the gear gradually
decreases with the increase in the crack degree. The degree increases gradually, because
the crack causes the change of the inertia moment and cross-sectional area of the gear.

Figure 5. Time-varying meshing stiffness of gear under different crack depths.

On the other hand, it can be observed from the figure that the stiffness greatly decreases
at the initial position and decreases less with the subsequent meshing. This is because
the location of the faulty gear is the driven wheel, and its meshing process is from the
addendum to the dedendum. This indicates that the first double-tooth region when the
faulty tooth engages in meshing has the greatest impact on the vibration of the system
after the root crack fault occurs in the driven wheel. With the meshing of the driven wheel,
the bending moment generated by the meshing force in the vertical direction gradually
decreases, and the bending potential energy gradually decreases. The stiffness reduction
caused by the reduction in cross-sectional area and moment of inertia caused by the crack
is relatively reduced.

2.2.2. Pitting Gear Modeling

Due to too thin oil conditions, friction between material surfaces leads to surface
defects or cracks, which transform into pitting. With the increased gear running time, the
pitting degree further deteriorates from a healthy condition to a severe degree. In addition,
when the contact point coincides with the gear pitch line, pure rolling will occur, and it is
difficult to form lubricating oil films. If the lubrication is insufficient or the load is too large,
the gear pitch line will naturally produce fatigue particles [33]. Therefore, pitting due to
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fatigue usually occurs in the banded area below the pitch line, which indicates that pits
are distributed below the pitch line along the height of the tooth surface. The actual shape
of pitting is usually irregular, but to facilitate the establishment of the model, this paper
assumes that the shape of pitting is a regular circle [7,34]. Many previous models were
designed to simulate the distribution of pits and consider the propagation of pits. As the
surface cracks spread, a series of small pits are formed. After this, the pitted gear continues
to mesh with other healthy gears. During the rest of the run, sliding during gear meshing
squeezes oil or small particles into the surface crack, accelerating the crack propagation or
pitting. As a result, these previously created pits continue to spread. Therefore, to simulate
the real situation, this study simulates the gradually increasing size of these pits instead of
assuming fixed pits. Moreover, in formerly healthy areas, new potholes appear over time.
This phenomenon is also considered in this paper.

In summary, in this paper, the pitting distribution on gears is modeled as a two-
dimensional random variable and xi and yi are the coordinate values of the i-th pitting pit in
the direction of the width and height of the tooth surface, respectively. The relationship is
shown below:

xi ∼ N(µ, σ2) (25)

yi ∼ U(0, Li) (26)

where Li is the length of pitting spread along the tooth width. Besides, for the normal
distribution function in Equation (25), the 3σ criterion is used to describe the distribution
areas of pits in this paper. Therefore, µ and σ can be calculated as follows:

µ = xp − δ, σ =
xp − xmin − δ

3
(27)

where xp is the coordinate value of the pitch circle in the x direction, xmin is determined by
the boundary of meshing area and d indicates that the distribution of pits usually has a
concentration below the pitch line, illustrated in Figure 6.

In this paper, according to Figure 7, pitting is further analyzed according to its surface
integral in the tooth surface area into three damage degrees: slight pitting, moderate pitting
and severe pitting, as shown in Table 2.

ni =


HLPi

πd2
p1/4

, i = 1;

HLPi
πd2

p1/4
−

i
∑

j=1
ni−j+1(

dp j
dp1

)
2
, i ≥ 2.

(28)

where Pi is the percentage of the pitting area; i = 1, 2, 3, where 1 represents slight pitting,
2 represents moderate pitting and 3 represents severe pitting; dpi is the pitting diameter of
the i-th pitting degree; and H is the height of the pitting area.
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Figure 6. Pitting model: (a) Normal tooth; (b) Slight pitting of gear teeth; (c) Moderate pitting of gear
teeth; (d) Severe pitting of gear teeth.

Figure 7. Pitting gear teeth: (a) Pitting extending area: 6.3%; (b) Pitting extending area: 27.8%;
(c) Pitting extending area: 41.7%.



Machines 2023, 11, 500 11 of 29

Table 2. Pitting degree parameters.

Degree Number of Pits with Different Sizes Pitting Area Pit Depth ti (mm)dp1 = 0.2 mm dp2 = 0.3 mm dp3 = 0.4 mm

1 20 6.3% 0.1
2 84 20 27.8% 0.15
3 204 84 20 41.7% 0.2

2.2.3. Calculation of Time-Varying Meshing Stiffness of Pitting Gear

From the analysis of the potential energy method, the contact line length during gear
meshing greatly influences the calculation of the potential energy and the time-varying
meshing stiffness of the gear. The contact length during gear meshing is equal to the
tooth width L for healthy gears. However, for pitted gears, the effective contact length is
decreased. Given the decreased tooth contact length represented by ∆L, the effective contact
length would be L−L. After modeling pits in Section 2.2.2, the decreased tooth contact length
∆L can be calculated as follows.

In previous studies, the segmentation method usually calculates the meshing stiffness
of gears with tooth surface pitting. This paper uses the image processing method to obtain
the mesh line length in combination with [29]. It is assumed that the tooth contact line
consists of N pixels, as shown by the golden line in Figure 6. For each pixel, a special color
or gray indicates whether the point is normal or pitted. More specifically, if the point is
in the normal region, it is set to white with a grayscale of 255; if the point is in the pitting
area, it is set to black, and the grayscale is 0. In this way, all the pixels on the tooth contact
line are distinguished by their colors. Finally, if the black number is ∆N, the reduced tooth
contact length is ∆L = ∆NL/N.

Therefore, the Hertzian contact stiffness, bending stiffness, shear stiffness and axial
compression stiffness of pitted teeth were calculated as follows [29]:

kh =
E(L− ∆L1)π

4(1− µ2)
(29)

1
kb

=
∫ d

0
[cos α1(d−x)−sin α1h]2

EIx
dx−

∫ d
0

[cos α1(d−x)−sin α1h]2

EIx
∆L
L dx +

∫ d
0

[cos α1(d−x)−sin α1h]2

EI′x
∆L
L dx

+
∫ rb−r f

0
[cos α1(d+x1)−sin α1h]2

EIx1
dx1

(30)

1
ka

=
∫ d

0

sin2 α1

EAx
dx−

∫ d

0

sin2 α1

EAx

∆L
L

dx +
∫ d

0

sin2 α1

EA′x

∆L
L

dx +
∫ rb−r f

0

sin2 α1

EAx1
dx1 (31)

1
ks

=
∫ d

0

1.2 cos2 α1

GAx
dx−

∫ d

0

1.2 cos2 α1

GAx

∆L
L

dx +
∫ d

0

1.2 cos2 α1

GA′x

∆L
L

dx +
∫ rb−r f

0

1.2 cos2 α1

GAx1
dx1 (32)

where ∆L1 is the contact length at the meshing position, as shown by the red solid line
in Figure 6, ∆L is the reduction in the contact length from the base circle x, as shown
by the yellow line in Figure 6, and Ix and Ax are the effective moment of inertia and the
effective cross-sectional area of the distance x from the base circle, respectively, when pitting
corrosion occurs.

I′x =
1
12

(2hx − ti)
3L (33)

A′x = (2hx − ti)L (34)

where ti is the depth of pitting. By substituting Equations (33) and (34) into
Equations (29)–(32), the following formulae can be obtained [29]:

1
kb

=
∫ α2
−α1

3(α2−α) cos α{1+cos α1 [(α2−α) sin α−cos α]}2

2EL[sin α+(α2−α) cos α]3
dα−

∫ α2
−α1

3∆L(α2−α) cos α{1+cos α1 [(α2−α) sin α−cos α]}2

2EL2 [sin α+(α2−α) cos α]3
dα

+
∫ α2
−α1

3∆L(α2−α) cos α{1+cos α1 [(α2−α) sin α−cos α]}2

2EL2 [sin α+(α2−α) cos α− ti
2Rb

]
3 dα +

∫ rb−r f
0

3[Rb−Rb cos α1 cos α2+x1 cos α1 ]
2

2ELh3
x1

dx1
(35)
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1
ks

=
∫ α2
−α1

1.2(1+ν)(α2−α) cos α cos2 α1
EL[sin α+(α2−α) cos α]

dα−
∫ α2
−α1

1.2∆L(1+ν)(α2−α) cos α cos2 α1
EL2 [sin α+(α2−α) cos α]

dα

+
∫ α2
−α1

1.2∆L(1+ν)(α2−α) cos α cos2 α1

EL2 [sin α+(α2−α) cos α− ti
2Rb

]
dα +

∫ rb−r f
0

1.2(1+ν) cos2 α1
ELhx1

dx1
(36)

1
ka

=
∫ α2
−α1

(α2−α) cos α sin2 α1
2EL[sin α+(α2−α) cos α]

dα−
∫ α2
−α1

∆L(α2−α) cos α sin2 α1
2EL2 [sin α+(α2−α) cos α]

dα

+
∫ α2
−α1

∆L(α2−α) cos α sin2 α1

2EL2 [sin α+(α2−α) cos α− ti
2Rb

]
dα +

∫ rb−r f
0

sin2 α1
2ELhx1

dx1
(37)

The time-varying meshing stiffness of gears with different degrees of pitting can be
evaluated using the stiffness calculation formula mentioned above. The calculation results
of the time-varying meshing stiffness of gears with pitting are shown in Figure 8.

Figure 8. Influence of pitting degree on time-varying meshing stiffness of gears.

From Figure 8, it can be observed that as the degree of pitting increases, the meshing
stiffness gradually decreases. As the pitting spreads further, there is also a significant
decrease in the stiffness of the initial engagement of the gears. At the same time, it can
be observed that the influence of pitting on stiffness is different from that of cracks. The
stiffness of a gear pair with cracks shows a smooth curve, whereas pitting shows more
pronounced irregular fluctuations. This is because pitting affects the effective contact length
of the gear teeth, which in turn affects the stiffness calculation. Some scholars have found
that pitting primarily affects the time-varying meshing stiffness of gears by influencing the
Hertzian contact stiffness [30].

2.2.4. Stiffness Calculation of Pitting Corrosion-Crack Composite Failure

In this study, it is assumed that the driving gear has pitting. In contrast, the driven
gear has cracks, resulting in two types of gear fault situations during the meshing process,
as shown in Figure 9. When two faulty gears mesh, their comprehensive meshing stiffness
is calculated using Equation (16). The calculated results of the composite fault stiffness are
shown in Figures 9–12. In this paper, the crack degree is expressed by its propagation depth,
q = 0.5 mm, 0.75 mm, 1 mm, 1.25 mm, 1.5 mm, 2 mm. The degree of pitting is expressed as
slight (SL), moderate (M) and severe (Se).



Machines 2023, 11, 500 13 of 29

Figure 9. Composite failure model.

Figure 10a–c shows the variation of the time-varying mesh stiffness with the variation
of the gear crack depth, while keeping the pitting severity constant. As can be observed
from the graph, with an increase in crack depth, the time-varying mesh stiffness gradually
decreases, which is evident from the significant drop in the first double-tooth region during
the faulty gear meshing and a gradual decrease in the drop magnitude in the second double-
tooth region. In comparison, the time-varying mesh curve of Figure 5, which describes
only the crack fault, is smooth. However, for the composite fault stiffness described in
Figure 10, the time-varying mesh stiffness shows irregular fluctuations. As the pitting
severity increases, this type of fluctuation becomes more pronounced.

Figure 10. Cont.
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Figure 10. The crack effect on meshing stiffness with different degrees of pitting: (a) The time-varying
meshing stiffness of gear teeth with slight pitting and different crack depth; (b) The time-varying
meshing stiffness of gear teeth with moderate pitting and different crack depth; (c) The time-varying
meshing stiffness of gear teeth with severe pitting and different crack depth.

Figure 11a–c describes the mesh stiffness of gear coupling cracks of three depths (1
mm, 1.5 mm and 2 mm) with slight pitting. The coupling mesh stiffness is lower than the
single-fault mesh stiffness and approaches the crack stiffness. After the crack depth exceeds
1.5 mm, the stiffness decreases significantly. From these figures, it can be concluded that
during the slight pitting stage the coupling fault behaves similarly to a single crack fault.
This is because during the slight pitting stage the material peeling on the tooth surface is
relatively small, and its effect on the comprehensive mesh stiffness is smaller than that of
the crack. However, the features of pitting stiffness can still be observed in the coupling
stiffness, which exhibits irregular fluctuations.

Figure 11. Cont.
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Figure 11. The crack effect on meshing stiffness with slight pitting: (a) At the stage of 1 mm crack;
(b) At the stage of 1.5 mm crack; (c) At the stage of 2 mm crack.

The number of pits at the severe pitting stage is twice that of the moderate pitting
stage, and the pitting craters have spread over almost the entire tooth surface, as shown in
Figure 6d. Due to the further expansion of the failed area caused by pitting, the stiffness
reduction in the double-tooth and single-tooth areas is extremely significant compared to
slight and moderate pitting, as shown in Figure 13. The effect of pitting on stiffness exceeds
the effect of cracking at all stages. The coupling stiffness is close to the pitting stiffness.

Figure 12. Cont.
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Figure 12. The crack effect on meshing stiffness with moderate pitting: (a) At the stage of 1 mm crack;
(b) At the stage of 1.5 mm crack; (c) At the stage of 2 mm crack.

Figure 13. The crack effect on meshing stiffness with severe pitting: (a) At the stage of 1 mm crack;
(b) At the stage of 1.5 mm crack; (c) At the stage of 2 mm crack.
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In addition, the accuracy of the stiffness calculation method mentioned above has been
demonstrated in [26,29,30]. The details of the finite element method are as follows. Finite
element software is used for the finite element calculation in the paper. The finite element
model uses the element type SOLID 187. The teeth are mapped with tetrahedral elements.
In the finite element model, the linear material is assumed to be linear elastic. Surface to
surface contact (Conta174 and Targe170) is adopted in the finite element modeling process.
Gear pair solution setting and stiffness calculation are per [35]. The finite element mesh
model is shown in Figure 14.

Figure 14. Fault gear meshing: (a) Meshing gear pair; (b) Gear with crack; (c) Gear with pitting.

The comparison between the stiffness obtained from the proposed method and the
results from finite element simulations is shown in Figure 15. The comparison shows that
both the proposed method and the finite element method produce consistent results in the
double-tooth meshing area for both normal and faulty gears. However, there are some
differences between the two methods in the single-tooth meshing region. This is because, in
the actual meshing process, there is a phenomenon of tooth engagement advance and tooth
disengagement lag due to the deformation of the gear teeth, resulting in a decrease in the
carrying time of the single-tooth area. Nevertheless, the results indicate that the proposed
method and the finite element method are consistent in terms of numerical values and
trends, demonstrating the proposed method’s effectiveness in calculating the stiffness.

Figure 15. Cont.
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Figure 15. Comparison of stiffness calculation results: (a) Normal tooth condition; (b) Slight pitting
and 0.5 mm crack condition; (c) Moderate pitting and 1 mm crack condition; (d) Severe pitting and
1.5 mm crack condition.

3. Simulation and Experimental
3.1. Modeling of Two-Stage Gear Transmission System

The gearbox’s physical picture and schematic diagram is shown in Figure 16. The gear
transmission system is divided into three parts: gear, bearing and shaft, where 1a, 1b, 2a,
2b, 3a and 3b are bearings; p1 and g1 form the first pair of spur gears; and p2 and g2 form
the second pair of spur gears. Gear, shaft and bearing parameters are given in Tables 3–5.
The gear transmission system is an elastic system with infinite degrees of freedom, but the
finite element method provides us with the possibility of solving it [36,37]. In this paper,
according to the structure of the transmission system, the finite element method is used to
divide it into three parts: shaft segment unit, gear unit and bearing unit. The finite element
model is shown in Figure 17.

Figure 16. Two-stage gearbox. (a) Outside and (b) inside of the gearbox from real photos. (c) Sketch
of the gear system.
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Table 3. Gear parameters of system.

Parameters P1 g1 P2 g2

Number of teeth 29 95 36 90
Pressure angle (◦) 20 20 20 20
Face width (mm) 12 12 12 12
Modulus (mm) 1.5 1.5 1.5 1.5

Rotary inertia (kg·m2) 0.000205 0.001810 0.000380 0.003492
Mass (kg) 0.1085 1.4648 0.1836 1.3114

The angle of inclination of the tooth line (◦) 0 0 0 0
The coefficient of addendum 1 1 1 1

The coefficient of bottom clearance 0.25 0.25 0.25 0.25
The modification coefficient 0 0 0 0

Table 4. Shaft parameters of system.

Parameters Shaft 1 Shaft 1 Shaft 1

Length (mm) 240 160 180
Radius (mm) 20 20 20

Shear modulus (Pa) 8 × 1010 8 × 1010 8 × 1010

Elastic modulus (Pa) 2.1 × 1011 2.1 × 1011 2.1 × 1011

Density (kg/m3) 7850 7850 7850

Table 5. Bearing parameters of system.

Parameters Value

Number of rolling elements 8
Pitch diameter (mm) 37.65

Diameter of inner raceway (mm) 28.7
Diameter of outer raceway (mm) 46.6

Roller diameter (mm) 8.7
Radial clearance (mm) 0.5
Curvature radius (mm) 4.5

Inner raceway curvature sum (1/mm) 0.3078
Outer raceway curvature sum (1/mm) 0.1956

Goodness of fit 0.5172

Figure 17. Finite element model of transmission system.

3.2. Axial Segment Element Modeling

Considering the flexibility of the shaft, this paper adopts Timoshenko beam elements
to establish shaft segment units. As the model in this paper is a parallel-axis spur gear
transmission system, the transmission shaft mainly bears the effects of torsion and bending,
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with a relatively small force acting along the axial direction. Therefore, the axial excitation
is ignored. The first node is connected to the input point and is constrained by the torsion
degree of freedom. Thus, only two translation degrees of freedom exist at the first node.
The other nodes are considered to have three degrees of freedom: two translational degrees
of freedom, x and y, and one rotational degree of freedom θ. The stiffness matrix and the
mass matrix of the shaft components are calculated as follows:

ke =



GA
Kl 0 0 − GA

Kl 0 0

0 GA
Kl 0 0 − GA

Kl 0

0 0 GA
l 0 0 − GA

l

− GA
Kl 0 0 GA

Kl 0 0

0 − GA
Kl 0 0 GA

Kl 0

0 0 − GA
l 0 0 GA

l


(38)

Me =
πr3l

6



2 0 0 1 0 0

0 2 0 0 1 0

0 0 2J
A 0 0 J

A

1 0 0 2 0 0

0 1 0 0 2 0

0 0 J
A 0 0 2J

A


(39)

In the equation, l and A represent the length and cross-sectional area of the shaft
element, respectively. G, J and K represent the shear modulus, polar moment of inertia
and cross-sectional shape factor, respectively. The shaft segment elements are shown in
Figure 18.

Figure 18. Axial segment elements.

Assuming that the displacement column vector of the shaft element nodes in the local
coordinate system for the i-th beam element is qe = [xi , yi , θzi , xi+1, yi+1, θzi+1].

The motion differential equation for the shaft element is expressed as:

Me
..
qe + Ce

.
qe + Keqe = 0 (40)

where Me is the consistent mass matrix of the i-th shaft element, Ke is the stiffness matrix of
the shaft element and Ce is the damping matrix of the shaft element, calculated using the
Rayleigh damping method, with the calculation formula as follows:

Ce = a0Me + a1Ke (41)

where a0 and a1 are the proportional coefficients of the Rayleigh damping for the mass
matrix and stiffness matrix, respectively.

3.3. Modeling of Gear Meshing Unit

qs = [xp, yp, θzp, xg, yg, θzg] is selected as the node displacement column vector of gear
meshing unit, and the vibration displacement of each gear is projected to the direction of
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the meshing line. The relative total deformation of gear meshing unit along the direction of
the meshing line can be expressed as:

δ = Vqs − es (42)

where es is the integrated error of gear meshing, V is the projection vector of the upward
displacement of each gear pair along the meshing line, which can be expressed in the
following form.

V = [sin α, cos α,−rp,− sin α,− cos α,−rg] (43)

where rp and rg are the base circle radius of the driving and driven wheels, respectively, and
α is the pressure angle. The meshing unit is shown in Figure 19.

Figure 19. Two-stage meshing element.

According to Newton’s second law, the differential equation of motion of the spur
gear meshing element can be expressed as:



mp
..

xp + cs
.
δ sin α + ks(t)δ sin α = 0

mp
..

yp + cs
.
δ cos α + ks(t)δ cos α = 0

Ip
..

θzp − cs
.
δrp − ks(t)δrp = 0

mg
..

xg − cs
.
δ sin α− ks(t)δ sin α = 0

mg
..

yg − cs
.
δ cos α− ks(t)δ cos α = 0

Ig
..

θzg − cs
.
δrg − ks(t)δrg = 0

(44)

where mp, mg is the mass of the driving and driven wheels, respectively, Izp, Izg are, respec-
tively, the moment of inertia of the driving and driven wheel around the z axis, Cs is the
damping of the meshing element and ks(t) is the time-varying meshing stiffness of gears.

The motion differential equation matrix of the gear meshing element can be expressed
in the following form:

Ms
..
qs + Cs(

.
qs −

.
e) + Ke(qe − e) = 0 (45)

where Ms is the mass matrix of the meshing element, The specific form is Ms = diag[mp, mp,
Izp, mg, mg, Izg], Ks is the stiffness matrix of the gear mesh element that can be written as
Ks = ks(t)VTV, Cs is the damping matrix of the gear mesh element that can be written as
Cs = csVTV and e is the mesh error vector of the gear mesh element.
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3.4. Modeling of Bearing Unit

The bearing supports the shaft system and transmits vibration from the gears to the
housing. The bearing element is modeled using springs and dampers as shown in Figure 20.
The time-varying bearing stiffness is expressed in Equation (46):

k j(t) = ka + k0 sin(2π fbt + β0) (46)

where j is the radial direction of the bearing, j = x, y, ka = 8.5 × 108 N/m is the static stiffness
of the bearing, k0 is the fluctuation amplitude of bearing stiffness, f b is the bearing passing
frequency and β0 is the bearing phase angle.

Figure 20. Bearing unit.

3.5. Overall Dynamics Model of Two-Stage Gear Transmission System

The differential equation of the overall motion of the system is obtained by integrating
each unit equation, which is expressed as follows:

M
..
X(t) + C

.
X(t) + KX(t) = F (47)

where X(t) is the overall node displacement column vector, M, C, K is the total mass matrix,
total damping matrix and total stiffness matrix of the system and F is the external load
column vector. The total stiffness matrix of the system is shown in Figure 21.

Figure 21. Total stiffness matrix of transmission system.
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3.6. Simulation Results

Section 2 obtains the time-varying meshing stiffness of normal gear, cracked gear,
pitted gear and gear coupling pitted gear and cracked gear. The Newmark-β method is
used to solve the vibration signal results of the two-stage gear system under the conditions
of health and failure. The Newmark direct integration method is a generalization of the
integral form of linear acceleration method and a simplified algorithm for linear systems
with multiple degrees of freedom. When the selected control parameters satisfy a certain
relation, the method is unconditionally stable, and the time step size does not affect the
stability of the solution. Therefore, this method is used to solve the multi-degree-of-freedom
system dynamics in this paper. The basic parameters of the simulation model are as fol-
lows: input shaft rotation frequency f input = 28 Hz, intermediate shaft rotation frequency
f middle = 8.547 Hz and output shaft rotation frequency f output = 3.419 Hz. The meshing fre-
quencies for the two-stage gear drive are 812 Hz (f m1) and 307.705 Hz (f m2), respectively.
The bearing ball passing frequencies are 86 Hz (f b1), 26.2891 Hz (f b2) and 10.516 Hz (f b3),
respectively. Two more severe failures are selected as components of the subsequent simu-
lation system to observe the phenomena caused by the failures. The two defects are severe
pitting and 2 mm cracks, respectively. Pitting failure frequency is f pit = f middle = 8.547 Hz.
The period is Tpit = 0.117 s, the crack failure frequency is f crack = foutput = 3.419 Hz. The period
is Tcrack = 0.292 s. The load moment is 16.7 N.

This paper further analyzes the gear fault using the vibration acceleration signal.
Figure 22 shows the acceleration signals of a normal gear system, a gear system with cracks,
a gear system with pitting and a gear system with both pitting and cracks. Obviously, the
time-domain signal of the normal gear system is stable without any abnormality, while the
vibration acceleration signal of the system containing only cracks or pitting generates a
large periodic impact pulse. The impact period of the cracked gear system is 0.292 s, which
is the reciprocal of the rotation frequency of the shaft where the cracked gear is located
in the gear pair. The impact period of the gear system with pitting is 0.117 s, which is the
reciprocal of the rotation frequency of the shaft where the pitting gear is located in the gear
pair. The vibration acceleration signals of the gear system containing cracks and pitting
simultaneously generate three kinds of periodic impact pulses; one is the meshing period
of the cracked gear meshing with normal gear (0.292 s), the second is the meshing period of
the pitted gear meshing with the normal gear (0.117 s) and the third is the meshing period
of the cracked gear meshing with the pitted gear (0.584 s). The reason for the periodic effect
is that the gear is pitted or cracked, so when the gear pair meshes with the faulty gear, the
time-varying meshing stiffness of the gear pair decreases, which is manifested as an impact
in the vibration response. Suppose both the driving and the driven wheels have faults
during meshing. In that case, the time-varying meshing stiffness of the gear pair will drop
sharply, manifesting itself as a shock in the vibration response, and the impact amplitude
will be greater than that of the single fault. When the gear meshes with the faulty gear, the
normal gear participates in the meshing, the time-varying meshing stiffness returns to the
normal value, and the impact disappears. When the gear continues to rotate, the impact
signal representing the fault will appear periodically as the rotation progresses. Compared
with the whole amplitudes of the normal and the faulty gearboxes, pitting and cracking
faults are local faults that cause only a local increase in the vibration signal amplitudes and
do not have an overall effect on the increase or decrease in the vibration signal.

The time domain curve is transformed into a frequency domain curve by Fast Fourier
Transform to observe more detailed fault characteristics. Figure 23 shows the frequency do-
main signals of a normal gear system, a gear system with cracks, a gear system with pitting
and a gear system with both pitting and cracks. When a gear fault occurs, many sidebands
appear in the spectrum diagram in addition to the mesh frequency. The sidebands occur
mainly around the mesh frequency, and the interval between the sidebands is the rotation
frequency of the axis where the faulty gear is located. Therefore, the sideband interval of the
pitting spectrum signal is f pit = 8.547 Hz. The sideband interval of the crack fault spectrum
signal side corresponds to f crack = 3.419 Hz. The system with simultaneous pitting and
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cracking shows a more complex sideband, and the sideband signal contains f pit = 8.547 Hz
and f crack = 3.419 Hz. Therefore, the fault location in the transmission system can be found by
analyzing the sideband components, which provides a theoretical basis for fault diagnosis.

3.7. Experimental Results

To verify the proposed composite failure model, a two-stage gear drive system test
rig has been set up. The two-stage gear drive test system consists of a drive motor, an
acceleration sensor, a controller, a gearbox, a magnetic powder brake and a data acquisition
system (DT9837, frequency: 8000 Hz). Gear accuracy grade is 8. The cracked gear and
pitted gears are shown in Figure 24. The vibration acceleration signal of the gear system
can be collected from the accelerometer located at the bearing end plate, and the sampling
frequency is 10.24 kHz. The experimental input rotation frequency is 28 Hz. Due to slip
in the transmission process, the actual input is about 27.345 Hz, the intermediate shaft
rotation frequency is 8.347 Hz, the output shaft rotation frequency is 3.339 Hz, first stage
drive frequency is 793.005 Hz, the second stage drive frequency is 300.492 Hz and the load
is 4 V (about 16.7 N).

Figure 22. Simulated acceleration signals of gear systems with different faults: (a) Normal gear
system; (b) Gear system with cracks; (c) Gear system with pitting.; (d) Gear system with cracks and
pitting.
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Figure 23. Simulated acceleration signals in frequency domain of gear systems with different faults:
(a) Normal gear system; (b) Gear system with cracks; (c) Gear system with pitting; (d) Gear system
with cracks and pitting.

Figure 24. Test bench and faulty gear.

Experimental vibration acceleration results are shown in Figure 25. It can be found
from the time domain of the normal gear system that the state is stable and no abnormal
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state appears in the running process, while the time domain response of the gear system
with cracks and pitting has obvious periodic impact, and the impact period is consistent
with the simulation results. The spectrum diagram of the experimental signal is shown in
Figure 26. The sideband component in the frequency domain of the experimental signal
is relatively complex; even in the normal state, the sideband component will appear due
to noise. Although there is noise in the fault state, the sideband component generated by
cracks and pitting faults is also prominent, and the interval between the edge frequencies
is also represented as the fault frequency, which is consistent with the simulation results.
However, due to the attenuation of vibration energy in the process of experimental mea-
surement and the influence of environmental noise, the amplitude of the simulated signal
is different from that of the experimental signal.

Figure 25. Experimental acceleration signals of gear transmission systems with different types of
faults: (a) Normal gear system; (b) Gear system with cracks; (c) Gear system with pitting; (d) Gear
system with cracks and pitting.
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Figure 26. Experimental acceleration signals in frequency domain of gear transmission systems with
different types of faults: (a) Normal gear system; (b) Gear system with cracks; (c) Gear system with
pitting; (d) Gear system with cracks and pitting.

The accelerometers are mounted on the housings in the experiment, and the simulation
result is the bearing acceleration. Energy decay is inevitable in the transmission path of
the vibration signal. The interface between gear and shaft, inner race and outer race and
outer race and housing will cause significant energy loss. The simulation does not consider
the mass eccentricity and assembly error of the faulty gear. Therefore, the amplitude of the
experimental results is lower than that of the simulated results and the excitation of the test
is more complex.

4. Conclusions

In this paper, a stiffness calculation model of pitted and cracked gear composite faults
considering structural coupling was proposed based on the energy method. A dynamic
model of two-stage gear transmission system with pitted and cracked faults was established.
A two-stage gear box test platform verified the accuracy of the proposed model. The main
conclusions drawn are as follows:

(1) The presence of cracks and pitting reduces the meshing stiffness of the gear, but
the stiffness curve after cracks is smooth, while the stiffness curve after pitting has
irregular fluctuations. The composite failure stiffness will approach the failure stiffness
of a fault type with greater fault degree.

(2) In the time domain, pitting and cracking as local faults will produce periodic vibration
and impact with the operation of gears. Coupling faults will produce three kinds of
vibration shocks; one is pitting impact, one is cracking impact and one is coupling
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faults impact. The amplitude of coupling faults is obviously larger than that of single
fault impact.

(3) In the frequency domain, the occurrence of pitting and cracking faults will lead to
the occurrence of sidebands near each order of harmonics in the spectrum, and the
interval between sidebands is mainly the rotation frequency of the shaft where the
faulty gear is located. The coupling faults will result in a more complex sideband. The
sideband composed of two fault frequencies will appear near each harmonic.

(4) Although the experimental signal is in general agreement with the simulation signal,
the gap between the simulation signal and the experimental signal is inevitable due
to a series of factors such as the extraction position of the experimental speed signal,
attenuation of vibration energy in the transmission process, friction in the transmission
process and various errors.

Vibration analysis of a faulty gear system is an important source of information for
fault diagnosis, and it is of great significance to establish a dynamic model of the fault
transmission system. The work in this paper will provide some theoretical support for
follow-up research coupling fault dynamic modeling and coupling fault diagnosis. In
future work, we will pay more attention to the effects of different types of coupling faults
on the meshing and dynamic characteristics of multi-stage gear systems.
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